A Cost-Effective Distributed File Service
with QoS Guarantees

Kien Le, Ricardo Bianchini, and Thu D. Nguyen

Department of Computer Science, Rutgers University
{lekien, ricardob, tdnguyen}@cs .rutgers.edu

Abstract. Large-scale, value-added Internet services composed of independent
cooperating or competing services will soon become common place. Several
groups have addressed the performance, communication, discovery, and descrip-
tion aspects of these services. However, little work has been done on effectively
composing paid services and the quality-of-service (QoS) guarantees that they
provide. We address these issues in the context of distributed file storage in this
paper. In particular, we propose, implement, and evaluate a cost-effective, QoS-
aware distributed file service comprising a front-end file service and back-end
(third-party) storage services. Our front-end service uses mathematical modeling
and optimization to provide performance and availability guarantees at low cost
by carefully orchestrating the accesses to the back-end services. Experimental re-
sults from our prototype implementation validate our modeling and optimization.
We conclude that our approach for providing QoS at low cost should be useful to
future composite Internet services.

Keywords: Distributed storage, quality of service, cost optimization.

1 Introduction

Large-scale, value-added Internet services composed of independent cooperating or
competing services will soon become common place. We refer to these services as com-
posite services. Two technology trends suggest this new class of services: the progress
toward ubiquitous Internet connectivity even from devices with limited resources, and
the increasing adoption of service communication, discovery, and description stan-
dards, such as the Simple Object Access Protocol (SOAP), the Universal Description,
Discovery and Integration Service (UDDI), and the Web Service Definition Language
(WSDL). Together, these trends are forcing functionality and data into the network in-
frastructure in the form of remotely accessible services.

Composite services promise anytime, anywhere access to powerful services and vast
data sets. A composite service may use constituent services that provide complementary
functionality or data. For example, a composite stock service might use a service that
provides stock quotes in some currency and a service that translates an amount of money
(e.g., a stock quote) in one currency into another. In contrast, a composite service may
use services that provide the same functionality or data. For example, a composite job-
scheduler service might use multiple job-execution services. Regardless of type, we
expect that composite services and their constituent services will provide service-level
agreements (SLAs) for a monetary charge.

R. Cerqueira and R.H. Campbell (Eds.): Middleware 2007, LNCS 4834, pp. 223 007.
(© IFIP International Federation for Information Processing 2007

224 K. Le, R. Bianchini, and T.D. Nguyen

In terms of structure, composite services are organized into a front-end service and
multiple independent back-end services. The front-end service monitors and aggregates
the back-end services, whereas the back-end services communicate with the front-end
service but not with each other. In the above examples, the stock and job-scheduler
services are called front-end services, whereas the stock-quote, currency-exchange, and
job-execution services are called the back-end services.

For several years, researchers have been studying composite services in one form
or another in the CORBA, Grid, and Web Service communities. These works have
mostly focused on the performance, communication protocols, discovery mechanisms,
and description of these composite services. Little work has been done on effectively
composing paid services and the quality-of-service (QoS) guarantees that they provide.

In this paper, we address these issues in the context of distributed file storage. In par-
ticular, we propose, implement, and evaluate a cost-effective, QoS-aware composite file
service comprising a front-end file service and back-end (third-party) storage services.
The composite file service is intended to support soft real-time applications that involve
large data files, such as the visualization of large-scale scientific data (e.g., [1]]). For
these applications, it is important to guarantee that data files will be available a large
fraction of the time, and that a large percentage of file accesses will be served within a
certain amount of time.

The composite service provides “soft” availability and performance guarantees, i.e.
in extreme scenarios, such as a network partition separating front-end and back-end
services, the guarantees may be violated. When these violations occur, the service com-
pensates users for the violations.

Our front-end service allows users to choose the performance and availability guar-
antees that they desire on a per-file basis. Based on the chosen availability guarantee,
the front-end service replicates the file across the back-end services. Based on both cho-
sen guarantees, the back-end services’ behaviors, and their SLAs, the front-end service
intelligently distributes the requests across the back-end services to provide the chosen
guarantees at low cost.

The front-end service uses mathematical modeling and optimization to carefully or-
chestrate the accesses to the back-end services. More specifically, the front-end service
combines two algorithms: Base and OptWait. Base is reminiscent of traditional job
scheduling. It sends each request to one of the back-end services that replicate the cor-
responding file, according to a ratio determined by the mathematical machinery to meet
the file’s performance guarantees while minimizing access cost. In contrast, OptWait is
more sophisticated. It may actually send each request to multiple back-end services in
turn (starting with the cheaper ones) until the request is satisfied. The amount of time
it waits for each service to respond is determined mathematically and depends on the
probability that the service will return a reply during that time and on the file’s per-
formance guarantee. Because we can mathematically decide on the best algorithm, our
composite service picks the best algorithm for each file.

Because our initial focus (and the focus of this paper) is on the request-distribution
aspect of our work, we have implemented a prototype of our composite service with a
single front-end file server. The server implements the NFS protocol and executes our
mathematical machinery. It communicates with client machines using a standard NFS

A Cost-Effective Distributed File Service with QoS Guarantees 225

protocol over UDP, whereas it communicates with back-end services using XML over
HTTP. Several Internet storage services, e.g. Amazon.com’s S3 [2]], could implement
the back-end services. However, for greater control of our experiments, we implemented
our own back-end services, which provide data blocks named by absolute number.
Experimental results from our prototype implementation validate our modeling and
optimization approach. Our analysis of the algorithms studies several different parame-
ters, including the performance and availability guarantees, and the characteristics and
behavior of the back-end services. Our most important results show that our composite
service is successful at providing the guarantees that it promises. The results also show
that, independently, Base and OptWait provide the lowest cost in different parts of the
parameter space, whereas our combined system always produces the lowest cost.

2 Related Work

Our work builds upon previous research on service composition, QoS-aware resource
management, and distributed file and storage systems.

Service composition. This has been an important research topic in the Web Services
community, e.g. [3l4]. These works typically consider the QoS-aware composition of
services from constituent services that provide complementary computational function-
ality. For this reason, they do not consider request-distribution policies across the ser-
vices. Our work differs from these efforts as we study request-distribution policies that
are both QoS- and cost-aware, across functionally-equivalent constituent services.

QoS-aware resource management. A large body of work has been done on this topic,
especially in the context of networks, server clusters, and grid environments, e.g. [SI67].
These works consider resource allocation, provisioning, reservation, and negotiation,
as well as admission-control policies in guaranteeing QoS (and sometimes optimizing
costs) for the systems’ users.

The extent of the performance guarantees provided by our composite service is lim-
ited to the front-end and back-end services’ behaviors, as well as the communication
between front-end and back-end services; the composite service cannot provide perfor-
mance guarantees about the communication between clients and the front-end service.
All other works on server-side QoS guarantees have this same limitation. We envision
combining our QoS guarantees with those of future networks to completely eliminate
this limitation. Nevertheless, an easy approach to tackle this problem with current net-
work technology is to place front-end servers on the same local-area network as clients.
In this approach, the front-end server could be an appliance, like today’s load balancing
or storage appliances.

Although we can benefit from previous QoS works in managing the resources of
our front-end service and by leveraging network QoS, this paper focuses on request
distribution across the black-box back-end services, which allow us no control over
their resource allocation. In fact, the back-end services can themselves be distributed.
The only information about them that we rely upon is their SLAs.

Distributed file and storage systems. Most of the research in distributed file and stor-
age systems has been focused on cluster or local-area network environments, in which

226 K. Le, R. Bianchini, and T.D. Nguyen

resources are dedicated to the system and owned by the same administrative entity, e.g.
[8I9I10]. Due to their low communication latencies, these systems are amenable to small
data and meta-data transfers. In contrast, peer-to-peer file and storage systems have also
become prominent in recent years, e.g. [T1/T2I13]. These works have typically concen-
trated on achieving extreme performance scalability and availability in the presence of
high churn in the online membership of constituent nodes.

Although our composite file service can be seen as a peer-to-peer system in the
strictest sense, it lacks a few defining characteristics of previous systems, such as peers
that often become unavailable. Further, we are interested in pushing the boundaries of
traditional distributed file systems, such as NFS, by using them across the wide area.
Two papers have addressed the effect of high latencies on file system traffic [T4/13], but
neither of them considered QoS or costs. We expect Internet block-storage services to
become widespread in the future, as protocols such as iSCSI become more popular.

Summary of contributions. As far as we know, this paper is unique in a few respects.
First, our work seems to be the first to focus on cost- and QoS-aware request distribu-
tion across third-party services. Second, our OptWait request-distribution algorithm de-
parts from traditional scheduling policies by potentially assigning a request to multiple
back-end services in turn. Finally, our approach of considering the entire set of recent
response times from each back-end service, rather than using a single metric such as the
recent average response time or the maximum recent response time, in mathematically
determining request distributions is also novel.

3 Our Composite File Service

In this section, we discuss the basic principles behind our composite file service, our
request-distribution algorithms, and our current implementation.

3.1 Basic Principles

Overview. As already mentioned, our composite file service comprises a front-end file
service and a number of back-end block-storage services. The front-end service trans-
lates the file system API, e.g. create, read, write, unlink, into block accesses that are
forwarded to one or more back-end services. The front-end service composes the user-
requested guarantees from the back-end services at low cost. In fact, even if a single
storage service could provide the required guarantees directly to the user (who could
use a local file system and iSCSI, for example, bypassing the front-end service), the
composite file service could still provide them for a lower cost, e.g. by forwarding some
of the requests to a back-end service with lower cost per access whenever possible.

In our design, the front-end service is implemented by a number of distributed servers
for both performance and availability. Each user mounts the file system through one of
the front-end servers, which is chosen using a separate Web interface listing all available
front-end servers and their geographical locations. The same file system can be mounted
concurrently at different front-end servers. However, the front-end service provides no
consistency guarantees when read-write and write-write file sharing is not done on the
same front-end server. When the same front-end server is used, strong consistency is

A Cost-Effective Distributed File Service with QoS Guarantees 227

Table 1. Notation and definitions

Notation Definition

Atront Availability of the front-end service
A, Availability guarantee provided by back-end service 4
(P, Ly) Performance guarantee provided by back-end service ¢:

When service is available, P;% of requests should be served in L; time
(ci, ¢, ci) Read, write, and storage costs of back-end service ¢
Ay Availability requested by the creator of file f
(P, Ly) Performance requested by the creator of file f:
When service is available, Py % of requests should be served in Ly time

Hy Set of back-end services that store file f
Sy Size of file f
TE, Wy Expected percentage of reads and writes to file f
Ry, Wy Actual percentage of reads and writes to file f
Py, Py Percentage of reads and writes to file f that complete in L time
CDF;(L) Percentage of requests served by back-end service ¢ in L time
i Probability of sending a request to back-end service ¢ (optimized by Base)
(li, pi) Length of wait at back-end service ¢ and expected percentage of

requests served by ¢ during the wait (optimized by OptWait)
Cost(f) Expected monetary cost of serving file f
AccessCost:(f) Actual monetary cost of serving file f during interval ¢
TotalCost(f) Actual monetary cost of serving file f over all intervals

guaranteed. To guarantee high availability and fault tolerance, all data and meta-data
are replicated across several back-end services. Furthermore, the front-end servers only
store soft state, such as a disk cache of meta-data, and keep write-ahead logs of updates
in the back-end. All files are accessible from an inode-map stored at a few specific
back-end services (and cached on the disks of the front-end servers). Thus, if a front-
end server fails, the user can mount the file system through another front-end server,
which can take over for the failed server using its write-ahead log.

The back-end block-storage services may be provided by different service providers.
Although our front-end service treats the back-end services as “black boxes”, we do
assume that each back-end service is bounded by an SLA with the front-end file service.
In particular, each back-end service ¢ promises to meet an availability guarantee of A;
and a performance guarantee of (P;, L;) at a cost of (c], c}’, c]). The two guarantees
specify that service ¢ will be servicing access requests A;% of the time and, when it is
available, P; % of the accesses will complete within time L;. The SLAs are defined over
a long period of time, say one month, so that short-lived performance anomalies do not
cause SLA violations. The cost tuple (c, c;’, c;) specifies that each read access costs
cf, each write access costs ¢V, and each unit of storage per unit of time costs ;. Table[l]
summarizes the notation used in our modeling.

In computing request distributions, the front-end service uses the availability and
cost information from the SLAs with the back-end services. Instead of relying on the
performance guarantees provided by the back-end services in computing distributions,
we use the latency of requests as observed at the front-end service to encompass the

228 K. Le, R. Bianchini, and T.D. Nguyen

latency of the wide-area network. Specifically, the front-end service monitors the la-
tency of block accesses to each back-end service over two periods of 12 hours per day.
The request distributions computed during a period of 12 hours are based on the cumu-
lative distribution function (CDF) of the latencies observed during the same period of
the day before. For example, the request distributions computed during the afternoon on
Wednesday are based on the latencies observed during the afternoon on Tuesday. This
approach is motivated by the cyclical workloads of many Internet services [3]]. We plan
to investigate more sophisticated approaches for considering block access latencies as
future work.

File creation and access. When a file f is first created, the user can specify a desired
availability guarantee of Ay and a performance guarantee of (Py, L). (Files for which
the user requests no guarantees are stored at a single back-end service and served on
a best-effort basis.) These desired characteristics, if accepted by the front-end service,
determine that it must be able to serve access requests to [A ;% of the time and that
Py% of the requests must complete within time Ly, when the service is available. If
a file access request involves n > 1 blocks, the target latency for the request becomes
nLy. Again, these guarantees are defined over a long period of time, e.g. one month.

Obviously, we can only meet the requested availability if the front-end service itself
is more available than A . If that is the case, it will choose a set of back-end services
Hy to host f that meets (or exceeds) A . The front-end service randomly selects back-
end services from three classes — inexpensive, medium, and expensive — one at a time
in round-robin fashion. These classes are likely to correspond to services with generally
high, medium, and low response times, respectively, although that is not a requirement.
Assuming that failures are independent, the front-end service will select a set of back-
end services that satisfies the following inequality:

Af'ront X (]- - H (]- - Az)) 2 Af (l)

i€Hy

where Afyon: is the availability of the front-end service. This formulation assumes
that the back-end services are always reachable from the front-end service across the
network. However, it can be easily replaced by more sophisticated formulations without
affecting the rest of the system.

The front-end will choose a minimal set [in the sense that, if any back-end service
is removed from H s, the remaining set would no longer be able to meet Ay. Once H
has been chosen, the front-end service will solve a cost-optimization problem for the
two algorithms and choose the one that produces the lowest cost for f.

At this point, file f can be accessed by clients. On a read to f, the front-end service
will forward a request to a subset of H; for each needed block according to the chosen
algorithm. On a write, the front-end will forward the request to all back-end services in
H ¢ to maintain the target data availability, while concurrently writing to the write-ahead
log if necessary. The front-end service only waits for the possible write ahead and one
back-end service to process the write before responding to the client. In the background,
the front-end service will ensure that the write is processed by the other back-end ser-
vices in Hy as well. When write sharing is done through the same front-end server,
this approach to processing writes favors lower latency without compromising strong

A Cost-Effective Distributed File Service with QoS Guarantees 229

consistency; the pending writes can be checked before a subsequent read is forwarded
to the back-end.

Optimizing costs. Our request-distribution algorithms, Base and OptWait, are run by
the front-end service to minimize the cost of accessing the back-end services in Hy. As
mentioned above, their respective optimization problems are solved at first during file
creation, but they may need to be solved again multiple times over the file’s lifetime. In
particular, whenever the file is opened, a new distribution is computed but only if the
current distribution is stale, i.e. it was not computed based on the same period of the
day before. After the back-end services are selected and the request distribution is com-
puted, the front-end service can inform the client about the cost of each byte of storage
and the (initial) average cost of each block access, given the requested guarantees. Note
that the cost of accessing the write-ahead logs is not included in the cost computations;
this cost is covered by our service fees (discussed below).

Because we select the Hy back-end services randomly from three classes of ser-
vices, our cost optimization produces a “locally” optimal cost; it is possible that this
cost will not be the lowest possible cost (i.e., the “globally” optimal cost) for a system
with a large number of back-end services. Attempting to produce the lowest possible
cost would involve searching an exponentially large space of back-end service group-
ings, which could take hours/days of compute time to explore meaningfully, even if a
heuristic algorithm were to be used. We plan to explore this issue in our future work.

The front-end accumulates the access costs accrued during the periods of stable re-
quest distribution, i.e. in between consecutive changes to the request distribution. The
overall cost of the composite service is then the sum of the costs for each stable period.
Periodically, say every month, the front-end service charges each of its users based on
how many accesses and how much storage the front-end service required of its back-end
services on behalf of the user. Formally, the total cost to be charged is:

TotalCost(f) = ZAccessCostt(f) + S Z ¢)

Ve i€Hy

where AccessCost,(f) is the access cost of each period ¢ of stable request distributions
since the last calculation of TotalCost(f) and Sy is the maximum size of the file since
the last calculation of T'otalCost(f). We define AccessCost(f) exactly below.

Service fees and compensation. Finally, note that the costs incurred by the front-end
service are actually higher than the sum of TozalCost(f) for all files. As mentioned
above, the cost of accessing the write-ahead logs is not included in TotalCost(f). In
addition, when the client load is low, the front-end service may need to send additional
accesses to the back-end services to properly assess their current performance (and
availability). These extra accesses increase costs for the front-end service; the extra
cost can be amortized across the set of users as a “service fee”.

Further, there may be situations in which the guarantees provided by the front-end
service are violated. For example, the network between the front-end service and some
of the back-end services may become unusually slow or back-end services may start
violating their SLAs. As mentioned above, the front-end service responds to these sit-
uations by recomputing its request distributions accordingly, but the recomputations

230 K. Le, R. Bianchini, and T.D. Nguyen

may not occur early enough. Nevertheless, in case of back-end SLA violations, the
front-end service will be compensated for them and the compensations can be passed
on to its users. In case of network problems, the front-end service can use its service
fees to compensate users.

3.2 Base

In Base, a read request to a file f is forwarded to a single back-end service ¢ € Hy with
probability p;. (Writes are sent to all back-end services in Hy.) Base computes these
probabilities so as to minimize the cost of servicing accesses to f while respecting the
performance guarantees requested for the file. Formally, Base needs to minimize:

Cost(f) =ry Z pic; + wy Z e 3)

i€Hy i€Hy
subject to the following two constraints:
1.Yie Hy,p; >0and) p; =1 2.rpPp+wy Py > Py

where 7 is the fraction of read block accesses to f, wy is the fraction of write block
accesses to f, Py is the percentage of read accesses that complete within Ly, and P}’
is the percentage of write accesses that complete within L ;.

Equation [3] computes the average cost of reads and writes, reflecting the read-to-
write ratio (ry : wy), and the fact that each read incurs the cost of only 1 back-end
access according to the probabilities p; (hence p;c), while each write incurs the cost of
accessing all back-end services. Constraint 1 states that the probabilities of accessing
each back-end service in Hy have to be non-negative and add up to 1. Constraint 2
requires that the percentage of reads and writes that complete within Ly time must be
at least Py to meet the guarantees requested by the user.

We then define Pf and Py’ as:

Pf = ; piCDFi(Ly) P§ = max(CDFi(Ly)) @)
ey

where the CDF; (L) operator produces the percentage of requests satisfied within L time
by back-end service 7, as observed at the front-end service. P}” is determined by the best
performing back-end service because the front-end forwards each write in parallel to all
back-end services and replies to the client when the first one completes.

Equations 3] and [together with the two constraints completely define Base’s op-
timization problem, except for how to determine r; and wy. The user can optionally
estimate 7y and wy and pass them as parameters at file creation time. If the user does
not provide this information, we split constraint 2 above into two parts, Py > Py and
P}’ > Py, and instantiate Equation 3] with the assumption that ry = 1 and w; = 0.
This approach correctly but conservatively ensures that the solution to the optimization
problem provides the required guarantees for f. For details on this point, please refer to
the longer, technical report version of this paper [16].

A Cost-Effective Distributed File Service with QoS Guarantees 231

After each period ¢ of stable request distributions computed by Base, we compute
the cost of accessing the H back-end services during the period as:

AccessCosty(f) = Ry Z pic; + Wy Z ¢’ o)
i€Hj i€H

where Ry is the number of read requests and Wy is the number of write requests ser-
viced during period .

Finally, note that a malicious client is not able to lower its access costs by providing
fake values for r; and wy, since these costs are computed based on the actual requests
made by the client during each period of time.

3.3 OptWait

In OptWait, the front-end service takes the different approach of possibly forwarding
a read request to more than one back-end service. In particular, the front-end service
forwards each read request to the back-end services in sequence, from least to most
expensive, waiting for a bounded amount of time for each service to respond before
trying the next service.

The basic idea behind Opt- 100
Wait is illustrated in Figure] %0 | g @W
which shows three perfor- 80 ,;?‘ﬁ%
mance CDFs for three back- ,7or W* -
end services. Let us assume > “60 §
that the left-most curve rep- § 50 E
resents the most expensive @& 40 f ! .
service, whereas the right- 30
most curve represents the least Prag § Low Cost
expensive service. OptWait 10 - Medium Cost —a— |

High Cost —=—

would first forward a request 0 :

0 b 500I 4 1000 & 1500 2000

to the least expensive service, Block Access Time (ms)

waiting for an amount of time

{1. This would allow OptWait Fig. 1. Performance CDFs for three services. An OptWait
to take advantage of the per- distribution might specify that a request should be forwarded
centage of requests (p;) that to multiple back-end services in turn.

complete fairly quickly. If the

request did not complete within [time, OptWait would then forward the request to
the medium-cost service and wait for some wait time l». Again, the goal would be to
leverage the steep part of the medium-cost service’s CDF. If, after [; + [, time, the re-
quest still had not completed at either back-end service, OptWait would then forward
the request to the most expensive service and wait for the request to complete at any of
the three back-end services.

The key to OptWait is setting appropriate /; times. Like in Base, we do so by op-
timizing the access cost under the performance constraints imposed by the guarantees
requested by the user. Assuming H ; with 3 back-end services, our problem is to mini-
mize the following equation:

232 K. Le, R. Bianchini, and T.D. Nguyen

Cost(f) =rp1Ch
+((1 = CDF; (I + I2))pa + CDF1(l1 + l2) — p1)(Cy + Cs)
+(1 — (1 = CDF1(l1 + 12))p2 — CDF (11 + 12))(C1 4 C2 + C3)]
Fws) ie H; G
(6)

where p; = CDF;(l;), CDF;(l) = 0 when service ¢ is not being used for reads (i.e.,
l; = 0), C; = 0 when service 7 is not being used for reads and C; = ¢ when it is, and
l; = oo when 7 is the last service being used for reads. (We only present the equation for
the restricted case of 3 back-end services for clarity and because of space constraints.
We refer the interested reader to [[16] for the general formulation.)

Equation[6l computes the cost of writes in the same manner as the Base cost function
(Equation [3), as the two algorithms treat writes in the same way. More interestingly,
it computes the cost of reads by summing up the multiplication of the probability that
each back-end service will need to be accessed by the cost of doing so. For example, if
services 1 and 2 are used for reads, the first two lines of the equation compute the cost,
whereas the third line becomes 0. The first line multiplies the probability that service 1
replies within /; time (p;) by the cost of accessing service 1. For the requests that are
not serviced by service 1 within [, service 2 would be activated. Thus, the second line
of the equation sums up the probability that service 1 does not reply within [+ [time
but service 2 does reply within [5 time ((1 — CDF1(l1 +13))p2), and the probability that
service 1 replies after [; but before I; + lo time (CDF1(l1 + l3) — p1). The second part
of the cost is obtained by multiplying this probability by the cost of making one access
to service 1 and one access to service 2.

Equation[@l should be minimized subject to the following constraints:

1.Vie Hf,l; >0 2.7’fP}+wa}U2Pf

where constraint 1 simply states that times have to be non-negative and constraint 2 is
the same as that for Base. (Just as for Base, the front-end service can break constraint 2
into two parts and compute costs for ry = 1 and wy = 0, if the user does not provide
information about 7 and wy as a parameter.) We define P}’ just the same as for Base,
since the two algorithms handle writes in the same way. In contrast, P is defined as:

P§ = CDFy(Ly)
+(1 — CDF,(Ly))CDFy(Lys — 1) (7)
+(1 = CDFy(Ly))(1 — CDFy(Ly — 1,))CDF3(Ly — Iy — Iy)

where again CDF; (1) = 0 when service 7 is not being used for reads.

In plain English, the first additive component of Equation[Zlrepresents the probability
that the least-expensive service will reply in a timely manner (within L; time) if it is
used, the second component is the probability that service 2, if used, will reply in a
timely manner (given that a request is only forwarded to it after /; time) but not service
1, and so on. (Again, because the general formulation and its closed form [16]] are hard
to read, we only present the equation for a system with exactly 3 back-end services.)

After each period ¢ of stable request distributions computed by OptWait, we compute
the cost of accessing the Hy back-end services during the period by replacing r; and
wy in Equation[@lby Ry and W7y, respectively.

A Cost-Effective Distributed File Service with QoS Guarantees 233

3.4 Implementation

We have implemented a prototype front-end file service called Figurehead to explore
our request-distribution algorithms in real systems with real workloads. Although Fig-
urehead should be supported by multiple geographically distributed servers in practice,
it is currently based on a single node as a proof-of-concept implementation.
Figurehead consists of four components: an NFS version 2 facade that allows the
file service to be accessed through standard NFS clients, a file system that supports the
NFS facade and uses remote back-end block services for storage, an optimization mod-
ule that computes the best request distribution strategy, and a module that constantly
monitors the performance of the back-end services. All components were written in
Java and run in user space. Relevant details about these four components are as follows.

NFS facade. The multi-threaded NFS facade accepts NFS remote procedure calls via
UDP. It implements the NFS version 2 protocol almost completely; the only calls that
have not been implemented are those dealing with symbolic links.

The one complication that the NFS protocol poses for Figurehead is that opens and
closes are not sent through to the server. Thus, whenever the NFS facade receives a
create or the first access to an unopened file, it opens the file and caches the opened-file
object returned by the file system. A cached opened-file object is closed and discarded
after it has not been accessed for 5 minutes.

File system. The file system behind our NFS facade uses the same meta-data scheme
to represent a file as the Linux ext2 file system. The inode was changed to include
information about the availability and performance guarantees requested by the creator
of a file. An inode-map maps each inode to the set of back-end services that is hosting
the file. All data and meta-data except for the inode-map are stored at the back-end
services in 8-KByte blocks. The file system communicates with the back-end services
over a Web Service interface, namely the RPC implementation from Apache Axis [17].

When a file is first created, the file system chooses a set of back-end services to
host the file as described in Section 311 It then allocates an inode, saves the availabil-
ity and performance guarantees for the file in the inode (along with other traditional
file-system information, such as owner and time of creation), enters the mapping of
inode-number — H y into its inode-map, and writes the inode to the appropriate back-
end services. The file system also opens the file.

When a file is opened, the file system extracts the set of back-end services that is
hosting the file (/{y) from the inode-map, obtains their access time CDFs from the
monitoring module, reads the inode to obtain the performance guarantees, and asks the
request distribution module to compute the best request distribution strategy for the
file. This last step is not necessary when the file is being re-opened and the current
request distribution was computed based on the same period of the day before. To de-
termine whether to recompute a request distribution, Figurehead maintains information
about when each distribution is computed. When a previous request distribution exists
but a new computation is required, the computation is performed in the background
and adopted when completed. When client requests arrive, the file system uses the
file meta-data to identify the corresponding blocks and forwards the appropriate block

234 K. Le, R. Bianchini, and T.D. Nguyen

operations to the back-end services. Reads are handled according to the current request
distribution, whereas writes are forwarded to all back-end services in Hy.

The file system maintains a write buffer to ensure that each write to a file f eventually
reaches all of the nodes in Hy. When a write request arrives, the file system assigns a
thread per back-end service in H s the task of ensuring that the write eventually reaches
a particular back-end. Each write is then discarded from the write buffer once it has
propagated to all back-ends in H;. We assume that the back-end services can handle
small “overwrites;” that is, a write that only partially overwrites a previously written
block can be sent directly to the back-end services without having to read the old data
and compose a new complete-block write. This avoids making small overwrites more
expensive than a complete-block write because of the need to read the block.

The file system implements two levels of meta-data caching. First, all meta-data is
currently cached on a local disk (and is never evicted) using a Berkeley database [18].
This cache reduces the number of accesses to the back-end services by eliminating
repeated remote meta-data accesses. In fact, the cache makes the meta-data accesses
to the back-end services relatively infrequent for the large-file applications we target
(dominated by reads and/or overwrites), so these accesses are not currently reflected
in our mathematical machinery. Second, file-specific meta-data, i.e. inodes and indirect
blocks, are cached in memory for open files as the meta-data is accessed. This avoids
repeatedly accessing the cache on disk for a stream of accesses to the same file. Meta-
data of an open file that is cached in memory is evicted when the file is closed. Our
policy of holding a file opened in the NFS facade for 5 minutes beyond its last access
implies that meta-data for an open file is also cached in memory by the file system for
the same amount of time.

Finally, since the NFS clients cache data themselves, our file system (in fact, the
entire front-end service) does not cache data at all.

Request-distribution module. This module solves the optimization problems posed by
Base and OptWait, and chooses the algorithm that produces the lowest cost. The Base
optimization problem is solved using the linear programming solver Ip solve [19] and
produces the p; probabilities with a precision of a few decimal places. Unfortunately,
minimizing cost in OptWait is not a linear programming problem. To solve it, we con-
sider all feasible combinations of the probabilities p;’s (in steps of 1% in our current
implementation) for the back-end services in H; to compute the best /;’s wait times.
Even though this is essentially a brute force approach, it does not take long to compute
as the size of Hy is small (typically two or three), even for high Py requirements. We
report running times for this module in Section [

Monitoring module. This module is responsible for monitoring each back-end service
in terms of its performance as seen at the front-end service. Specifically, this module
probes each back-end service periodically with regular block accesses (every 5 seconds
in our current implementation). With the access times measured from these accesses,
this module constructs the performance CDF for the service.

Figurehead limitations. Currently, Figurehead has three limitations. First, as we men-
tioned above, it is implemented by a single server, rather than a collection of geograph-
ically distributed servers. Second, we have not yet implemented the write-ahead log

A Cost-Effective Distributed File Service with QoS Guarantees 235

for crash recovery. Third, the monitoring module currently does not use information
from regular accesses to the back-end services, always issuing additional block accesses
to assess their performance (and availability). These extra accesses increase costs and
would not be required when the regular load on the back-end services is high enough.
We are currently addressing these limitations.

4 Evaluation

In this section, we first explore and compare the two request distribution algorithms over
the space of different costs and back-end service behaviors. We then study the impact of
using past access time data to predict current behaviors of the back-end servers. Finally,
we evaluate our prototype Figurehead implementation, and validate that it provides the
performance guarantees computed by the mathematical machinery.

Ideally, we would like to study our system using actual back-end services on the
Internet. However, at this point, there are not enough of them to provide a large range
of data. Thus, we have collected access times over a period of close to one month
from 50 PlanetLab machines to support our evaluation. These data were collected by
running a simple block-storage service on each machine, populating each service with
5120 blocks, and randomly accessing a block according to a Poisson process with mean
inter-access time of 1 second from a client machine located at our site.

4.1 Base vs. OptWait

We first compare Base and OptWait mathematically assuming fixed access time CDFs
for the back-end services. In particular, we chose data from three PlanetLab nodes,
planetlab2.cs.umass.edu, planetlabl.cs.unibo.it, and
planet-lab.iki.rssi.ru, whose CDFs are shown in Figure[ll We study a set of
three nodes because they provide a sufficiently rich space to understand the behaviors
of the two algorithms, yet is not overly complicated to explain.

Overall results. Figure 2l plo-

ts the average cost (Cost(f)) 16
achieved by Base and OptWait Wl B
for a read-only workload as a '\ —
function of the per-file guar- 12 \v
anteed latency (Ly), with a 10 = \%\s@:%
per-file percentage guarantee § 8 *%
(Py) of 95%. (The results are 6 \ .
similar for other Py values.) . opma e —— |
Each of the curves represents opt%:ﬁ{g:]g:]g} =
a different combination of al- 2 opiiscloe1sl e
gorithm and per-access cost 0 . !

. 400 600 800 1000 1200 1400 1600
for each back-end service. For L

example, the curve labeled

OptWait [5,10,15] represents Fig. 2. Costs achieved by Base and OptWait vs. L, assum-
the cost computed by OptWait ing a read-only workload and Py = 95%

236 K. Le, R. Bianchini, and T.D. Nguyen

Table 2. Costs and distributions with back-end service costs = [5,10,15] and Py = 95%. The Base
distributions are listed as [p1, p2, ps], whereas the OptWait distributions are listed as [(I1, p1),
(lg,pz), (lg,p3)] l1, 12, ld are given in ms.

Ly (ms) Base Cost Base Dist OptWait Cost OptWait Dist

500 14.17 [0,17,83] 15.00 [(0,0),(0,0),(c0,100)]
600 12.50 [0,50,50] 11.65 [(0,0),(511,89),(c0,100)]
700 10.00 [0,100,0] 10.00 [(0,0),(00,100),(0,0)]
800 10.00 [0,100,0] 10.00 [(0,0),(00,100),(0,0)]
900 9.83 [3,97,0] 10.00 [(0,0),(00,100),(0,0)]
1000 9.66 [7,93,0] 10.00 [(0,0),(00,100),(0,0)]
1100 9.46 [11,89,0] 9.80 [(923,68),(0,0),(c0,100)]
1200 9.40 [12,88,0] 9.80 [(923,68),(0,0),(c0,100)]
1300 9.21 [16,84,0] 8.80 [(794,62),(c0,100),(0,0)]
1400 8.85 [23,77,0] 8.20 [(923,68),(c0,100),(0,0)]
1500 7.86 [43,57,0] 7.10 [(1404,86),(0,0),(c0,100)]
1600 5.00 [100,0,0] 5.00 [(00,100),(0,0),(0,0)]

when ¢] = 5, ¢; = 10, and ¢§ = 15 fractions of dollar per access (what fraction exactly
is irrelevant to our study). Table 2] lists the optimized costs and request distributions for
Base and OptWait for costs [5,10,15].

From these figures, we can see that neither Base nor OptWait is always better than
the other. At the extremes, i.e. at very low or very high latency guarantees, the two
algorithms behave the same because there is no room for optimization. For very low
latency guarantees, the only choice is to use the most expensive service all the time (if
it is possible to meet the guarantee at all). For very high latency guarantees, the obvious
best choice is to use the cheapest service all the time.

In between these extremes, the relative behavior of Base and OptWait depends on
the shapes of the access time CDFs of the back-end services, as well as their costs. For
example, consider the costs achieved by Base and OptWait for cost [5, 10, 15] at latency
guarantees of 500ms and 600ms. At 500ms, Base achieves lower cost than OptWait
because it is able to use the medium-cost service 17% of the time, whereas OptWait
cannot yet use the medium-cost service (see Table). In this case, for ps in OptWait
to be greater than 0, [would have to be at least 365ms, leaving insufficient time for
accessing the high-cost service should the request fail to complete at the medium-cost
service within [5. At 600ms, OptWait does better than Base because its greater use of
the medium-cost service, 89% vs 50%, more than offsets the 11% of the time that it has
to use both the medium-cost and high-cost service.

In general, we observe that Base can typically start using a lower-cost back-end
service before OptWait as the guaranteed response time increases. This is because Base
never resends requests. However, eventually, OptWait can use the lower-cost service
more aggressively because it can avoid the tail of the CDF by re-sending requests to the
more expensive services as needed.

A Cost-Effective Distributed File Service with QoS Guarantees 237

Table 3. Costs and distributions with Py = 95%, as a function of Ly and back-end service costs.
The Base distributions are listed as [p1, p2, p3], whereas the OptWait distributions are listed as
[(I1,p1), (I2,p2), (I3, p3)]. l1, l2, I3 are given in ms.

Ly Back-End Base Base OptWait OptWait

(ms) Costs Cost Dist Cost Distribution
1200 [5,10,15] 9.40 [12,88,0] 9.80 [(923,68),(0,0),(c0,100)]
1200 [5,6,15] 5.88 [12,88,0] 6.00 [(0,0),(0,100),(0,0)]
1200 [5,14,15] 12.92 [12,88,0] 9.80 [(923,68),(0,0),(c0,100)]
1300 [5,10,15] 9.21 [15.79,84.21,0] 8.80 [(794,62),(c0,100),(0,0)]
1300 [5,6,15] 5.84 [15.79,84.21,0] 6.00 [(0,0),(0,100),(0,0)]
1300 [5,14,15] 12.58 [15.79,84.21,0] 9.50 [(1064,70),(0,0),(cc,100)]
1400 [5,10,15] 8.85 [23.08,76.92,0] 8.20 [(923,68),(c0,100),(0,0)]
1400 [5,6,15] 5.77 [23.08,76.92,0] 6.00 [(0,0),(c0,100),(0,0)]
1400 [5,14,15] 11.92 [23.08,76.92,0] 8.30 [(1285,78),(0,0),(c0,100)]

100 16 T T T
Base-Low Cost 1 —+—
Base-Low Cost2 —<—
90 ‘&@@”6 14 k OptWait-Low Cost 1 —*— |
f § OptWait-Low Cost 2 —&—
80
/ a ”
70

” I ob N\
N

Q
(=}
o]
I 50 2 g \}t
5] o
2w) N\
30
20 Low Cost-1 —*— | 4
Low Cost-2 —&—
10 Medium Cost —=— 2
j High Cost —o—
0 f
0 500 1000 1500 2000 ®a00 600 800 1000 1200 1400 1600 1800
Block Access Time (ms)
(a) (b)

Fig. 3. (a) CDFs for 4 back-end services. (b) Access cost achieved by Base and OptWait when
using two different sets of three back-end services {low-cost-1, medium-cost, high-cost} and
{low-cost-2, medium-cost, high-cost}. Both with cost [5,10,15] and Py = 95%.

Impact of the back-end service costs. Observe that Base’s distribution of requests
is independent of the ratio between the costs of the three back-end services. That is,
as long as ¢ > c; > cf, Base will choose the same set of distribution probabilities
(p1, p2, p3) regardless of the ratios cj:co:c3. OptWait, on the other hand, may alter
its distribution strategy based on the cost ratios. For example, consider in Table [3| the
distributions computed for L ; within the interval [1200ms, 1400ms] for costs [5, 6, 15]
vs. [5, 10, 15]. For [5, 10, 15], OptWait chooses to use either the low- and medium-cost
or low- and high-cost services. For [5, 6, 15], OptWait only chooses to use the medium-
cost service. This is because the medium-cost service is only slightly more expensive
than the low-cost service; immediately choosing it is less costly than potentially having
to forward the request to two services.

Impact of the shape of the CDFs. Base and OptWait also behave differently with
respect to the shapes of the CDFs. In general, Base’s behavior depends on the three key

238 K. Le, R. Bianchini, and T.D. Nguyen

points CDF1(Ly), CDF5(Ly), and CDF3(Ly), whereas OptWait’s behavior depends
on the shape of all CDFs between 0% and CDF;(Ly). These dependencies can be seen
clearly in Figures [3(a) and (b). Figure Bla) shows the CDFs for 4 back-end services
from which we derived two sets of three services {low-cost-1, medium-cost, high-cost}
and {low-cost-2, medium-cost, high-cost}.

Figure B(b) shows that OptWait behaves significantly better when using low-cost-2
in the interval [600ms, 1600ms] because low-cost-2 is substantially “steeper” than low-
cost-1. Base is also able to leverage low-cost-2’s better behavior to improve its cost, but
less so than OptWait. The reason is that Base only leverages the fact that low-cost-2
gives a better CDF (L) than low-cost-1, rather than the fact that low-cost-2 gives an
additional 30% of requests completing under 700ms over low-cost-1 in this interval.

4.2 Validating the Mathematical Machinery

We now validate our mathematical approach when servicing actual file system work-
loads. We also validate that the prediction of back-end service behaviors using past
access time data do not significantly degrade our QoS guarantees. First, we use sim-
ulation to analyze the mathematical approach independent of the details of an actual
implementation. Next, we evaluate our prototype implementation.

Workloads. We use two realistic workloads. The first models an interactive visual-
ization application, where the user is navigating through a large amount of data—for
example, a large rendering model or large scientific data set. This application is exactly
the type of soft real-time application that Figurehead is designed to support.

This workload is constructed based on publications on visualization systems
[20121122]), and has the following attributes: a random Poisson read access stream with
a mean interarrival time of 50ms on a large data file. It currently does not make a dif-
ference to Figurehead whether a read stream is random or sequential, since Figurehead
does not currently do any prefetching or caching. We assume a random read access
stream because these accesses are dependent on the user’s interactive navigation.

The second workload models a scientific application running on a grid environment.
Although this is not a classical soft real-time application, it still constitutes an interest-
ing workload because predictability of data access can significantly reduce the burden
of resource management and coordination of the stages of a multi-stage application
such as the one described in [23].

This workload is constructed based on data extracted from [1I2312423]], and has the
following attributes: a sequential read access stream from a single large file followed by
a sequential write access stream to the same file. This read/write access stream repre-
sents a multi-phase application with an initial read phase to load input data and a final
write phase that saves the computed results. We assume that intermediate results gen-
erated between the initial and final phases are stored on local storage rather than a file
system such as Figurehead. We further assume that the initial input data and the final
results have the same size; thus, the read-to-write ratio is 1:1. Finally, both the read and
write access streams are Poisson processes with mean interarrival times of 50ms.

Because the WAN latencies we consider are larger than 50ms, we assume that the
access streams of both applications are generated by a number of concurrent threads.

A Cost-Effective Distributed File Service with QoS Guarantees 239

Table 4. Simulation results with (Py, Ly) = (95%, 600ms) and costs [5,10,15]. V denotes the
visualization workload, S the scientific workload, B the Base algorithm, and O the OptWait al-
gorithm. Expected is the percentage of requests expected to complete before L as computed
by the algorithm. Simulated is the actual percentage of requests that completed before Ly in a
simulation run. Min, Max, Avg are the minimum, maximum, and average values across 18 runs
using 18 half-day traces from the PlanetLab machines.

V-B S-B V-0 S-0
Expected Simulated Expected Simulated Expected Simulated Expected Simulated
Min 95 95.06 95 95.28 95.2 95.61 95 95.56
Max 95 95.89 95 97.28 97.36 97.89 97.33 98.56
Avg 95 95.48 95 96.07 96.22 96.57 95.7 96.78

Simulation using a priori knowledge of back-end service behaviors. Our first ex-
periment is as follows. Take a trace of the three machines whose overall behaviors are
shown in Figure [over a period of 9 days. Construct a CDF for each back-end service
for each 12-hour period of the 9 days. For each 12-hour period, use the corresponding
CDF to compute the distribution using Base and OptWait for Py = 95%, L = 600ms,
costs [5,10,15], and ¢" = ¢" for all back-end services. Then, simulate Figurehead’s
response time for 18000 accesses for each workload using the 12-hour traces that were
used to construct the CDFs. This corresponds to statistical oracular knowledge of the
behaviors of the back-end services.

Table] shows the results for 18 runs of each application/distribution algorithm pair,
where each run was performed using a distinct half-day period of the 9-day trace. For
both workloads under Base and OptWait, the simulation always leads to exceeding the
QoS guarantee. This is because we construct and use the CDFs in a conservative man-
ner. In particular, each CDF is represented by a set of 100 discrete points, representing
the latency corresponding to each percentage point on the CDF. Now suppose that the
mathematical engine needs a percentage value corresponding to the latency 1000ms. If
our CDF has the points (999ms, 95%) and (1001ms, 96%), then we would return 95%,
rather than an interpolated value between 95% and 96%. We choose this conservative
approach because an interpolated value would be optimistic sometimes but pessimistic
other times, making the mathematical machinery less predictable.

An additional interesting observation to make is that mathematically, Base always
achieves a distribution that should theoretically give the exact Py required (in this case,
95%). OptWait, on the other hand, because of our discrete approach for computing the
best distribution, typically overachieves compared to the required P;. (Note that, for
Ly = 600ms, OptWait achieves lower cost than Base despite this overachievement.)
As shall be seen, this overachievement makes OptWait more robust when the CDF is
computed based on past data.

Impact of using past access times to predict current back-end service behaviors.
We now consider the impact of not having a priori information on the expected behav-
iors of the back-end services. In particular, as mentioned in Section[3.1} we run the same
experiments as above but use a CDF constructed from the response times observed in
the same 12-hour period 1 day ago to predict each back-end service’s behavior in the

240 K. Le, R. Bianchini, and T.D. Nguyen

Table 5. Simulated results for (Py, Ly) = (95%, 600ms) and costs [5,10,15] when using data
access times from 12 hours ago to predict the current behaviors of back-end services. The notation
is the same as in Table [l Failures is the number of 12-hour simulation runs that did not meet the
QoS guarantee.

V-B S-B V-0 S-O0
Expected |Simulated Expected[Simulated Expected[Simulated Expected[Simulated
Min 95 92.72 95 94.28 95.2 93.83 95 95.67
Max 95 97.72 95 98.33 97.36 98.83 97.33 98.61
Avg 95 95.35 95 96.11 96.24 96.42 95.76 96.8
Failures 0 5 0 6 0 5 0 0

current 12-hour period (e.g., 8am-8pm from Tuesday to predict behavior for 8am-8pm
Wednesday). Table 5] shows the results for 16 12-hour runs (we could not use the first
two half-day periods because they did not have any past history for prediction).

As expected, past data is not a perfect predictor of current behavior. This leads to a
number of 12-hour simulation runs where Figurehead would not be able to achieve the
QoS guarantee. In fact, approximately 35% of the runs missed the QoS guarantee under
Base. OptWait has a comparable failure rate for the Visualization workload but was
perfect for the Scientific workload. As already mentioned, OptWait is somewhat more
resilient to the imperfect predictor because it typically overachieves compared to the
required Py. On the other hand, the imperfect predictor can also lead the 12-hour runs
to achieve more than the QoS requirement, i.e. more than P; of the requests complete
within L ¢ time. In fact, the Max values for both Base and OptWait are larger in Table[J]
than in Table [l

However, the most important observation here is that both request-distribution al-
gorithms provide the performance guarantees that they promise when the entire 8 day
period is considered (see the simulated Avg entries). (Recall that QoS guarantees are
defined over long periods of time, such as one month.) The reason for this result is that
the QoS requirement is exceeded during the majority of the 12-hour periods, which
more than compensates for the many fewer periods when the requirement is not met.

4.3 Prototype Behavior

We now validate that our prototype, Figurehead, actually provides the performance
guarantees computed by the mathematical machinery. All results reported below were
obtained by running on 5 PCs connected by a Gb/s Ethernet switch. Each PC is con-
figured with 1 hyper-threading Intel Xeon 2.8 GHz processor, 2 GBytes of main mem-
ory, and 25 GBytes of disk space. Three of the machines were used as back-end block
servers and one as the client. The other machine ran Figurehead. We always assume that
the three back-end services are needed to meet the client’s specified availability require-
ment. Again, all the experiments assume Py = 95%, Ly = 600ms, costs [5,10,15], and
c¢” = c" for all back-end services. To mimic a wide-area network, we inserted delays
to the completion times of accesses to the back-end services. We use the same 9-day
trace as in the last subsection; the delays were randomly chosen from the appropriate

A Cost-Effective Distributed File Service with QoS Guarantees 241

half-day period. (We used the traces instead of running the back-end services them-
selves on PlanetLab nodes for repeatability.)

Microbenchmarks. We first present results from microbenchmarks to illustrate the per-
formance of Figurehead. For these microbenchmarks, we did not inject any network
delays so that performance reflects what is achievable over a LAN. We also assume
that ry and w are known ahead of time; i.e., 7 is 1 when measuring read performance
and 0 when measuring write performance. We measured write performance for appends
(rather than overwrites) to a file.

Using these microbenchmarks, we find that the times required to read and write 1
byte of data are approximately 30ms and 66ms, respectively. Appends are more expen-
sive than reads because they require writing meta-data. Overall, Figurehead reads and
writes are about one order of magnitude slower than on a local disk. The higher ac-
cess latency of Figurehead arises mainly from using a Berkeley database as disk cache
and the Web Services interface to access the back-end block servers. These inefficien-
cies can be easily eliminated in a production-grade implementation. However, the fairer
comparison is between accessing a back-end service through Figurehead and accessing
it directly, both on a WAN. Because network trips dominate in this scenario, Figure-
head would impose a much lower overhead. For example, the lowest average latency
we measured for the PlanetLab nodes is 165ms. Given this latency, Figurehead would
impose roughly a 30% degradation when all accesses are appends.

Another important issue is the overhead of computing request distributions. The time
to solve a Base and OptWait optimization problem is approximately 710us and 14ms,
respectively. We found that, while the time to solve OptWait does increase with L, it
does so quite modestly. The reason for the slight time increase is that a higher L ; tends
to generate a larger search space in OptWait. Finally, these optimization times do not
change significantly with changing Py and so we do not show those results here.

Macrobenchmarks. Finally, we ran the two workloads described in the last section
concurrently against a running instance of our Figurehead prototype. We ran each work-
load/distribution algorithm pair 4 times, each time for a distinct half-day period from the
9-day trace (the first 4 half-day periods). Overheads from the system (e.g, computing
time inside the Figurehead front-end) led to a degradation in meeting the QoS require-
ment Py by almost nothing to at most 1%. Detailed measurements show that the main
sources of overheads were synchronization delays, inaccuracies in the sleep function
used to emulate WAN latencies, and accessing the Berkeley DB. Despite these over-
heads, the prototype consistently provides the proper guarantees when all the periods
are considered.

5 Conclusions

In this paper, we addressed the issue of composing functionally-equivalent, third-party
services into higher level, value-added services by developing a distributed file ser-
vice. In this context, we proposed two request-distribution algorithms that optimize
costs at the same time as providing performance and availability guarantees. To achieve
this goal, both algorithms rely on information about the behavior of the third-party

242 K. Le, R. Bianchini, and T.D. Nguyen

services to mathematically determine the request distributions. While one algorithm is
reminiscent of traditional scheduling policies, the other departs significantly from these
policies, as it may schedule the same request at multiple third-party services in turn.

We found that both algorithms provide the guarantees that they promise. Compar-
ing the algorithms, we found that neither is consistently the best. Nevertheless, using
our mathematical modeling, the system can actually select the best algorithm for each
file a priori. Experimental results from our prototype implementation characterized its
performance and the optimized access costs under the two algorithms.

Composite services such as the one we studied are in the horizon. Based on our
experience and results, we believe that these services can benefit from our modeling
and optimization approach for guaranteeing quality-of-service at low cost.

References

1. Shasharina, S.G., Wang, N., Cary, J.R.: Grid Service for Visualization and Analysis of Re-
mote Fusion Data. In: Proceedings of the International Workshop on Challenges of Large
Applications in Distributed Environments (June 2004)

2. Amazon: Amazon Simple Storage Service, http://aws.amazon.com/s3

3. Gu, X., Nahrstedt, K.: Distributed Multimedia Service Composition with Statistical QoS
Assurances. IEEE Transactions on Multimedia 8(1) (February 2005)

4. Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: QoS-Aware Mid-
dleware for Web Services Composition. IEEE Transactions on Software Engineering 30(5) (
May 2004)

5. Chase, J., Anderson, D., Thackar, P., Vahdat, A., Boyle, R.: Managing Energy and Server
Resources in Hosting Centers. In: Proceedings of the Symposium on Operating Systems
Principles (October 2001)

6. Krauter, K., Buyya, R., Maheswaran, M.: A Taxonomy and Survey of Grid Resource
Management Systems for Distributed Computing. Software—Practice and Experience 32(2)
(February 2002)

7. Subramanian, L., Stoica, 1., Balakrishnan, H., Katz, R.: OverQoS: An Overlay Based Ar-
chitecture for Enhancing Internet QoS. In: Proceedings of the Symposium on Networked
Systems Design and Implementation (March 2004)

8. Gibson, G.A., Nagle, D.F., Amiri, K., Butler, J., Chang, EW., Gobioff, H., Hardin, C., Riedel,
E., Rochberg, D., Zelenka, J.: A Cost-Effective, High-Bandwidth Storage Architecture. In:
Proceedings of the International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (October 1998)

9. Radkov, P, Yin, L., Goyal, P., Sarkar, P., Shenoy, P.: A Performance Comparison of NFS and
iSCSI for IP-Networked Storage. In: Proceedings of the USENIX Conference on File and
Storage Technologies (March 2004)

10. Thekkath, C.A., Mann, T.P., Lee, E.K.: Frangipani: A Scalable Distributed File System. In:
Proceedings of the Symposium on Operating Systems Principles (October 1997)

11. Bhagwan, R., Tati, K., Cheng, Y.C., Savage, S., Voelker, G.M.: Total Recall: System Support
for Automated Availability Management. In: Proceedings of the Symposium on Networked
Systems Design and Implementation (March 2004)

12. Dabek, F., Kaashoek, M.E., Karger, D., Morris, R., Stoica, I.: Wide-Area Cooperative Storage
with CFS. In: Proceedings of the Symposium on Operating Systems Principles (October
2001)

http://aws.amazon.com/s3

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

A Cost-Effective Distributed File Service with QoS Guarantees 243

Rowstron, A., Druschel, P.: Storage Management and Caching in PAST, a Large-Scale, Per-
sistent Peer-to-Peer Storage Ultility. In: Proceedings of the Symposium on Operating Systems
Principles (October 2001)

Martin, R., Culler, D.: NFS Sensitivity to High Performance Networks. In: Proceedings of
the International Conference on the Measurement and Modeling of Computer Systems (May
1999)

Ng, W.T., Hillyer, B., Shriver, E., Gabber, E., Ozden, B.: Obtaining High Performance for
Storage Outsourcing. In: Proceedings of the USENIX Conference on File and Storage Tech-
nologies (January 2002)

Le, K., Bianchini, R., Nguyen, T.D.: A Cost-Effective Distributed File Service with QoS
Guarantees. Technical Report DCS-TR-615, Department of Computer Science, Rutgers Uni-
versity (August 2007)

Apache: Apache Axis, http://ws.apache.org/axis/

Olson, M.A., Bostic, K., Seltzer, M.I.: Berkeley DB. In: Proceedings of the USENIX Annual
Technical Conference, FREENIX Track (June 1999)

Berkelaar, M.: LP Solve,|ftp://ftp.es.ele.tue.nl/pub/lp solve/

Almeida, .M., Krueger, J., Eager, D.L., Vernon, M.K.: Analysis of Educational Media Server
Workloads. In: Proceedings of the International Workshop on Network and Operating Sys-
tems Support for Digital Audio and Video (June 2001)

Crandall, P.E., Aydt, R.A., Chien, A.A., Reed, D.A.: Input/Output Characteristics of Scalable
Parallel Applications. In: Proceedings of the ACM/IEEE conference on Supercomputing,
IEEE Computer Society Press, Los Alamitos (1995)

Wong, W.M.R., Muntz, R.R.: Providing Guaranteed Quality of Service for Interactive Visu-
alization Applications (poster). In: International Conference on Measurement and Modeling
of Computer Systems (June 2000)

Thain, D., Bent, J., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H., Livny, M.: Pipeline and
Batch Sharing in Grid Workloads. In: Proceedings of the IEEE Symposum on High Perfor-
mance Distributed Computing, IEEE Computer Society Press, Los Alamitos (2003)
Nieuwejaar, N., Kotz, D.: The Galley Parallel File System. In: Proceedings of the ACM
International Conference on Supercomputing, ACM Press, New York (1996)

Wang, F., Xin, Q., Hong, B., Brandt, S., Miller, E., Long, D., McLarty, T.: File System
Workload Analysis for Large-Scale Scientific Computing Applications. In: Proceedings of
the IEEE/NASA Goddard Conference (April 2004)

http://ws.apache.org/axis/
ftp://ftp.es.ele.tue.nl/pub/lp_solve/

	A Cost-Effective Distributed File Service with QoS Guarantees
	Introduction
	Related Work
	Our Composite File Service
	Basic Principles
	Base
	OptWait
	Implementation

	Evaluation
	Base vs. OptWait
	Validating the Mathematical Machinery
	Prototype Behavior

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

