New Worker-Centric Scheduling Strategies for
Data-Intensive Grid Applications*

Steven Y. Ko, Ramsés Morales, and Indranil Gupta

Department of Computer Science
University of Illinois, Urbana-Champaign
Urbana, IL 61801

{sko,rvmorale, indy}@cs.uiuc.edu

Abstract. Distributed computations, dealing with large amounts of
data, are scheduled in Grid clusters today using either a task-centric
mechanism, or a worker-centric mechanism. Because of the large data
sets, the execution time is bounded by the cost of data transfer. In this
paper, we introduce new worker-centric scheduling strategies that are
novel in that they aim to implicitly exploit the locality of interest in
order to reduce the cost of data transfer. Many Grid applications are
characterized by such a locality of interest, i.e., a file is often accessed
by multiple tasks and, more importantly, a set of files that are accessed
by one task are also likely to be accessed together by other tasks. Our
new deterministic, as well as probabilistic, scheduling algorithms implic-
itly exploit this feature to improve running time. Our experiments are
done with traces of a real Grid application (Coadd), and show that our
algorithms are able to achieve utilization of over 90%, while reducing
makespan significantly compared to task-centric approaches.

Keywords: worker-centric scheduling, task-centric scheduling, data-
intensive applications, Grid environments.

1 Introduction

Data-intensive Grid applications are the applications that run on distributed
Grid sites and are characterized by their access of large amounts of data sets. In
attempting to minimize the execution time for such applications, schedulers of
the Grid application are hampered by the sheer size of the data sets involved.
While these data sets are mostly read-only and predefined, their size ranges
from several terabytes to petabytes [I]. Examples of such data-intensive Grid
applications can be found in many scientific domains such as Physics, Earth
science, and Astronomy, e.g., [2,3].

At run time, this large scale of the data sets makes it impractical to replicate
all the data at every execution site, where the term “site” refers to a cluster of

* This work was supported in part by NSF CAREER grant CNS-0448246 and in part
by NSF ITR grant CMS-0427089.

R. Cerqueira and R.H. Campbell (Eds.): Middleware 2007, LNCS 4834, pp. 121 2007.
© IFIP International Federation for Information Processing 2007

122 S.Y. Ko, R. Morales, and I. Gupta

client machines (“workers”). Instead, the typical approach to structuring such
a data-intensive Grid application (i.e., the “job”) is to partition the execution
code into several small “tasks”, and to divide up the data into several disjoint
pieces, each of which we call a “file”. Thus, each task requires a specific subset of
the files that constitute the job data, and a site begins the execution of a given
task by retrieving all those required files.

When running a data-intensive Grid application across a collection of sev-
eral sites, one of the most challenging problems is the design of a (global) Grid
scheduling algorithm. Specifically, since the cost of data transfer is a major bot-
tleneck for the execution time [2[456], the main goal of the (global) scheduling
algorithm becomes assigning tasks to sites in such a way as to reduce the fre-
quency and amount of data transfer [4,[5L[6]. Fortunately, many data-intensive
Grid applications exhibit locality of interest, i.e., a file is often accessed by mul-
tiple tasks and also, a set of files that are accessed by one task are also likely
to be accessed together by other tasks [7] (note: we will also use data-sharing
whenever appropriate).

Our analysis of Coadd (Sloan Digital Sky Survey southern-hemisphere coad-
dition [2f3]) (explained in detail in Section [ZT) also shows the locality of interest
in data-intensive Grid applications. There is a significant number of files accessed
by multiple tasks (Figure and there is a large number of tasks that access
the same set of files during their execution (Figure. This locality of interest
gives an opportunity to reduce the numbers of both redundant file transfers and
file replicas, and is present in wide variety of applications including data mining,
image processing, genomics [4], and spatial processing applications which consist
of tasks that process overlapping regions [2].

Previously, locality of interest has been exploited for scheduling and workflow
planning in Grid data-intensive applications. Casanova et al. [6], Ranganathan
et al. [5] and Santos-Neto et al. [4] successfully demonstrated the benefits of
their locality-aware schedulers over traditional schedulers. However, the sched-
uler design in all the mentioned papers is task-centric, i.e., the global scheduler
assigns a task to a worker, without considering whether or not the worker can
start executing the task immediately after the task assignment.

We observe that such task-centric scheduling suffers from two major issues
when dealing with data-intensive applications. First, there is a possibility of
unbalanced task assignments, resulting in some sites being overloaded with tasks.
Second, conditions at a site during scheduling time of a task may be different
from the conditions at the site during execution of the task, because each task
usually waits in the site’s (or worker’s) task queue for a while.

We argue that an alternative worker-centric scheduling [8,9], where a sche-
duling decision to a worker is made only when the worker can start executing
the task immediately, is amenable to approaches that exploit locality in file ac-
cesses, and addresses both of these issues. In worker-centric scheduling, the times
of task assignment to a worker are determined solely by the worker’s preference
based on its local criteria, e.g., by using policies based on local CPU load, site
queue length, time of the day, etc. The task execution begins as soon as the task

New Worker-Centric Scheduling Strategies 123

arrives at the worker. The scheduling problem then becomes the one of designing
a global scheduler that assigns the best possible as-yet-unscheduled task to the
“best” worker, based on such characteristics as the files already present at the
worker’s site, and the data required by the unscheduled tasks.

There are two options for implementing worker-centric scheduling strategies
- either (1) workers could pull tasks from a task repository associated with the
global scheduler, when the worker’s local policies allow it to do so; or (2) the
global scheduler could push tasks out to workers, depending on the worker’s pref-
erence. We consider only the pull variant ((1) above) since it is simpler and more
practical. Henceforth in this paper, whenever we use the term “worker-centric”,
we will be referring to only the pull variant of the worker-centric algorithm.

In this paper, we present the first (to the best of our knowledge) worker-
centric scheduling strategies that implicitly exploit the locality of interest in
data-intensive Grid applications. We then demonstrate the advantages of worker-
centric scheduling over task-centric scheduling for data-intensive Grid applica-
tions through experiments. In our worker-centric strategies, each worker requests
a task from the global scheduler when convenient to the worker. Upon receiv-
ing this request, the global scheduler iterates over the list of as-yet-unscheduled
tasks and finds the best task to assign to the worker. The “best” task could be
selected according to a variety of metrics, which we discuss later in detail.

We propose three different metrics that consider the different aspects of lo-
cality of interest in data-intensive Grid applications, and aim to: (1) maximize
the chance of reusing the data, and (2) to minimize the number of file transfers.
Our simulation results with Coadd confirm that worker-centric scheduling gives
better performance than task-centric scheduling in many scenarios. We select
Coadd for all our experiments in this paper because (1) it is difficult to obtain
Grid application traces, and (2) Coadd is a real Grid application used by several
research organizations [2,[3] and it shows many typical characteristics of data-
intensive Grid applications. Thus, we believe that our results will hold for many
other data-centric Grid applications.

It is important to note that our Grid model is general, and not intended to
specifically target production Grids such as Grid2003 [I0]. Rather, we use the
term “Grid” as a generic model, where a set of cooperating sites (a cluster of
workers) can be used to execute a job (which consists of tasks sharing read-
only data). Also, our scheduling strategies focus only on scheduling data-sharing
tasks within a single large job (application), instead of multiple disconnected jobs
injected into the system by different users. However, for realistic evaluation, we
do simulate the presence of background jobs running concurrently with our main
Grid job in our experiments in Section [l

The rest of the paper is organized as follows. In Section 2l we present back-
ground information including the detailed problems of task-centric scheduling
and advantages of worker-centric scheduling. Section [l presents our basic algo-
rithm and various metrics that we consider. Section [presents our simulation
results and Section [discusses related work. Section [6] concludes our paper.

124 S.Y. Ko, R. Morales, and I. Gupta

8000

-
o
3

7000
80
6000

(cumulative)

60 5000 b+ « + v+ s e e s e
4000
40
3000

20

% of files

2000 L+ i

(Actual Overlap)/(Expected Overlap)

coadd ——

1000 [y i

12 10 8 6 4 2 0 oLt
of references Pair of Files

Fig.1. (a) Coadd file access distribution. Note that the x-axis is in decreasing order,
so each point in the CDF represents the minimum number of files accessed.(b) Locality
of interest in Coadd.

2 Background and Basics

In this section, we motivate the scheduling problem by presenting the charac-
teristics of data-intensive applications. We then elaborate on the two types of
schedulers mentioned: task-centric and worker-centric. Lastly, we discuss sche-
duling issues for data-intensive applications.

2.1 Characteristics of Data-Intensive Applications

We discuss characteristics of data-intensive applications here to motivate the
problem. As a real example, we use one particular application, Coadd (Sloan
Digital Sky Survey southern-hemisphere coaddition [2,[3]) in our discussion.

In general, tasks in a data-intensive application access a large set of files,
thus data transfer time significantly affects the entire execution time (i.e. data-
intensive applications are network-bound [ITL4]). In addition, the tasks have a
high degree of data-sharing among them, which gives an opportunity to reuse
data in local storage [6111[2,[5L4].

For example, Coadd is a spatial processing application that has 44,000 tasks
accessing 588,900 files in total. It is reported by Meyer et al. [2] that when it
was run on Grid3 [I0] with over 30 sites and 4,500 CPUs, it took roughly 70
days to complete. One of the reasons for the observed long completion time was
the large number of files necessary for each task. Meyer et al. [2] state that these
characteristics would also be expected in other spatial processing applications.

Our analysis of Coadd indeed confirms the characteristics of data-intensive
applications. In Coadd, each task accesses a different number of files ranging
from 36 to 181, and approximately 124 files on average. Moreover, roughly 90%
of files are accessed by 6 or more tasks, as shown in Figure If we as-
sume that each file is fixed at 5MB as in [2], then the total size of all the
files is roughly 2.8TB, and each of 44,000 tasks potentially requires 620MB of
data transfer on average and up to 905MB in the worse case for each execution.

New Worker-Centric Scheduling Strategies 125

Considering the number of tasks and size of data transfers, it is desirable to
reduce the redundant file transfers.

To show locality in Coadd, we first pick 1,000 sample pairs of files (say, A and
B) accessed by Coadd tasks. We then plot the ratio between the actual number
of tasks accessing both files, and the expected number of tasks accessing the
same files. Figure shows the result. The former (the actual number, say,
() is directly counted from our Coadd workload, and the later (the expected
number) is derived from 7 x él x T, where T is the total number of tasks, and
a, b are the numbers of tasks accessing A and B, accordingly. The Y-axis shows
C/(% x b xT). As we can see, the values are much larger than 1, which means
that the number of tasks that access the same pair of files is much larger than
statistically expected.

2.2 System Model

Before comparing task-centric to worker-centric solutions, we present our system
model. We assume that:

1) A job is defined as an application composed of multiple parallel tasks. Each
task does not need to communicate with other tasks in order to proceed (i.e., a
job is a Bag-of-Tasks []). However, tasks do share read-only files (data). These
files are provided a priori along with the job specification.

2) There are multiple sites. Each site has at least one computation server or
worker (and possibly multiple workers), and one data server to store data lo-
cally. We further assume that there is only one data server (or local storage) per
site. If there are multiple data servers at a site, we consider all these data servers
as combined storage. Storage size at a site is limited.

3) The data server of a site receives all file requests from the workers in the
same site, and sends batch file requests for the missing files to the external file
server. The data server processes requests one by one. This is more efficient than
simultaneous requests, given the bandwidth limits.

4) Each task issues exactly one batch file request.

5) A worker starts executing a task by transferring all the files necessary for the
task to the local data storage. After the transfer is over, the worker begins the
actual computation of the task.

6) There is one external (global) scheduler that contains information about all
tasks and gives tasks out on-demand to workers. Also, there is an external file
server that has all the files necessary for all tasks, and hands them out to data
servers on-demand.

7) Intra-site communication costs are negligible compared to inter-site commu-
nication costs.

8) In order to simplify our exposition, we will henceforth assume that all files
are equally-sized. However, all our algorithms can be easily extended to variable
sized files, by modifying the considered metrics to reflect the data size rather
than the number of files.

126 S.Y. Ko, R. Morales, and I. Gupta

i ~ % Task assi [f % i
Worker Worker—Centric| Policy [; - | Task-Centric
Execution a Scheduling Check E - Scheduling
Lp—c 0 =]
W o Worker A Worker B s
T TR
(a) Worker-centric scheduling (b) Task-centric scheduling

Fig. 2. An illustration of worker-centric and task-centric scheduling

We use the following two terms throughout the paper:

1) Makespan [12] is the total execution time of the job in consideration. This is
the main metric for performance measurement.

2) Utilization of worker A is defined as, (total computation time of A) / (total
execution time of A).

3) A task and a local storage (i.e. the data server at a site) are said to overlap
with each other, when at least one file necessary for the task is already present
in the local storage. We use the term, overlap cardinality, to indicate the number
of overlapping files.

The main goals for a scheduling algorithm are then to: (1) reduce the make-
span, (2) reduce the number of files transferred to sites, and (3) increase the
utilization at workers.

2.3 Task-Centric and Worker-Centric Schedulers

We elaborate two types of schedulers, namely, task-centric schedulers and worker-
centric schedulers. Figure 2] shows an illustration of worker-centric and task-
centric scheduling. In essence, this categorization is based on whether or not a
scheduling strategy considers immediate task execution of a worker after a task
assignment.

Concretely, a scheduler is worker-centric, if the task assignment to a worker is
done when the worker can start executing the task immediately. As mentioned be-
fore, we consider only the pull-based variant of worker-centric scheduling and the
term “worker-centric” refers to this pull-based variant of worker-centric scheduler
throughout the paper. This variant has each worker pull a task from a task repos-
itory associated with the global scheduler, when its local policies allow it. These
local policies may be a function of CPU load, free RAM space, time of day, etc. For
instance, a site could have a policy that Grid jobs are executed only over night or
at a specific time of the day. Another policy might state that a site could execute
Grid jobs only when the average CPU load has been below a specified threshold
for a while. This architecture is similar to a server-client architecture - a worker
requests a task to the scheduler, and the scheduler finds the “best” task for the
worker according to a set of metrics and local policies of the worker. One example
of this type of worker-centric strategies is the traditional workqueue algorithm,
which dispatches a task in FIFO order to an idle worker [13].

New Worker-Centric Scheduling Strategies 127

On the contrary, a scheduler is task-centric, if a task assignment is done with-
out considering whether or not the worker can execute the task immediately. For
a given set of tasks and a set of workers, the global scheduler chooses the best
match (based on its certain metrics other than immediate task execution) be-
tween workers and tasks, and assigns each task to the best worker. Each worker
has a task queue and executes the tasks in the queue one by one; an empty queue
means the corresponding worker is not executing tasks for that job. Typical met-
rics used by schedulers are CPU load, network bandwidth, data overlap, etc. For
example, scheduling strategies in [5] and storage affinity-based schemes [I1] are
task-centric.

Since our focus in this paper is to show the effectiveness of worker-centric
scheduling in exploiting locality compared to task-centric scheduling, we do not
discuss various policies of worker-centric scheduling further. In Section H we
first evaluate our task-centric and worker-centric strategies using a simple policy
called always available - a worker requests a task from job X immediately after
it finishes the previous task from the same job X. Later, to consider the effect
of slowdown due to background CPU load, we experimentally study the effect
of local jobs at individual workers (which might be submitted by local users or
through other schedulers) - these background jobs run concurrently with tasks
of the Grid job under consideration.

2.4 Scheduling Issues for Data-Intensive Applications

Several previous studies have identified that reusing data in local storage gives
a dramatic performance improvement for data-intensive applications [6l2][51M4].
Among others, studies by Ranganathan et al. [5] and Santos-Neto et al. [4] pro-
pose various task-centric scheduling strategies for data-intensive applications.
Their studies suggest that making scheduling decisions based on data reuse in-
deed improve performance over other scheduling strategies that consider various
different metrics altogether. Broadly, both types of strategies calculate and use
the overlap cardinality (either the number of files or bytes) between all possible
task-site pairs, in order to make the scheduling decisions.

The reason why schedulers considering overlap cardinality work better is intu-
itive. As we state in Section 2] and show in Figure (a) data transfer time
significantly affects the entire execution time of a data-intensive application, and
(b) tasks have a high degree of data-sharing among themselves. This strategy
also works well in the real world because data location is relatively static and
easy to obtain compared to dynamic metrics such as network bandwidth and
CPU loads [].

2.5 Problems of Task-Centric Scheduling and Possible Solutions

We observe two problems from task-centric scheduling strategies. These prob-
lems are significant because data replication and task replication [5,[4] never
address the second problem, although the first problem can be avoided by both
mechanisms.

128 S.Y. Ko, R. Morales, and I. Gupta

1) Unbalanced Task Assignments: As mentioned by Ranganathan et al. [5],
task-centric scheduling with data reuse has the problem of overloading certain
sites with popular files. Since the overlap cardinality is the primary metric when
assigning a task, workers with popular files may be assigned more tasks than
the workers with less popular files. Since this problem is inherent in task-centric
scheduling, other mechanisms need to be used to avoid the problem, e.g., data
replication [5] and task replication [4].

With data replication, the system keeps track of the popularity of each file. If
a file’s popularity exceeds the pre-determined threshold, it is replicated to other
sites. Thus, data replication helps to distribute the load of sites with popular
files [5].

Task replication can also help to distribute the unbalanced load caused by pop-
ular files. With task replication, the scheduler first distributes its tasks according
to the overlap cardinality. Once the initial assignment is done, the scheduler waits
until at least one worker becomes idle. Then it picks a task already assigned to
a worker and replicates it to the idle worker. If one of the workers finishes the
task, the other worker cancels the task. The process is repeated whenever there
is an idle worker. This strategy, called storage affinity, is proposed and evalu-
ated by Santos-Neto et al. [4]. They show that a task-centric scheduler with data
reuse and task replication performs better than other scheduling strategies with
dynamic information such as CPU loads and available bandwidth.

2) Long Latency between scheduling and execution: Task-centric sche-
duling typically has long latency between scheduling and execution. The follow-
ing two reasons cause this problem - (1) Since each worker accepts tasks passively
from the scheduler and stores received tasks in its queue, there is latency be-
tween task assignment time and the actual execution time. (2) Since storage at
a site is limited in size, some files required by a task may have been replaced by
other required files between the scheduling and execution times of the task.
Therefore, it is possible that a worker was assigned a task because it had
some files needed by the task, but at the time of execution, the worker might no
longer have some of those files. This “premature scheduling decision” can cause
performance degradation with small storage sizes as we show in Section [

2.6 Advantages of Worker-Centric Scheduling

In comparison to the above approach, worker-centric scheduling does not suffer
from the unbalanced task assignment problem because a worker requests a new
task to the scheduler only when its local policies allow it to execute a task.
This means that it is not necessary to have other mechanisms to resolve the
issue. Therefore, a worker-centric scheduler only needs to consider its scheduling
metric, which leads to a simpler scheduler design.

In fact, both data replication and task replication are orthogonal mechanisms
to improve performance in worker-centric schedulers. Thus, they might help the
performance of worker-centric schedulers, but are not necessary. However, task-
centric schedulers require other mechanisms because unbalanced task assignment
caused by popular files actually hurts the performance of task-centric schedulers [3].

New Worker-Centric Scheduling Strategies 129

while(forever):
req = GetNextRequest()
if taskQueue is empty:
wait for a task
for each task t in taskQueue:

Calculate Weight(t)
t = ChooseTask(n)
ReturnRequest(t)

Fig. 3. Pseudo-code of the basic algorithm. The global scheduler performs this algo-
rithm whenever a worker requests a task.

In addition, worker-centric scheduling has short latency between scheduling
and execution compared to task-centric scheduling. This arises because w.r.t. a
worker, this is a just-in-time scheduling policy. Each worker executes a task as
soon as the task has arrived at the worker. Thus, it does not suffer from the
premature scheduling decisions.

In Section[3] we focus on worker-centric scheduling strategies and propose var-
ious metrics that consider data-reuse. We also show in Section [that worker-
centric scheduling without additional mechanisms can achieve better performance
in many scenarios than task-centric scheduling with additional mechanisms.

3 New Worker-Centric Scheduling Algorithms

In this section, we present our new worker-centric scheduling algorithms that
attempt to exploit locality by considering data-reuse during scheduling.

3.1 Basic Algorithm

Our basic algorithm is shown in Figure[Bl It is a worker-centric algorithm, with
one global scheduler and multiple sites, each containing multiple workers. Upon
receiving a request from a worker, the global scheduler calculates the weight of
each as-yet-unscheduled task (Calculate Weight()) and chooses the best task to
assign to the requesting worker (ChooseTask()). Notice that worker requests are
processed sequentially. Calculate Weight() and ChooseTask() take into account
the set of files already at the worker’s site, and the set of files required by the
worker, thus attempting to exploit locality. These are detailed next.

As mentioned in Section [Z2 for simplicity of exposition, we restrict our dis-
cussion to tasks that share equally-sized files. However, our algorithms can easily
be extended to varied file sizes by merely considering a “file block” (instead of
a file) as a unit of sharing among tasks.

3.2 Calculate Weight()

Calculate Weight() calculates a weight for each each task in order to exploit the
locality of file access. This weight can be calculated via one of three possible

130 S.Y. Ko, R. Morales, and I. Gupta

metrics - Ouverlap, Rest, and Combined. Before further discussion, we need to
define the following terms and conditions:

1) T: the set of all unscheduled tasks that the scheduler currently has in its
queue.
2) Fi: the set of overlapping files between task ¢ and the data storage at the site
of the requesting worker.
3) |t|: the total number of files required by task ¢.
4) r;: the number of past references of the file i at the local storage (i.e. data
server) of the requesting worker, i.e., the number of previously completed tasks
at the site that accessed file 4.
5) Task ¢ is said to be better than task ¢, when

Calculate Weight(t) > Calculate Weight (t')

Now we consider three metrics that could be used by the scheduler.

1) Owerlap: This metric is the overlap cardinality (discussed in Section [Z2]). It
counts the number of files that are needed by the given task and are already
present in the local storage of the requesting worker. Thus, |Fy| is the overlap
cardinality. Intuitively, the goal of this metric is to maximize the chance of
reusing the data already stored in the local storage of the requesting worker. As
mentioned before, this metric is the primary metric of task-centric scheduling
strategies in the previous studies.

2) Rest: This metric is the inverse of the number of files that need to be trans-
ferred in order to execute the given task, i.e., rest; = | tl—ll Ik Intuitively, the
goal of this metric is to minimize the number of files that need to be transferred.
This is a complement of overlap metric conceptually.

3) Combined: For this metric, each data server keeps for each file the number
of past references, i.e., the number of previously completed tasks at the site
that have accessed the file. It combines these past references and rest using an
equation defined as follows. We define ref, to be the total references of all the
overlapping files of task ¢ at the worker’s site, i.e., ref, = > ;. ri. Now, let
totalRef be the sum of all ref, over all ¢ in T (w.r.t. the requesting worker’s
site), i.e., totalRef =, ref,. Also, let totalRest be the sum of all rest; over

alltin T, i.e., totalRest =), rest;. Then, combined; = togcf{éef + toz;c(zaé}?:ast.

Intuitively, this metric attempts to exploit locality of file access, and thus min-
imize both the number of files that need to be transferred as well as to prefer
workers that accessed the same files in the past.

3.3 ChooseTask()

Since the scheduler greedily assigns a task to a worker based on the value of
CalculateWeight(), there is some possibility of sub-optimal assignments. One
reason for this is the sequential nature of such worker-centric scheduling. For
example, suppose worker h is a better candidate to execute task ¢ than worker
I', but worker h' requests a task right before worker h requests a task. In this

New Worker-Centric Scheduling Strategies 131

File ID
Sitol file0 filel file2

site(N/A 12 6

sitel N/A | N/A N/A

site2 10 1 5

site3 8 N/A 1

sited | N/A | N/A 1

Fig.4. A reference table example. Each entry contains a reference counter. We use
N/A to indicate that the entry is not present for the sake of demonstration.

case, the scheduler will assign task ¢ to worker A’ rather than h. This can happen
quite often especially for data-intensive applications - since file transfer time is
usually long after a task assignment, the global scheduler can receive a number
of requests from different workers during the transfer. So it is possible that a
better worker comes by while the previously-assigned worker has not even started
processing, i.e., it is still awaiting the file transfer to complete.

To take these types of scenarios into account, we use randomization when
choosing a task through ChooseTask(n). ChooseTask(n) then executes two steps.
First, it chooses a set, T;,, of the best n tasks among all tasks (i.e., tasks with n
largest values calculated by Calculate Weight()), where n is a parameter. Second,
it chooses one task among the best n tasks with a probability proportional to
the Calculate Weight() values. Thus the probability of choosing task ¢ is,

p - Calculate Weight(t)

" Sen, CalculateWeight (k)
If n > 2, this is a randomized approach. If n = 1, this is a deterministic
approach that greedily chooses the best task. Notice that this procedure, in
combination with Calculate Weight()), attempts to implicitly exploit the locality
of file access.

3.4 Reducing Communication Cost

In order to make the scheduling decision for a requesting worker, we assumed
above that global scheduler has all the necessary information about files currently
stored at the requesting worker’s site, namely, (1) names of files that the data
server is currently storing, and (2) the reference count for each of these files.
In other words, we assumed that the global scheduler implicitly maintains a
reference table, as shown in Figure @l In this table, there is one column per file
in the job, and one row per site in the Grid. Each entry (4, j) specifies “reference
count” for file j at site i. The reference count denotes the past references of file
J at site ¢ and also shows the presence of file j at site 4.

There are two efficiency sub-problems that need to be addressed: how to main-
tain this table efficiently, and how to keep it updated with minimal network band-
width overhead. The first sub-problem is addressed by having the global scheduler
maintain a local hash table per site (row in the reference table), containing the
names of files currently stored at that site along with their reference counts. File

132 S.Y. Ko, R. Morales, and I. Gupta

names are the keys for this data structure. Notice that lookup, insertion and dele-
tion into this hash table are each O(1) on expectation.

The bandwidth problem is addressed by piggybacking each task-requesting
message, from a worker to the global scheduler, with the set of file names that
have been replaced at the data server of the worker’s site since the last request
from the same site, i.e., the list of names of files that were eliminated from
the site’s data server since its last request. The global scheduler deletes these
file names from the hash table for that site. Then, once it makes the requested
scheduling decision for the worker, the new files required by the assigned task
are inserted into this hash table and the corresponding reference counts are
initialized to 1. For all other files that are already present at the site and required
by the assigned task, the global scheduler increments corresponding reference
counts by 1. In this way, the communication between the worker to the global
scheduler is reduced to only once per request no matter how many files are added
and/or deleted from the site’s data server.

This approach is very efficient for our considered cases. In spite of file-sharing
across tasks, each task in our observed data-intensive applications typically ac-
cesses a relatively small number of files compared to the total number of files for
a given application. For example, in the Coadd traces, no task accesses more than
181 files out of a total of 588,900, in spite of data-sharing. This also means that
at most 181 files are replaced between two consecutive requests. Thus, assuming
file names are 4 bytes each, the additional information piggybacked along with
a worker request is at most 724 bytes in size, which is reasonably small.

3.5 Complexity

If |T'| is the number of currently waiting tasks, and |I| is the maximal number
of files required by any task, then the total communication complexity of our
algorithm arises out of the per-request piggybacked information as described in
the previous section - this is O(]I]) per task assigned to a worker. Similarly,
the computation complexity is O(|I| + |T'| x |I|) per task assigned to a worker,
with the first term accounting for the hash table operations, and the second one
for the scheduler’s operation itself. This is O(|T'| x |I]), and more efficient than
task-centric strategies used by Ranganathan et al. [5] and Santos-Neto et al. [,
which compare all pairs of tasks and sites. Their complexity is O(|T| x |I| x |.S])
(where |S| is the total number of sites), even assuming the use of a hash table
similar to that described in the previous section. Our approach is more efficient
because we do not assume any knowledge (a priori or otherwise) about sites
other than the requesting worker’s.

4 Evaluation

In this section, we present our evaluation of worker-centric scheduling strategies
and discuss the results.

New Worker-Centric Scheduling Strategies 133

4.1 Simulation Overview

To demonstrate the advantages of worker-centric scheduling over task-centric
scheduling, we implement our basic algorithm with three metrics on the SimGrid
simulator [T4]. For comparison, we also implement storage affinity [4], a task-
centric scheduling with data reuse and task replication.

We vary five main parameters in our experiments - (1) capacity of each data
server, (2) number of workers per site, (3) computation time, (4) number of
sites, and (5) file size. The default values for these parameters are summarized
in Table [Il, and used in our experiments unless otherwise noted. However, we
vary each of these 5 parameters in our experiments to see the effects of different
values. Throughout the experiments, the computation time of each task is linear
to the number of files (i.e., (number of files) * (unit computation cost)).

Table 1. Default parameters for experiments

Unit computation cost 1,000 MFLOPS
capacity of each data server 6,000 files

number of workers per site 1
number of sites 10
file size 25 MB

Our main workload is Coadd (Sloan Digital Sky Survey southern-hemisphere
coaddition [213]). As mentioned before, Coadd is a spatial processing application
that has 44,000 tasks accessing 588,900 files in total. We use only the first 6,000
tasks of Coadd to finish our experiments in a reasonable amount of time. A total
of 53,390 files are accessed by these 6,000 tasks. More workload characteristics
are shown in Table 2l Although we only use the first 6,000 tasks, our workload
characteristics remain similar to Figure

4.2 Simulation Environment

Network Configuration: We use 5 different topologies, each with 90 sites, gen-
erated with Tiers topology generator [15]. Tiers is a structural topology genera-
tor that generates hierarchical cluster topologies. We use Tiers because it is well-
supported by SimGrid, the simulator we use in our experiments. Only a subset of
90 sites are used in each experiment. For each topology, there are one global sched-
uler and one global file server which stores all the files. At each site, there are 30
workers and 1 data server. All 30 workers and the data server in a site share outgo-
ing links to the global scheduler and the file server. Intra-site communication cost
(cause by bandwidth and latency) is negligible. Inter-site communication cost is
determined by underlying network links generated by Tiers. Each path between
two sites consists of multiple network links, and the bandwidth and latency of
each of these links determine the inter-site communication cost. Table [l summa-
rizes the average and standard deviation of bandwidth values between a site to the

134 S.Y. Ko, R. Morales, and I. Gupta

Table 2. Characteristics of Coadd with 6,000 tasks

Total number of files 53,390
Max number of files needed by a task 101
Min number of files needed by a task 36
Average number of files needed by a task 78.4327

file server for each topology. Each worker’s computation capacity (in MFLOPS)
is chosen randomly from top500 list [16] and is uniformly divided by 100, since
most of the 500 machines are too powerful. Each experiment is performed with 5
different topologies and the results are averaged over the 5 runs.

Table 3. Average bandwidth and standard deviation between a site and the file server

Avg (MB/s) Std dev
Topology 0 4.418 5.416
Topology 1 4.631 6.734
Topology 2 3.858 2.599
Topology 3 3.432 1.432
Topology 4 3.932 2.778

Background Jobs: We perform our experiments with background jobs as well as
without background jobs. We use background jobs to evaluate the performance
of different strategies in the presence of competing applications running on each
site. Since a site is typically shared by different schedulers and local users, this
gives us a more realistic setting.

We simulate background jobs through varying each worker’s CPU load. A
worker is always executing a task for the Grid job in question, but in addition
it is also running background jobs. The background jobs thus slow down the
execution of the task at the worker. The load due to these background jobs
is simulated as follows: at each worker, once every 5 minutes, the background
CPU load is picked as a floating-point number uniformly at random between
0 to 100. This becomes the worker’s background load over the next 5 minutes.
Considering that the total job execution time in our simulations is O(tens to
hundreds of days), we consider the granularity of 5 minutes to be fine-grained
enough to capture dynamics of background jobs.

4.3 Algorithms

We compare the following 6 different algorithms. The first algorithm is task-
centric; the rest are worker-centric.

1) task-centric storage affinity : The task-centric scheduling with data reuse and
task replication [4]. This is a deterministic algorithm.

2) overlap : Our basic algorithm with the overlap metric. This is a deterministic
algorithm.

New Worker-Centric Scheduling Strategies 135

43000 T —— — 18000 T — —
task-centric storage affinity —+— task-centric storage affinity —+—
42000 overlap - 1 overlap -
rest ke 16000 rest —¥-— 4
& 41000 - combined --& 1 combined --&
2 rest2 ---m--- 4 rest2 -——m-—
2 40000 | combined.2 ---0--- g 14000 ¢ combined.2 ---0---
E 39000 | §
c = 12000 |
§ 38000 r ;.i_j
£ 37000 f S 10000 f
© I+
E 36000 | « 1 8000
rrrrrrr o] L
35000 | Gl
34000 6000
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
capacity (# of files) capacity (# of files)

Fig. 5. (a) Makespan and (b) file transfers of each algorithm with different capacities
of 3,000, 6,000, 15,000, and 30,000 files (with background jobs)

3) rest : Our basic algorithm with the rest metric. n = 1 for ChooseTask(n).
This is a deterministic algorithm.
4) combined : Our basic algorithm with the combined metric. n = 1 for Choose-
Task(n). This is a deterministic algorithm.
5) rest.2 : Our basic algorithm with the overlap metric. n = 2 for ChooseTask(n).
This is a randomized algorithm.
6) combined.2 : Our basic algorithm with the overlap metric. n = 2 for Choose-
Task(n). This is a randomized algorithm.

We have tried different values of n for ChooseTask(), but only 1 and 2 give
good results. Thus, we only show the results of n = 1 and 2.

4.4 Capacity per Data Server

Figure shows the makespan (i.e. total execution time) of each algorithm
with different capacities of 3,000, 6,000, 15,000, and 30,000 files in the pres-
ence of background jobs. We do not present the results without background jobs
since the performance characteristics are similar. Randomized algorithms, rest.2
and combined.2, perform the best in all cases, which confirms that it avoids
sub-optimal scheduling decisions described in Section Storage affinity has a
negative performance impact with smaller capacities because of premature sche-
duling decisions as discussed in Section However, the performance becomes
comparable to worker-centric scheduling as the storage size increases.

Figure also shows the importance of considering the number of files that
actually need to be transferred. Among the worker-centric strategies, overlap
performs worse than other metrics because it does not explicitly consider the
number of file transfers, while other metrics do. As we can see in Figure
overlap usually has higher number of file transfers than other metrics. Overall,
the randomized algorithms appear to perform the best (i.e., rest.2 and com-
bined.2).

The makespan of each metric in worker-centric scheduling shows steady be-
havior because the working set of a Coadd task is not big. As is shown in Table[2]

136 S.Y. Ko, R. Morales, and I. Gupta

0.95 T T - - - 15000 T —— —— -
7777777777) bi task-centric storage affinity —+—
""""""" 14000 | overlap ¢
) - 1 @) combined —&
task-centric storage affinity —+— o rest? ---m--- 1
overlap - | 2 combined.2 ---o---
rest -k €
= combined & ~
5 rest.2 -—m--- &
combined.2 -+~ Z
<
©
£
0.55 8000
0 5000 10000 15000 20000 25000 30000 2 3 4 5 6 7 8 9 10
capacity (# of files) # of workers

Fig.6. (a) Average utilization at worker, with different capacities of 3,000, 6,000,
15,000, and 30,000 files (with background jobs) (b) Makespan with different numbers
of workers at a site (without background jobs)

a task needs 101 files at most, and roughly 78 files on average. Thus, a storage
with 3,000 files can actually give similar performance as a storage with, say,
10,000 files.

Figure shows the average utilization of each worker (accounting for both
the main Grid job and the background jobs). For task-centric storage affinity, the
low utilization with the capacity of 3,000 files means that the greedy approach
requests files more often than other strategies. This behavior shows (1) that
randomized decisions can be better than taking what looks as the “best” decision
at some particular time and, again, that (2) the task-centric storage affinity
suffers from premature scheduling decisions.

Due to the lack of space, we do not present the utilization results without
background jobs here. However, the utilization of each worker with background
jobs is slightly higher than that of each worker without background jobs. There
are two factors contributing to this result. The first factor is obviously back-
ground jobs running on each worker. The second factor is that it takes more
time for a worker to finish a task with background jobs. Thus, the utilization
goes higher with background jobs.

4.5 Number of Workers per Site

Figure shows the makespan of each algorithm with different numbers of
workers at a site. combined.2 performs the best mostly, which shows that min-
imizing file transfers as well as considering past references helps to reduce the
makespan. Overall, worker-centric scheduling metrics perform well with smaller
numbers of workers, but storage affinity performs well with larger numbers of
workers. Also, randomized algorithms that consider the number of file transfers
perform better than others.

The makespan of each algorithm flattens as the number of workers increases. In
some cases, the performance is worse with more workers (in Figure! We can
understand the reason behind this behavior with two factors that contribute to the
makespan. First, as the number of workers increases at a site, the contention at the

New Worker-Centric Scheduling Strategies 137

5000 T - v - . - 0.9 - T T - . .
1 task-centric storage affinity —+— N task-centric storage affinity —+—
4500 overlap - 1 overlap -
rest - rest -
o 4000 P combined & N combined &
5 rest.2 ---M--- N rest.2 ---m---
*% 3500 combined.2 ---0--- 071 A\ & combined.2 -0~]
& 3000 r = os s,
8 2500 >
5 2000 0.5
H*
1500 +
04
1000 P
B
500 0.3
2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
of workers # of workers

Fig. 7. (a) Average number of file transfers per worker with different numbers of work-
ers at a site (b) Average worker utilization, with different numbers of workers at a site.
We only show the results without background jobs, since the presence of background
jobs does not show any different behavior.

data server of the site increases. Since the data server processes each request one
by one so as to minimize the redundant file transfers (as mentioned in Section22)),
this contention is unavoidable. This factor has a negative impact on the makespan
(i.e. increases it). On the contrary, as the number of workers increases, the number
of files that can be shared by the workers also increases. This factor has a positive
impact on the makespan. The interaction of these two factors results in different
behaviors of different algorithms.

Table 4. Result of the rest metric at a site with 2 workers, 4 workers, 6 workers,
and 8 workers. All numbers are averages per worker. Note that rest shows the worst
makespan with 6 workers at a site.

waiting transfer # of file

time (hrs) time (hrs) transfers
2 workers 3.59 30.35 3998.5
4 workers 40.32 45.45 2086.5
6 workers 98.35 33.85 1335.17
8 workers 75.93 18.81 906.38

To validate the reason, Figure shows the number of file transfers per
worker and Figure shows the corresponding utilization. It shows that the
average number of file transfers per worker decreases as the number of workers
increases. Thus, it shows that good file-sharing is achieved intra-site as the num-
ber of workers increases. In addition, Table [d] shows the result of the rest metric
at one particular site with 2, 4, 6, and 8 workers. It shows (1) average waiting
time that a file request spends at the data server’s waiting queue, (2) transfer
time that it takes to transfer all the files from the external file server to the data
server, and (3) associated number of file transfers.

138 S.Y. Ko, R. Morales, and I. Gupta

1 100 task-centric storage affinity ———
90 F overlap 4
08y s, 4 = o
,,,,,, e & gl combined mm— |
0.8 - c rest.2
g 2wl ombined.2 === |
07 g
06 L 2 60
5 05 L E 50
= 40 -
0.4 overlap - | 2
rest ¥ S 30
03r / combined & =
rest2 ---m--- e 20
0.2 1 combined.2 ---&--- Sl
0.1 L L L L L L L L L o ¥ a
0 100 200 300 400 500 600 700 800 900 1000 50 200 400 500 800 1000

unit cost (MFLOPS) unit cost (MFLOPS)

Fig. 8. (a) Average utilization per worker, and (b) total file transfer time compared
to makespan, for different unit computation costs of 50, 200, 400, 600, 800, and 1,000
MFLOPS

In the case of 2 workers in Table] the contention at each data server and
the file server is very low compared to other settings, simply because there are
fewer workers. Thus, the waiting time and the transfer time are rather small
even though the number of file transfers is high.

We can reason why the performance is sometimes worse with more workers
with the data of 4 workers, 6 workers, and 8 workers. If we look at the data in
this range, both the average number of file transfers and the average transfer
time decrease as the number of workers increases, but the average waiting time
peaks at 6 workers. This means that the reduced transfer time is not enough to
compensate the increased competition at the data server for rest with 6 work-
ers at a site. For the same reason, other algorithms sometimes exhibit a worse
makespan with more workers.

4.6 Effect of Computation Time

With our default parameter values in Table[I] the average utilization per worker
is usually more than 90%, which means that each worker spends most of its
time on computation. Thus, we perform an experiment with smaller values of
unit computation time in order to understand how different computation-to-
communication ratios affect the behavior of each strategy. As mentioned before,
the computation time of each task is linear to the number of files that it needs to
process, i.e., (computation time) = (number of files) * (unit computation cost).
We vary the unit computation cost in this experiment.

Figure and Figure show that our experiment covers a wide range of
communication-to-computation ratio. As shown in Figure the utilization
of each worker (i.e., (total computation time of the worker) | (total execution
time of the worker)) varies from roughly 0.2 to 0.9. Also, Figure [8(b)|shows that
the file transfer time (i.e., communication time) takes from roughly 50% to al-
most 100% of the entire makespan. Thus, our experiment covers a wide range of
communication-to-computation ratio, and still captures the characteristic of long
communication time in data-intensive applications. Although Figure[8shows the

New Worker-Centric Scheduling Strategies 139

10— ———0¢ 6 ¢ — 48000
task-centric storage affinity ---e- task-centric storage affinity ———
overlap -3¢ 46000 overlap == [
95 F rest x| rest
combined & 44000 combined mmm—
< rest.2 B combi;\zs;'g preee
g 90 | Pas combined.2 % 42000 - -
c ; g
< g g £
2 c 40000
e gl 7 g
g X g £ 38000
80 | ﬁ 36000
]
34000 -
75 52000
0 100 200 300 400 500 600 700 800 900 1000 50
unit cost (MFLOPS) communication cost (file size MB)

Fig.9. (a) Makespan (percentile) of each algorithm with different unit computation
costs of 50, 200, 400, 600, 800, and 1,000 MFLOPS (b) Makespan with different file
sizes (both with background jobs)

results without the presence of background jobs, the overall behavior remains
similar even with background jobs. Note that file transfer time does not directly
contribute to worker utilization as in Figure Bl The reason is because computa-
tion is parallelized, and hence, most workers are busy with doing computation
even when the file server transfers files. This explains a seemingly inconsistent
behavior of Figure[8 in which the file transfer time takes roughly 50% with the
unit computation cost of 1,000 MFLOPS in Figure [8(b)| even when the average
utilization of each worker is roughly 90% in Figure [8(a)
Figure [0(a)] shows the makespan (with background jobs) of each algorithm in
percentile scale using task-centric storage affinity as a baseline comparison. We
do not present the results without background jobs since they exhibit similar be-
haviors. Overall, we observe that the performance trend remains similar across
different strategies even with various computation-to-communication ratios.
Worker-centric strategies perform better than the task-centric storage affinity in
terms of makespan. In the best case, worker-centric rest takes roughly 28% less
makespan time than task-centric storage affinity. Also, the gap between task-centric
storage affinity and other strategies generally becomes wider as the unit computa-
tion cost decreases. This is an expected behavior since file transfer time becomes
more dominating in total execution time as the unit computation cost decreases.

4.7 Number of Sites

Figure shows the makespan of each algorithm with different numbers of
sites and Figure shows the number of file transfers accordingly. Generally,
the makespan of each algorithm reduces as the number of sites increases, as ex-
pected. combined.2 performs the best, which again confirms that minimizing file
transfers as well as considering past references helps to reduce the makespan.
In the best case, combined.2 takes roughly 17% less makespan time than task-
centric storage affinity. Randomized algorithms perform better than determinis-
tic algorithms, which again shows that it avoids sub-optimal scheduling decisions
described in Section B3

140 S.Y. Ko, R. Morales, and I. Gupta

90000 . — — 30000 - . — —
task-centric storage affinity —+— task-centric storage affinity —+—
80000 " overlap —<— | overlap ——x-—
rest % 25000 r rest —¥-— 4
@ 70000 | combined & combined &
2 rest2 ---m--- 2 50000 rest.2 ---m---
E 60000 |\ combined.2 -G~ 2 combinad.2 6.
- ©
c 50000 - \ = 15000
© [}
2 40000 | g :
£ E 10000 F
£ 30000 -
20000 + 5000 ¢
10000 . . . 0 . . .
5 10 15 20 25 5 10 15 20 25
of sites # of sites

Fig. 10. (a) Makespan with different numbers of sites (b) Number of file transfers with
different numbers of sites (both with background jobs)

4.8 File Size

Figure shows the makespan of each algorithm with different file sizes. We
choose small (5MB), middle (25MB), and large (50MB) file sizes. The makespan
grows almost linearly as the file size grows. Since all algorithms consider files
as the primary metric, various file sizes do not result in dramatically different
behaviors. combined.2 shows the best performance just like many other scenarios
shown before. The general behavior remains the same even in the presence of
background jobs.

5 Related Work

Spatial Clustering [2] creates a task workflow based on the spatial relationship
of files in the input data set. It improves data reuse and diminishes file transfers
by clustering together tasks with high input-set overlap. Two drawbacks to this
approach are that (1) it cannot handle new jobs arriving asynchronously, and
(2) it is application specific.

Storage Affinity [4] also addresses file reuse for data-intensive applications.
The algorithm computes a data affinity value for each task, for each site, ac-
cording to the input set of each task and the data currently stored at a site’s
networked storage. To address inefficient CPU assignments, they propose repli-
cating tasks, also based on the storage affinity. The algorithm shows improved
makespan and good data reuse, specially when compared to the XSufferage [17]
scheduling heuristic.

Decoupling data scheduling from task scheduling was proposed by Ranganathan
et al. [5]. The work evaluates four simple task scheduling mechanisms and three sim-
ple data scheduling mechanisms. Best results are obtained when a task is scheduled
to asite that has a good part of its input data already in place, combined with proac-
tive replication of a popular input data-set to a random /least-loaded site.

A pull-based scheduler is proposed by Viswanathan et al. [8]. It employs an
Incremental Based Strategy, where a scheduler determines how to fraction a

New Worker-Centric Scheduling Strategies 141

job among available workers, based on worker’s computing speed and estimated
buffer. This work completely ignores data transfer time, and requires knowledge
of CPU speed and memory size in all workers.

Rosenberg et al. [9] study global scheduling strategies in the Grid-like en-
vironments theoretically. Their scheduling strategies focus mainly on DAGs of
tasks, where tasks are inter-dependent and pre-ordered, and the dependency
structure follows DAG (Directed Acyclic Graph). Although they discuss pull
and push strategies, their studies do not assume (1) data-intensive applications
(transfer time, storage capacity, data correlation, etc), (2) data-sharing, and (3)
task-independence. Thus, the issues are not related to our work.

6 Conclusion and Future Work

We argued that worker-centric scheduling is more desirable than task-centric
scheduling to exploit locality of interest present in data-intensive applications.
We base our argument on two problems of task-centric scheduling, namely,
unbalanced task assignments and premature scheduling decisions. We proposed
various metrics, both deterministic and randomized, that can be used with
worker-centric scheduling and found that metrics considering the number of file
transfers generally give better performance over metrics considering the overlap
between a task and a storage. We also found that worker-centric scheduling algo-
rithms achieve better or comparable performance to task-centric scheduling, with
the randomized approaches performing best. Our future work includes quanti-
fying how much data-sharing is required for our algorithms to be effective, and
using multiple applications to evaluate the performance of our algorithms.

References

1. Allcock, W.E., Bester, J., Bresnahan, J., Chervenak, A.L., Foster, I.T., Kessel-
man, C., Meder, S., Nefedova, V., Quesnel, D., Tuecke, S.: Secure, efficient data
transport and replica management for high-performance data-intensive computing.
CoRR ¢s.DC/0103022 (2001)

2. Meyer, L., Annis, J., Mattoso, M., Wilde, M., Foster, I.: Planning Spatial Work-
flows to Optimize Grid Performance. Technical Report, GriPhyN 2005-10 (2005)

3. Sekhri, V.: Lessons Learned on Summer 04 Grid SDSS Coadd, https://
www . darkenergysurvey.org/the-project/simulations/sdss-grid-coadd/
sum mer-04-grid-coadd

4. Santos-Neto, E., Cirne, W., Brasileiro, F.V., Lima, A.: Exploiting Replication and
Data Reuse to Efficiently Schedule Data-Intensive Applications on Grids. In: Feit-
elson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2004. LNCS, vol. 3277,
Springer, Heidelberg (2005)

5. Ranganathan, K., Foster, I.T.: Decoupling Computation and Data Scheduling in
Distributed Data-Intensive Applications. In: Proc. of HPDC-11 (2002)

6. Casanova, H., Obertelli, G., Berman, F., Wolski, R.: The AppLeS Parameter Sweep
Template: User-Level Middleware for the Grid. In: Proc. of SC (2000)

7. Tamnitchi, A., Doraimani, S., Garzoglio, G.: Filecules in High-Energy Physics:
Characteristics and Impact on Resource Management. In: Proc. of HPDC-15 (2006)

https://www.darkenergysurvey.org/the-project/simulations/sdss-grid-coadd/sum mer-04-grid-coadd
https://www.darkenergysurvey.org/the-project/simulations/sdss-grid-coadd/sum mer-04-grid-coadd
https://www.darkenergysurvey.org/the-project/simulations/sdss-grid-coadd/sum mer-04-grid-coadd

142

8.

10.

11.

12.

13.

14.

15.

16.
17.

S.Y. Ko, R. Morales, and I. Gupta

Viswanathan, S., Veeravalli, B., Yu, D., Robertazzi, T.G.: Design and Analysis of
a Dynamic Scheduling Strategy with Resource Estimation for Large-Scale Grid
Systems. In: Proc. of GRID (2004)

. Rosenberg, A.L., Yurkewych, M.: Guidelines for scheduling some common

computation-dags for internet-based computing. IEEE Transactions on Comput-
ers 54(4) (April 2005)

Foster, I.T., et al.: The Grid2003 Production Grid: Principles and Practice. In:
Proc. of HPDC-13 (2004)

de Silva, D.P., Cirne, W., Brasileiro, F.V.: Trading Cycles for Information: Using
Replication to Schedule Bag-of-Tasks Applications on Computational Grids. In:
Proc. of Euro-Par 2003 (2003)

Pinedo, M.: Scheduling: Theory, Algorithms and Systems, 2nd edn. Prentice Hall,
New Jersey, USA (2001)

Cirne, W., Brasileiro, F., Sauv, J., Andrade, N., Paranhos, D., Santos-Neto, E.,
Medeiros, R.: Grid Computing for Bag of Tasks Applications. In: Proc. Third IFIP
I3E (September 2003)

Legrand, A., Marchal, L., Casanova, H.: Scheduling Distributed Applications: the
SimGrid Simulation Framework. In: Proc. of CCGrid (2003)

Doar, M.B.: A Better Model for Generating Test Networks. In: Proc. of Globecom.
(1996)

Top 500 list, http://www.top500.org

Casanova, H., Zagorodnov, D., Berman, F., Legrand, A.: Heuristics for Scheduling
Parameter Sweep Applications in Grid Environments. In: 9th Heterogeneous Com-
puting Workshop (2000)

http://www.top500.org

	New Worker-Centric Scheduling Strategies for Data-Intensive Grid Applications
	Introduction
	Background and Basics
	Characteristics of Data-Intensive Applications
	System Model
	Task-Centric and Worker-Centric Schedulers
	Scheduling Issues for Data-Intensive Applications
	Problems of Task-Centric Scheduling and Possible Solutions
	Advantages of Worker-Centric Scheduling

	New Worker-Centric Scheduling Algorithms
	Basic Algorithm
	$CalculateWeight()$
	$ChooseTask()$
	Reducing Communication Cost
	Complexity

	Evaluation
	Simulation Overview
	Simulation Environment
	Algorithms
	Capacity per Data Server
	Number of Workers per Site
	Effect of Computation Time
	Number of Sites
	File Size

	Related Work
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

