
Argos, an Extensible Personal Application
Server

Arne Munch-Ellingsen, Dan Peder Eriksen, and Anders Andersen

University of Tromsø, Norway

Abstract. Argos is a microkernel based, small-scale or personal mid-
dleware container that is extendible through deployment of system ser-
vices. System services to support development of end user applications in
sensor network, pervasive, context-aware and mobile setting have been
developed and used to easily allow for application development of user
application in this domain. Argos also gives enterprise container type
support to user-centric application development, without the complexity
and limitations enforced by enterprise containers.

Annotations, notifications, reflection, dependency injection and hot
deployment are together used to create the Arogs run-time extensible
and adaptable personal container.

1 Introduction

Traditional application servers support business applications and have a focus
on scalability, integration, transaction management, safety and security [1]. Such
enterprise application servers are well suited for enterprise applications that
need this kind of system support. However, a large group of applications does
not fit this model. Their demands are different and possibly highly specialized.
One approach to create such applications is to start from scratch and integrate
all needed services in each application. Typical such applications are found in
embedded systems, in sensor networks, in context aware systems, and in personal
or small-scale systems, often with the mobile phone or the laptop computer as
the end user terminal.

Argos supports these kind of applications. Some requirements in these settings
are similar to requirements that appear when developing enterprise applications.
Examples include support for persistence (database), general web support (web
server), and support for web service interface. Other requirements are domain
specific or linked to the fact that such applications can be user-centric. One
such important example is access to local resources (file system, sensors). An-
other observed aspect is that not all applications need the same system support:
”one-size-does-not-fit-all”. This observation led to the design and implementa-
tion of Argos, an expandable small-scale or personal application container with
a minimal microkernel core1.

1 We will refer to the ”microkernel core” as the ”core” in the rest of the text.

R. Cerqueira and R.H. Campbell (Eds.): Middleware 2007, LNCS 4834, pp. 21–40, 2007.
c© IFIP International Federation for Information Processing 2007



22 A. Munch-Ellingsen, D.P. Eriksen, and A. Andersen

The minimal Argos core can be extended for different application domains.
The development of Argos applications should focus on the actual logic of the
application and expect specialized support from the container at run-time. Argos
supports rapid development of specialized applications in supported application
domains. Argos is an extensible application server. Its minimal core supports
life-cycle management and a few other core services. In a given setting this core
is extended with system services implementing support needed by its applica-
tions. Such system services can provide persistence, bindings (to be able to bind
to information sources), web services, and so on. The application programmer
develops application components as Java objects (POJO, Plain Old Java Ob-
jects) [2]. Such components can specify application server and system component
dependencies using annotations [3]. Examples are annotations specifying that a
given method of the object should be invoked every 10th second (lifecycle) and
that the current value of a given attribute of the object should be stored in a
database (persistence).

The provided specialized application support makes it possible to create do-
main specific container configurations with Argos. Since Argos supports user-
centric and small-scale systems, its users often refer to the Argos container as
a personal container. In short, Argos is both a personal container and it can be
used to create domain specific container configurations.

2 Argos Core

Argos is a container based middleware system and the Argos core is the mini-
mum configuration that defines the Argos container. The Argos core defines a
service and component model, including component lifecycle handling, implicit
instrumentation (for monitoring and control) and a set of supported annotations.
In the default configuration of Argos, a service is a collection of components,
web pages (one possible presentation), desktop widgets (e.g. Yahoo! Widgets,
another possible presentation), mobile applications (j2me or mobile cf .net ap-
plications), instrument panels (to monitor and control the service), and external
wrappers (not discussed in this paper). An Argos component is a POJO class
with additional meta information expressed using Argos supported annotations.
The annotations are part of the default programming model offered to system
services and user application programmers. The set of supported annotations
can be increased through deployment of new system services. The Argos core
container allows deployment of system services and user applications. System
services are used to augment the intrinsic capabilities of the Argos core.

A system service implementation can be replaced with a different implemen-
tation providing the same kind of service. This can be used to replace a system
service implementation with an improved implementation. It can also be used
to replace the service with another implementation better supporting the cur-
rent application needs and the current environment or setting of the application
(adaptation).



Argos, an Extensible Personal Application Server 23

User applications depend on the functionality of the Argos core and the de-
ployed system services to create end user applications. The Argos core supports
”Hot deployment” of system services and user applications. Argos deployment
is described in more detail in section 3.

Figure 1 gives an overview of the Argos core with the default set of system
services. It is of course possible to start Argos with no extra system services,
but the default set of system services represents an often used configuration.
Jetty [4] is an embedded web server, and Hibernate [5] and Derby [6] together
provides persistence (Derby is a database and Hibernate is an object/relational
persistence and query service). The web service system service provides web
method (SOAP[7] and XML-RPC[8]) access to component methods. A more
detailed description of the different system services will be given in section 4.

Fig. 1. Argos Core overview

The annotations supported by the Argos core are listed in figure 2.
The annotations that are supported by the Argos core are as the figure shows

divided into the following categories:

Lifecycle. Annotations to control the component’s lifecycle. They are used to
annotate functionality performed in a timely manner (e.g. every 10th sec-
ond), or when a component is created or destructed

Notification. Annotations to describe notifications and to handle sending and
receiving of notifications (e.g this function will be performed when the given
notification is received).

JMX related. Annotations to declare and describe instrumented methods and
attributes.



24 A. Munch-Ellingsen, D.P. Eriksen, and A. Andersen

Fig. 2. Argos core annotations

Injection. Annotations for dependency injection (to get access to core and sys-
tem service infrastructure). Dependency injection is a design pattern that
decouples the client component from the system service implementation com-
ponent [9,10].

Annotations in Argos are standard Java annotations. Using an annotation
does not directly affect a component’s semantics, but they do affect the way an
Argos component is treated by the Argos container and the deployed system
services, which can in turn affect the semantics of the instantiated component.
Annotations in Argos are inspected reflectively at deploy time by the Argos core
and by all the previously deployed system services.

The following example shows how the Weather service POJO component uses
the @Init and @Execute annotations:

public class Weather {
// Instruct container that this is the Weather components init method
@Init public void init() {
...

}



Argos, an Extensible Personal Application Server 25

// Instruct container to call this method at 30s intervals
@Execute(30) public void execute() {
...

}
}

The Argos core uses reflection to identify the annotations supported by the
Argos core and handles them appropriately when the service is deployed to the
container. All annotations are handled before the component is started.

3 Argos Deployment

One of the main functions of the Argos core is to provide the ability to deploy
system services and user applications. System services and applications must
be presented to Argos in a Java archive file (jar) and the content of the jar
file must follow the Argos deployment specification. Basically, the specification
defines that deployment meta information needs to be included in a separate de-
ployment descriptor (deploy.xml file) and that service content that is not POJO
components needs to be added in designated folders in the jar file. In the de-
ployment descriptor it is possible to express the following:

– Service name and version
– Service dependencies – references to other services that have to be deployed

for this service to work properly
– List of components that the service contains (including possibility to express

instantiating of multiple instances of the same POJO)
– Component dependencies
– Listen to properties, i.e. other components this component receives noti-
fications from
– Attribute configuration, i.e. start values for configurable attributes

Argos will store the meta information associated with a service in core objects.
This meta information is available to system services using dependency injection
annotations. Before any components are instantiated, all service dependencies
are checked and validated, errors are logged and the service is not started if
the dependencies are not met. The following example shows the deployment
descriptor for the web service system service2:

<service name="!!Webservices" version="1.0">
<depend on="!!Jetty6"/>
<deploy>
<component name="!!XML-RPC" class="argos.bangbang.xmlrpc.XmlRpc">

<listen to="ComponentManager" />
</component>
<component name="!!Axis" class="argos.bangbang.axis.Axis">

<listen to="ComponentManager" />
</component>

</deploy>
</service>

2 System services in Argos is always deployed in jar files with names that starts with
two exclamation marks (!!). This has also led to the convention that system service
names starts with two exclamation marks.



26 A. Munch-Ellingsen, D.P. Eriksen, and A. Andersen

System services (as theweb service) can listen to notifications emittedby theAr-
gos core (in this case, the core component ComponentManager). In this way they
can perform their necessary actions associated to events emitted by the core. The
web service system service will for example inspect all deployed components for
@Webmethod annotations when the core emits the SERVICE STARTED notifi-
cation. If such annotations are found, their associated methods will be added as
callable web methods (i.e. accessible through XML-RPC and SOAP calls).

4 System Services

A system service is a collection of components that augment the intrinsic func-
tionality of the Argos core. System services are the pinnacle of Argos elasticity.
Typically a system service consists of definitions for new annotations and compo-
nents that semantically handle the functionality related to the new annotations.
The web services system service is a good example. The general idea for this
service is to make it easy for an application programmer to express that he
wants to create a web service. The easiest way to express this would be to allow
the application programmer to simply tag a method in a component’s code in
order to specify that the method shall be offered as a web method (similar to
the WebMethod attribute in C#). It should be possible to use both XML-RPC
and SOAP to invoke the newly created web method. The Argos web service,
@Webmethod annotation allows the application programmer to do just that. If
you tag a method in a component that is part of a service with the @Webmethod
annotation, that method is automatically exposed as a web method by the Argos
container (i.e. accessible through XML-RPC and SOAP calls).

The web service system service (!!Webservice) first defines the new annotation
(@Webmethod). Secondly, it contains the necessary code to reflectively find all
@Webmethod annotations in subsequently deployed user components. Thirdly,
it interacts with the Argos core (using notifications and dependency injection)
and the Jetty web server system service to create the glue between incoming
web service calls and the appropriate method in the instantiated component.
Figure 3 illustrates the concept. The figure shows the chain of events when a
user application (UserApplication.jar) that depends on the web service and Jetty
system services is deployed to the container. First (1) the Argos core emits the
SERVICE STARTED notification. The notification is received by the web ser-
vice system service and it will use reflection (2) to find all (if any) @Webmethod
annotations in all the deployed POJOs in the newly deployed user application.
When it finds @Webmethod annotations it registers the web method with the
Jetty system service (3). The web service system service uses dependency injec-
tion to access and update meta information about the user application.

Using annotations, notifications, reflection and dependency injection in this
manner allows for dynamic deployable extensions to the Argos core.

The possibility to add system services makes it possible to create Argos config-
urations that fit specific needs. Although Argos in many ways resembles Enter-
prise Containers, the focus has been different. Enterprise containers need to be



Argos, an Extensible Personal Application Server 27

Fig. 3. Argos System Services

able to handle thousands of simultaneous requests to services that circle around
legacy data. Our focus has been to provide a similar programming model for the
creation of context aware, embedded or user-centric services that will be used
by one or a handful of users. The design of Argos reflects that services are to be
provided to a small number of simultaneous users. Argos allows deployed services
to access the file system, open incoming and outgoing socket connections and
to create threads. Enterprise systems usually do not allow such actions since it
will make it extremely difficult to handle scaling and safety in a sensible manner
(open connections to sockets or files and multiple threads makes it difficult to
put components in a waiting pool). Argos components can with no restrictions
behave in the same manner as POJOs running directly in a JVM. Argos adds
expressive and powerful annotations to handle complicated tasks that are often
needed when creating new services.

5 System Service Examples

System services can come in many shades. In the following subsections we will
briefly describe a handful of system services that we have created at the time of
writing.

The typical user application we have created uses sensors of some kind to
gather context information. Sensors are often connected to a user’s mobile phone.
Typical sensors we have used are GPS, Step counters, temperature sensors, etc.
In order to make it easy to use information from sensors in an Argos user ap-
plication we have created a SMS system service, a Sensor system service and a
TCP system service. The SMS service makes it possible to send and receive SMS
message from a user application in Argos. The Sensor system service makes it
possible to automatically connect new sensors to a users mobile phone (it also
uses the SMS service for initial interaction with the phone’s sensor framework
client).



28 A. Munch-Ellingsen, D.P. Eriksen, and A. Andersen

You will of course only deploy system services that your user application
needs. In this way it is possible to create lean middleware support only for the
features needed for your user applications. The result is an embedded or personal
middleware system that suits your needs.

5.1 Sensor Framework System Service

The Argos Sensor framework actually consists of three separate parts. The first
part is the Argos sensor system service which is deployed to the Argos container.
The second part is a sensor configuration tool. The sensor system service han-
dles incoming announcement requests from the sensor configuration tool. The
sensor configuration tool is a standalone Java graphical tool used to describe
the characteristics of a sensor. The description given by the user is transformed
into a sensor configuration expressed as an XML document. When a sensor ”an-
nouncement” is done from the tool, this description is transferred to the Argos
Sensor framework system service. The sensor framework system service acts on
the newly announced sensor configurations and handles all the sensor manage-
ment needed to configure and start the sensor at the remote sensor location (i.e.
connecting to the sensor, reading sensor data and transferring results back to
the sensor framework system service. The third part of the sensor framework
is a sensor host (remote) client program. The client program interacts with the
Argos sensor system service to get the sensor configuration and download sensor
specific plugins. The client program also automatically configures and starts the
sensor and sends sensor data back to the Argos sensor system service as XML
documents according to the Argos sensor data XML format. Currently we have
only implemented a Windows Mobile 5.0 client program and a Java Windows
client program. The Windows Mobile 5.0 client allows mobile phones with this
operating system to act as Argos sensor framework clients. The Java Windows
Client program allows Windows PCs to act as sensor framework clients (for ex-
ample to manage USB or RS232 connected sensors). The typical scenario in the
mobile setting is to connect Bluetooth or IR sensors to the mobile phone and
send the collected sensor data to Argos using either a web service or TCP/IP
interface. Once the Windows Mobile client program has been installed on the
mobile phone, arbitrary Bluetooth or IR sensor may be connected to the phone.
The installation, configuration and management of new sensors are done without
touching the phone itself (i.e. remote management) [11].

5.2 TCP System Service

The Argos TCP/IP system service provides a tcp/ip communication abstrac-
tion for Argos user applications. It utilizes a scalable architecture based on the
Java Non-Blocking IO libraries in order to provide a high performance con-
nectivity framework that can support at least hundreds of simultaneous tcp/ip
connections. The service is primarily suited for Argos user applications that need
server functionality, but it also provides tcp/ip client connectivity. The client and
server interface that is exposed to Argos applications is identical and based on



Argos, an Extensible Personal Application Server 29

a stream abstraction. Argos applications either read from the stream or write
to the stream after a tcp/ip connection is established. The following illustrates
usage of this service.

// Inject handler for the tcpService
@Component("!!TCPBinding") public TCPBinding tcpService;

// Use handler to create a server, connectionAccepted is called when clients connects
tcpService.addService(PORT, new ClientHandler());

// When clients connects, this method in the components ClientHandler interface
// is called. ClientHandler is an interface that is implemented by the component
// Note: read is blocking, write is non blocking

public void connectionAccepted(Connection con){
TCPStream stream = con.getStream();
byte[] buf = new byte[10];
stream.read(buf);
stream.write(buf);

}

5.3 Small Messaging Service (SMS) System Service

This service provides an easy to use abstraction (API) to send and receive SMS
messages to/from mobile phones from Argos services. The following example
shows how this system service is used to send a SMS message:

// Inject reference to SMS system service
@Component("!!SMSservice") public SMSservice smservice;
...
// Use the SMS system service to send an SMS
// The parameters are the phone number and the message
smservice.sendSMS("90914546", "How are you?");
...

This system service does not introduce any annotations. As the example
shows, user applications can use dependency injection annotation, defined by
the Argos core, to get a handler to the SMS system service component. This
handler can then be used to send and receive SMS messages by invoking meth-
ods in the system service component.

5.4 Web System Services

Currently we have developed three web related system components. The web ser-
vice system service component has already been described. A web server (Jetty)
is also deployed as a system service in Argos and in addition, support for Axis
(SOAP) is included as a separate system service component (in the web service
system service). The following examples shows how a user application compo-
nent creates a web method. The web method can be reached using SOAP or
XML-RPC when the component is deployed in the Argos container.

public class Something {
@WebMethod public String hello() {
return "Hello, world!";

}
}



30 A. Munch-Ellingsen, D.P. Eriksen, and A. Andersen

5.5 TwoWay Notification System Service

The TwoWay system service is a service that makes it easy to establish two way
notification listening relationships, meaning that a service A listens to events
submitted from service B and vice versa. The TwoWay system service lets either
end establish the two way connection and avoids the problems of synchronizing
the establishment of a two way connection between the two ends. This system
service is useful when creating distributed services where user applications in
different Argos containers need to cooperate. The following example shows how
this system service is used to set up two way notification listening:

@Component("!!TwoWay") public TwoWay twoWay; // Inject reference

@ComponentMeta public ComponentMetaInfo meta; // Inject own meta info from core

@Init public void init() {
...
// Set up mutual notification listening with the Manager component at host
twoWay.setupTwoWay("Components:name=Manager", host, meta.getMyName());
...

}

5.6 Derby and Hibernate System Services

Support for persistence is handled by two system services components, the Derby
and Hibernate system service components. Derby is an SQL database and Hi-
bernate is an object to entity relationship transformation tool. We have also
experimented with a separate persistence system service that makes it possible
to use annotations to express that component attributes are to be stored in the
embedded database. We are currently considering using Hibernate Annotations
instead.

5.7 JMX Connector System Service

The JMX Connector system service opens an RMI port to the Argos MBean
server. When the RMI port is open, the JMX Connector system service makes
it possible for remote monitoring and management of the Argos container and
its deployed system services and applications. We have also developed a JMX
browser and service monitoring and management tool specific for the Argos
container but any JMX compliant monitoring and management tool may be
used. The special thing about the JMX browser (called Argus) is that it can
use service specific instrument panels to give advanced (graphical) insight into
Argos and its system services and user applications. Figure 4 shows Argus in
use. The left side shows ordinary JMX browsing and the right side shows a user
application specific instrument panel for the satellite ground station service. The
telemetry input from a satellite ground station is visualized in a user application
specific instrument panel. The satellite ground station monitoring service is not
discussed in this paper.



Argos, an Extensible Personal Application Server 31

Fig. 4. Argus JMX monitoring and control tool

5.8 Service Management and Distribution System Service

The service management and distribution system service is a framework to pro-
vide distribution of system services and user applications in Argos. A service
provider creates a remote repository for their services and applications. These
services and applications then become available to their end users through the
service management and distribution system service. End users can download
new services and applications or update their existing services and applications
when an update is available.

The service management system service provides help in managing the con-
tainer its deployed system services and applications. The end user can inspect
meta data associated with each service, and configure these to fit their own
needs. In addition, service management offers start, stop and updating (using
service distribution) of services and applications.

5.9 Transaction Management System Service

An experimental transaction system service for Argos has been developed. The
transaction system service supports flexible transaction processing by providing
the possibility to support an extensible number of transaction managers. The
current version of the experimental transaction system service uses two con-
currently running transaction managers (DB-TM and WS-TM). The DB-TM
(Database Transaction Manager) supports traditional ACID transactions imple-
menting a two-phase commit protocol. The WS-TM (Web Service Transaction
Manager) supports long-running transactions with relaxed atomicity following
a compensation-based scheme. Based on the requirements from the application,



32 A. Munch-Ellingsen, D.P. Eriksen, and A. Andersen

one of them is selected to control the execution of an issued transaction. The
Transaction Layer integrates both database sources and Web Services by imple-
menting an abstraction layer facilitating the registration of, and the access to,
the various sources.

6 Implementation Details

The Argos core has been developed in Java 5. All functionality in the Argos
core is realized as a set of JMX DynamicMBeans [12]. JMX defines an archi-
tecture for management of distributed resources (local or remote). Resources
must be instrumented to be manageable. In Argos, the instrumentation is done
by associating MBeans to resources. A very good overview of JMX related to
development of middleware containers is found in section 2 of [13].

The JMX technology also provides a component-based architecture that makes
it easier to develop a monitored and manageable middleware system (as com-
pared to starting from scratch). Argos extends the JMX component model with
elements related to component and service metamodels, component lifecycle and
component dependency handling.

The Argos core instantiates all system services and user applications with a
DynamicMBean proxy associated to them. This means that all the major func-
tionality in the Argos core, all Java classes in system services and all Java classes
in user applications are instantiated with associated DynamicMBean proxies.
This makes it possible to monitor and manage the Argos core, the system ser-
vices and user applications through JMX.

System service or user application programmers are not exposed to JMX or
MBeans, meaning that Java classes in system services and user applications
does not have to implement any of the MBean interfaces. The component model
exposed to application programmers is plain Java (with the possibility to add
Argos core and system service specific annotations). Using the proxy pattern
together with reflection and explicitly expressed meta-data is very powerful as it
makes it possible to turn any java object into a DynamicMBean at run-time. The
reflective inspection done by the DynamicProxy is the first of a series of reflective
inspections performed on newly deployed components. The Argos core performs
another inspection just prior to activating the new component. This run is done
to collect information given by lifecycle annotations. In addition, potentially all
deployed system services may inspect every newly deployed component to search
for annotations that are part of that system services supported annotations (if
any). The system service will also perform the actions (service) associated with
the annotation. Dependency injection is just a special type of annotation and
may be handled in all the reflective inspection passes (depending of what you
would like to inject). Figure 5 illustrates the situation when a POJO has been
deployed to the Argos container.

Since JMX and specifically MBeans are intentionally not exposed to the appli-
cation program, the Argos container creates a dynamic MBean acting as a proxy



Argos, an Extensible Personal Application Server 33

Fig. 5. MBean server, DynamicProxy and POJO relationship

to the POJO. The proxy MBean and the Component runner MBean handle all
interaction between the MBean server and the POJO.

7 Example Applications

The Argos container has evolved as a result of needs/requirements that we have
observed when developing software in the areas of:

– Applications related to sensor networks
– Context aware applications including usage of several types of sensors as

context information sources
– Personal or small scale deployed services, i.e. services to one or a small

number of persons
– Personalized services in a mobile phone setting, i.e. applications available

using the mobile phone as end user terminal and sensors related to a person

Many of these applications follow the basic Input, Processing, Output pattern.
The Sensor framework system services has been developed for Argos to make it
easy to include sensors of different types as input sources for Argos applications.
Currently, processing is usually performed in processing components, but we
have ongoing work to include rule based processing as a separate system service.
Output can easily be done to a database or to external endpoints through web
services. Visualization of output can be done through GUI, Widgets or instru-
ment panels. Some of the user applications that we have developed are briefly
explained in the subsequent sections.



34 A. Munch-Ellingsen, D.P. Eriksen, and A. Andersen

7.1 The Weather Service

This service consists of a very simple component that reads sensor data from
weather instruments. The data is visualized in a service specific instrument panel.
The instrument panel (viewed in the Argos JMX monitor) is shown in figure 6.

Fig. 6. The Weather service instrument panel

The weather service uses the TCP system service to bind to external weather
sensors. The sensor values are stored in a database using the Hibernate and
Derby system service. The service specific instrument panel is the only GUI for
this service and the JMX Connector system service is used to make it possible
to remotely connect to the Argos container that runs the weather service.

7.2 The XUfo Service

Automatically piloting of a flying radio controlled helicopter (called XUfo) using
Bluetooth accellerometer and gyro sensors. The Argos components in this service
read sensor data approximately every 10 ms, use Kalman filters [14] to adjust
the readings and then compute control signals which are transferred back to
the helicopter. The service also includes an instrument panel that visualizes the
helicopter in a virtual 3D room. Figure 7 shows this instrument panel.

The XUfo service uses the Sensor Framework system service to connect to the
Bluetooth sensor package on the helicopter (through a USB Bluetooth dongle).
It also uses the Argos core notification annotations to bind the input and pro-
cessing POJO components together (the input POJO emits notifications when
new sensor readings are available).



Argos, an Extensible Personal Application Server 35

Fig. 7. XUfo service instrument panel

7.3 Lifestyle Services

Together with the Norwegian Center for Telemedicine we are developing a set of
services that we have called ”Lifestyle Services”. In these services we are using
sensors to read end user biometrics (for example Blood Glucose level, heart
rate, activity level etc.). The service uses information from the sensors combined
with a user profile and input from the end user to utilize behavioral change
mechanisms in order to try to affect the end user’s lifestyle. The sensors are
connected to the end user’s mobile phone. The Argos Sensor Framework System
Service is used to connect sensors and to configure the transmission of sensor
data from the mobile phone to the Argos container. Data from sensors is stored
in a database using the Hibernate and Derby system services and is further
processed using rules and processing components to calculate the interaction
with the end user in order to attempt to change the end user’s behavior.

7.4 Experience Sampling Service

The method called Experience Sampling Method(ESM) [15] aims at captur-
ing immediate experiences from participants in a survey. Combining ESM with
mobile technology gives the opportunity to design surveys that are to capture
immediate experiences.

Using the features of Argos, a software tool for generating ESM based surveys
has been designed and implemented. This tool, named esmDesk, is deployed in
Argos as a user application and provides an experimenter with a graphical user
interface where ESM based surveys can be created, modified and distributed to
a set of mobile devices. Distribution of surveys, which are expressed in XML,
is done using web services. When the experimenter has finished creating the



36 A. Munch-Ellingsen, D.P. Eriksen, and A. Andersen

survey using esmDesk, a set of participants is selected and esmDesk notifies
the participants’ mobile phones by sending an SMS message. The platform for
running surveys on the mobile phone is called esmMobile and it receives the SMS
message notifying that a new survey is available. Using web services esmMobile
downloads the XML representation of the survey from esmDesk, interprets it
and starts running the survey. After all the elements of the survey have been
answered by the participant, answers are sent back to esmDesk, again using web
services. The results are store in a database using Argos persistence support.

7.5 Others

Some other experimental services developed using the Argos middleware or some
of the preceding versions of Argos is very briefly presented here:

Herding. The electronic shepherd system provides farmers with information
describing the state of their animals. The information collected was used by
a back-end system and generated various map views with associated animal
alarms. GPS, temperature and motion sensors were used.

YPIV. Your Personal Infotainment Vault service will serve content to, for ex-
ample, your mobile phone and to others that you decide to share content
with. The content you manage in your YPIV can for example range from: Im-
ages, Music, Movies, Context information, PIM services, Ring tones, MMS
content, Documents etc. The ”sensors” in this service were radio station
rippers and other content ingestion ”sensors”.

FiFamos. The main problem in a fish farm is that most of them are without
supervision for a long time while they are exposed to changing weather
conditions. FiFaMos is an advanced surveillance and alarm system for sea
farms. GPS, camera, temperature, wind, wave, current, water quality and
food level sensors were used.

8 Evaluation

Argos is evaluated by demonstrating that it matches the needs of the target
application domains and by comparing it with other related projects.

8.1 Usage

In section 7 we have described some of the applications developed using Argos.
Argos (including earlier versions of Argos called COMS and APMS) has been
used to develop demonstrators internally at the lab and with external partners.
Currently several projects of external partners have decided to use Argos in
both research projects and in the development of prototypes and demonstrators
of new services and products (including Norwegian Center of Telemedicine and
Telenor R&I, Telenor is a Norwegian telecom company).

The core functionality of the Argos core (service and component model, life-
cycle, notification, instrumentation and dependency injection) and functionality



Argos, an Extensible Personal Application Server 37

provided by deployed system services makes it easier to quickly develop new ap-
plications. The programmer can focus on the core functionality of the
application.

The Weather application, the XUfo application and the Lifestyle applications
described in section 7 all show how easy it is to integrate sensor data in an Argos
application. The Argos core can be easily extended with new system services, and
the Sensor framework system service (see section 5.1) matches some of the needs
of these applications perfectly. In the Weather service the weather sensor data
are collected, stored (see persistence provided by the Hibernate system service
in section 5.6), and presented (see JMX Connector system service in section 5.7)
with little effort from the application developer.

The XUfo application demonstrates that Argos can also be used in a (near
real-time) control system. The efficiency of the Argos core and its notification
support makes it possible to pilot a flying object with gyro and accellerometer
sensors and a feedback loop through the Argos core that includes processing,
visualization, and control signal computation (see figure 7).

The Experience Sampling application uses the persistence support provided by
the Hibernate system service to easily store data collected from several respon-
dents. The requirements of the Experience Sampling application also resulted in
a new system service for SMS (Small Messaging Service). This system service
are used in completely different applications that also includes mobile phones
and SMS messaging (i.e. the Lifestyle service).

8.2 Related Work

Prism-MW [16] defines its setting as ”programming-in-the-small-and-many”.
They claim to have a flexible, efficient, scalable and extensible platform for this
setting of small, resource constrained, and highly mobile computing platforms.
Flexibility is achieved in a similar way as in Argos by providing a core including
a component model and events. However, the actual platform is very different.
Connectors are an important part of the Prism-MW core and their task is to
route events. Each component can be attached to any numbers of connectors,
and each connector can serve any numbers of components. This flexibility is
also used for system reconfigurability. Their focus on scalability and efficiency
are not found in Argos and Argos extensibility can therefore not be compared
to Prism-MW. In Prism-MW extensibility is provided by extending the core
programming model (extending the connector class, the component class or the
event class). Argos is extended by deploying new system-services at run-time.
Hot deployment makes it possible to extend (and update) Argos at run-time.
Argos provides more features for lifecycle support and system services and is
aimed for different application domains.

JBoss [13] is a feature rich application server platform. Similar to Argos it has
a core and is extended with system components to provide different system ser-
vices. The difference here is that JBoss supports complex enterprise applications
while Argos supports a completely different set of applications. Both the size
(memory print and lines of codes) and the complexity of these two applications



38 A. Munch-Ellingsen, D.P. Eriksen, and A. Andersen

platforms differs a lot. We also argue that complexity for the application pro-
grammer is higher when using JBoss (or any other EJB application server) than
using Argos. This is due to the focus on enterprise applications where more con-
trol is moved to the application server (obviously for efficiency and scaling, but
also for safety and isolation). Another important difference is that in Argos, the
programmer has access to local resources in the same way as any desktop appli-
cation that is implemented using Java. This is important for many applications
in the application domains targeted by Argos.

Gaia [17] and Mobile Gaia [18] is tied to the concept of Active Spaces where
physical and computational infrastructure are merged into an integrated habitat.
The focus is implicit support for resource awareness (discovery), multi-device
interaction, context sensitivity, mobility, run-time adaption and user-centrism.
This is very different from Argos. Argos could probably be used to develop
this kind of platform by providing system services matching the functionality of
Active Spaces. In Argos the term user-centric is used to describe applications and
services accessing and using resources close to or related to the user (personal
assets or private sensor data or similar). In Gaia this is used to describe the need
of the application to adapt to the user (his context and preferences).

Another group of related platforms are MIDAS [19], JAGR [20], The Collective
[21] and [22]. All of these platforms tries to solve the problem of (self) adaptive
containers. In Argos it should be possible to add context aware system services
that has similar approaches, but this is not part of Argos core.

9 Conclusions

The main contributions from the Argos project is that it gives useful (for this do-
main) enterprise container type support (e.g. component model, lifecycle support
and persistence) to desktop and user-centric application development, without
the complexity and limitations enforced by enterprise containers.

This grants developers of desktop and user-centric applications the advantage
of tailored and advanced, flexible and extensible, middleware support. The result
is the possibility to rapid develop feature rich applications that integrates and
aggregates information from different sources and presents the results in different
settings. Information sources can be sensors, user input, filesystem, databases,
web services, and so on. The aggregated and processed data can in turn easily
be presented as web pages, desktop widgets, web services, instrument panels or
ordinary graphical user interfaces. The collected, aggregated and processed data
can be easily persisted or propagated for further processing by other components.

The Argos middleware provides a leaner platform for development of desktop
applications, demonstrators, prototypes and experimental middleware develop-
ment than what would be the case if using for example the JBoss application con-
tainer as a basis. The Argos core and default system services (Hibernate, Derby,
Jetty, JMX Connector, web service) together counts 4,700 physical source code
lines using SLOCCount[23]. In comparison, the JBoss microkernel alone counts
10,844 and a complete Jboss installation contains 630,443 physical source code
lines using SLOCCount.



Argos, an Extensible Personal Application Server 39

Currently the performance of Argos is beeing tested. Some preliminary tests
have shown that the deployment time (including dependency testing) of new
components grows linearly with the number of components deployed (tested up
to 50,000 components). Tests have also shown that notifications are an efficient
way to interact between components, Argos core, and system services. Depen-
dency injection is not as efficient as notifications (probably because it uses re-
flection). The results have shown that usage of dependency injection takes three
times longer than notifications. The most efficient way is ordinary method calls,
but this differ from the two other approaches since it is not possible between
components in different Argos containers.

The Argos middleware and Argus JMX monitor and all system services we
have developed is stable and available under a BSD licence (open source soft-
ware). More information about Argos can be found here:

http://argos.cs.uit.no

References

1. Andersen, A., Blair, G., Goebel, V., Karlsen, R., Stabell-Kulø, T., Yu, W.: Arctic
beans: Configurable and re-configurable enterprise component architectures. IEEE
Distributed Systems Online 2(7) (2001)

2. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification, 3rd
edn. Addison-Wesley, Reading (2005)

3. Sun Microsystems: Java annotations: Jsr 175, a metadata facility for the java pro-
gramming language (2004), http://www.jcp.org/en/jsr/detail?id=175

4. Jetty: a full-featured web server implemented entirely in java (2007), http://
jetty.mortbay.org

5. Hibernate: an object/relational persistence and query service (2007), http://
hibernate.org

6. Derby: a relational database implemented entirely in java (2006), http://
db.apache.org/derby

7. W3C: Simple object access protocol (soap) 1.1 (2000), http://www.w3.org/
TR/soap

8. XML-RPC: remote procedure calling using http as the transport and xml as the
encoding (1998), http://www.xmlrpc.com

9. Fowler, M.: Inversion of control containers and the dependency injection pattern
(2004), http://www.martinfowler.com/articles/injection.html

10. Fowler, M.: Module assembly [programming]. Software, IEEE 21(2), 65–67 (2004)
11. OMA: Mobile device management protocols and mechanisms (2007), http://

www.openmobilealliance.org/tech/wg committees/dm.html
12. Sun Microsystems: Java management extensions (2006),

http://jcp.org/aboutJava/communityprocess/final/jsr003/index3.html
13. Fleury, M., Reverbel, F.: The jboss extensible server. In: Endler, M., Schmidt, D.C.

(eds.) Middleware 2003. LNCS, vol. 2672, pp. 344–373. Springer, Heidelberg (2003)
14. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans-

actions of the ASME - Journal of basic Engineering 82, 34–45 (1960)
15. Conner, T.: Experience sampling resource page (2006),

http://psychiatry.uchc.edu/faculty/files/conner/ESM.htm

http://www.jcp.org/en/jsr/detail?id=175
http://jetty.mortbay.org
http://jetty.mortbay.org
http://hibernate.org
http://hibernate.org
http://db.apache.org/derby
http://db.apache.org/derby
http://www.w3.org/TR/soap
http://www.w3.org/TR/soap
http://www.xmlrpc.com
http://www.martinfowler.com/articles/injection.html
http://www.openmobilealliance.org/tech/wg_committees/dm.html
http://www.openmobilealliance.org/tech/wg_committees/dm.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index3.html
http://psychiatry.uchc.edu/faculty/files/conner/ESM.htm


40 A. Munch-Ellingsen, D.P. Eriksen, and A. Andersen

16. Mikic-Rakic, M., Medvidovic, N.: Adaptable architectural middleware for
programming-in-the-small-and-many. In: Endler, M., Schmidt, D. (eds.) Middle-
ware 2003. ACM/IFIP/USENIX International Middleware Conference. Proceed-
ings. Rio de Janeiro, Brazil. ACM. IFIP. Adv. Comput. Syst. Assoc., 16- 20 June,
Springer, Berlin (2003)

17. Roman, M., Campbell, R.: A middleware-based application framework for active
space applications. In: ACM/IFIP/USENIX International Middleware Conference,
Rio de Janeiro, Brazil (2003)

18. Chetan, S., Al-Muhtadi, J., Campbell, R., Mickunas, M.D.: A middleware for en-
abling personal ubiquitous spaces. In: System Support for Ubiquitous Computing
Workshop at the Sixth Annual Conference on Ubiquitous Computing, Nottingham,
England (2004)

19. Popovici, A., Frei, A., Alonso, G.: A proactive middleware platform for mobile com-
puting. In: Endler, M., Schmidt, D. (eds.) Middleware 2003. ACM/IFIP/USENIX
International Middleware Conference, Springer, Berlin (2003)

20. Candea, G., Kiciman, E., Zhang, S., Keyani, P., Fox, A.: Jagr: an autonomous self-
recovering application server. In: Parashar, M., Hariri, S., Raghavendra, C. (eds.)
AMS 2003, Autonomic Computing Workshop: 5th Annual International Workshop
on Active Middleware. Seattle, WA, USA. IBM. Nat. Sci. Found. Soc. Modeling &
Simulation. IEEE. IEEE Comput. Soc. Arizona Center for Integrative Modeling &
Simulation. Univ. Southern California. WINLAB, Rutgers Univ., June 25, 2003,
IEEE Comput. Soc., Los Alamitos (2003)

21. Edward, C., Enda, R.: The collective: a common information service for self-
managed middleware. In: Proceedings of the 4th workshop on Reflective and adap-
tive middleware systems, Grenoble, France, p. 1101528. ACM Press, New York
(2005)

22. Gang, H., Tiancheng, L., Hong, M., Zizhan, Z., Zhao, L., Gang, F.: Towards auto-
nomic computing middleware via reflection. In: COMPSAC 2004. Proceedings of
the 28th Annual International Computer Software and Applications Conference,
Hong Kong, China, September 28-29, 2003, IEEE Comput. Soc., Los Alamitos
(2004)

23. Wheeler, D.: Sloccount, tools for counting physical source lines of code (sloc)
(2007), http://www.dwheeler.com/sloccount

http://www.dwheeler.com/sloccount

	Argos, an Extensible Personal Application Server
	Introduction
	Argos Core
	Argos Deployment
	System Services
	System Service Examples
	Sensor Framework System Service
	TCP System Service
	Small Messaging Service (SMS) System Service
	Web System Services
	TwoWay Notification System Service
	Derby and Hibernate System Services
	JMX Connector System Service
	Service Management and Distribution System Service
	Transaction Management System Service

	Implementation Details
	Example Applications
	The Weather Service
	The XUfo Service
	Lifestyle Services
	Experience Sampling Service
	Others

	Evaluation
	Usage
	Related Work

	Conclusions



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




