
A Method for Estimating Authentication Performance
over Time, with Applications to Face Biometrics

Norman Poh, Josef Kittler, Ray Smith, and J. Rafael Tena

CVSSP, University of Surrey, Guildford, GU2 7XH, Surrey, UK
{norman.poh,j.kittler,r.s.smith,j.tena}@surrey.ac.uk

Abstract. Underlying biometrics are biological tissues that evolve over time.
Hence, biometric authentication (and recognition in general) is a dynamic pattern
recognition problem. We propose a novel method to track this change for each
user, as well as over the whole population of users, given only the system match
scores. Estimating this change is challenging because of the paucity of the data,
especially the genuine user scores. We overcome this problem by imposing the
constraints that the user-specific class-conditional scores take on a particular dis-
tribution (Gaussian in our case) and that it is continuous in time. As a result, we
can estimate the performance to an arbitrary time precision. Our method com-
pares favorably with the conventional empirically based approach which utilizes
a sliding window, and as a result suffers from the dilemma between precision in
performance and the time resolution, i.e., higher performance precision entails
lower time resolution and vice-versa. Our findings applied to 3D face verifica-
tion suggest that the overall system performance, i.e., over the whole population
of observed users, improves with use initially but then gradually degrades over
time. However, the performance of individual users varies dramatically. Indeed, a
minority of users actually improve in performance over time. While performance
trend is dependent on both the template and the person, our findings on 3D face
verification suggest that the person dependency is a much stronger component.
This suggests that strategies to reduce performance degradation, e.g., updating a
biometric template/model, should be person-dependent.
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1 Introduction

In general, pattern recognition can be categorized as either static or dynamic [1]. A static
pattern does not tend to change dramatically over time whereas a dynamic one does. The
latter is problematic because as the variability of dynamic patterns in the same class
becomes gradually larger, a classifier that does not update itself will have tremendous
difficulty when discriminating between dynamic patterns belonging to different classes.

Biometrics can be considered as a dynamic pattern principally because underlying
the metrics are living tissues that tend to modify themselves either as a result of muscle
movements or tissue growth (aging). In the former case, the change can take place in
seconds whereas in the latter case, the change can be gradual. Apart from this change,
variation in patterns can also be caused by an imperfect biometric acquisition process,
e.g., in the way a biometric sample is presented and the environmental conditions. These
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Fig. 1. Scatter plot of genuine user (“+”) and impostor (“◦”) match scores for a single user’s tem-
plate over 250 days (the X-axis). Higher match scores imply genuine user class. The interruption
in genuine match scores around the 100-th day is due to no observations being made during the
term break. The straight lines are the regression fits on the data (continuous line for the genuine
user match scores and dashed line for the impostor ones).

factors cannot often be decoupled but their effects can readily be observed from the
resulting match scores.

To give a further motivation, we plotted the class-conditional match scores in Fig-
ure 1 of a user selected at random from a face verification system applied to the Face
Recognition Grand Challenge (FRGC) database. This database contains images col-
lected over 250 days. Two clusters of scores are available, namely genuine user match
scores and impostor match scores. The genuine user match scores are the results of com-
paring a reference template with query images of the same user. The impostor match
scores are the results of comparing the reference template with query images of other
users. In this figure, one can observe that genuine user scores are very sparse whereas
the impostor match scores, as a result of comparing a sequence of query images from
many persons, are very dense.

The ability to track the dynamic change of biometric patterns in terms of perfor-
mance is valuable because it can determine whether or not a biometric system degrades
over time. If it does then preventive measures will have to be taken to maintain the
performance. One of the pilot studies in this direction is reported in [2], whereby the
performance of four face recognition systems coupled with two face detection algo-
rithms (hence altogether eight systems) were assessed on the FRGC database. This
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database contains 250 users whose images were captured over a period of two years. It
was observed that all the face identification systems decrease in performance (in terms
of rank-1 false rejection) with time-lapse. However, time-lapse is not the only factor;
in [2], it was noted that the precision of eye localization is another important factor.

This paper differs significantly from [2] because our concern is with the individual
user performance. According to [3], the users in a database can exhibit very different
performance. In particular, some users are more easily recognized than the others. As
a result, it is reasonable to expect that the performance change will be different from
one user to another. We argue that our approach is more useful because it can calculate
the person-specific performance. This enables one to sort the users according to their
current performance, thereby identifying the weak users in this process. If the perfor-
mance of these users can be corrected, for instance, by updating the user model, one can
potentially improve the overall system performance. Deciding when and how to update
a biometric template/model will be investigated in the future.

This paper is organized as follows: Section 2 explains how the user-dependent er-
ror over time can be calculated using the proposed procedure; Section 3 describes the
database used; Section 4 shows the results and Section 5 presents the conclusions.

2 Modeling Performance over Time on a Per-person Basis

Suppose that each user j in a database has two sequences of scores over time: one from
the genuine user set of scores and the other from its impostor counterpart. We denote
the two sequences by yk

j = [yk
j,1, . . . y

k
j,Nk

]′ for genuine user and impostor classes,
k = {G, I}, respectively, and each sequence has Nk number of scores. For clarity,
we drop the user index j everywhere. In this study, the impostor scores with respect
to the reference user are generated by the rest of the users exhaustively. Therefore,
the constraint NG � NI is true in this case. Note that each sequence of scores has a
corresponding time delay sequence dk

j = [dk
j,1, . . . d

k
j,Nk

]′ or simply dk (omitting j).
For the genuine user scores, this time delay sequence is just the time difference

between the template and the query image associated with the respective score. Suppose
that these images have the following time stamps: t0, t1, . . . , tNG . We reserve the first
image with time t0 as a template. This template is then compared to the remaining
images in the sequence. The resulting genuine match scores will have the following
relative time stamps: dG ≡ [dG

1 , dG
2 , . . . , dG

NG
]′ ≡ [t1 − t0, t2 − t0, . . . , tNG − t0]′.

For the impostor sequence, this time delay sequence is with respect to the rela-
tive time difference between the first impostor attempt and the subsequent impostor
attempts by the same impostor. Suppose the image sequence of an impostor has the
following time stamps: t1, t2, . . . tNI . We define its relative time sequence by dI ≡
[dI

1, . . . , d
I
NI

]′ ≡ [t1 − t1, t2 − t1, . . . tNI − t1]′, i.e., taking the difference between the
time stamp of an image in the sequence with the first one. Note that the first element in
this list has a time stamp of 0. By so doing, we assume that the time difference between
the first impostor attempt and the template has no importance. This is a reasonable as-
sumption given the fact that the two feature sets under impostor matching are not from
the same persons.
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The goal is to estimate the performance in terms of False Match Rate (FMR) and
False Non-Match Rate (FNMR)1 at a given time dt for t = 0, 1, . . . and for each user
to an arbitrary precision. This implies that FMR and FNMR are themselves smooth
functions over time. This is clearly a difficult task since the conditional sequence yk

has very few data points, especially for the genuine user sequence.
For each sequence k, let us fit a regression function to (dk,yk). Regression func-

tions are also called smoothers because they give in general a smoothed output of yk .
Some examples are kernel, running mean, running-line, locally weighted running-line,
running spline and regression spline smoothers [4, Chap. 3]. We will use a polynomial
regression model of order D for this purpose so that we obtain the regression parameter
p = [pD, . . . , p0]′. By evaluating the parameter p, we obtain a smoothed conditional
score μk

t = p0 + p1dt + . . . + pDdD
t at time dt along with standard deviation σk

t . By
tracing (dt, μ

k
t ) for t = 0, 1, . . ., one obtains a smoothed curve with 95% confidence

bound (dt, μ
k
t ± 2σk

t ) for each k ∈ {G, I}. In summary, for a given instance of time dt,
we have the parameters {μk

j,t, σ
k
j,t} for each class k and for each user j (note that the

index j is reintroduced here).
If the conditional regression fit is adequate, then the error residual should be approx-

imately normally distributed. Unfortunately, given a limited number of data points of
size Nk, especially for the genuine user sequence, in practice, one has no way of assess-
ing whether the fit is adequate or not. This can be determined subjectively (visually).
Another way to proceed is to use a polynomial model with a low degree of freedom
D, based on the fact that we have few data points. The consequence is that the fit will
lead to a large bias but a low variance. A more in-depth discussion of the bias-variance
trade-off in regression can be found in [4, Chap. 3].

Once the regression parameters are found, we can then model instantaneous FMR
and FNMR by:

FMRj,t(Δ) = Φ
(
Δ|μI

j,t, (σ
I
j,t)

2) (1)

and
FNMRj,t(Δ) = 1 − Φ

(
Δ|μG

j,t, (σ
G
j,t)

2) (2)

for a given threshold Δ in the score space, where Φ
(
Δ|μ, (σ)2

)
is a cumulative normal

density function with mean μ and standard deviation σ. Under such condition, a result
from [5] shows that at Equal Error Rate (EER), i.e., FMR=FNMR, the user-specific
EER is:

EERj,t =
1
2

− 1
2

erf

(
F-ratioj√

2

)
, (3)

where

F-ratioj =
μG

j,t − μI
j,t

σG
j,t + σI

j,t

, (4)

and

erf(z) =
2√
π

∫ z

0
exp

[
−x2] dx. (5)

1 Also called False Acceptance Rate and False Rejection Rate, respectively when evaluating the
overall system performance, as opposed to algorithmic-level performance.



364 N. Poh et al.

The end results are sequences of user-specific FMR and FNMR over the desired time
period dt estimated to an arbitrary accuracy.

The next issue to be dealt with is to calculate the population performance given the
parameters {μk

j,t, σ
k
j,t} for each class k = {G, I} and all the users j = 1, . . . , J at the

desired time dt. In order to calculate this quantity, we first need to calculate the class-
conditional score distributions of the population. From the Gaussian assumption, the
user-specific version of this distribution (for a given user j) is N (μk

j,t, (σ
k
j,t)

2). The pop-
ulation’s conditional score distribution must be then a mixture of user-specific score dis-
tributions weighted by their respective prior probabilities, i.e.,

∑J
j=1 N (μk

j,t, (σ
k
j,t)

2)
p(j|k). Therefore, the population’s FMR is

FMRt(y) =
J∑

j=1

Φ
(
y|μI

j,t, (σ
I
j,t)

2)P (j|I). (6)

Similarly, the population’s FNMR is:

FNMRt(y) = 1 −
J∑

j=1

Φ
(
y|μG

j,t, (σ
G
j,t)

2)P (j|G). (7)

The population’s EER point, i.e., FMRt(y) = FNMRt(y) can be found numerically.
The section that follows will discuss the database used before applying the proposed

procedure on the real data.

3 Experimental Approach

The publicly available FRGC Experiment 3 data [6] is divided into two parts, training
and test sets. Each part contains a set of 3D scans together with the corresponding 2D
color intensity images. Additionally the 3D coordinates of landmark points located at
the eye corners, the tip of the nose and the tip of the chin are also provided for each scan.
The data was captured in near frontal pose using a Minolta Vivid 900 range scanner at
a resolution of 640 × 480 and it includes males and females in approximately equal
numbers, covering a range of ages and ethnic backgrounds. The training set consists
of 943 face scans and images of 270 different subjects, with the number of samples
per subject varying from 1 to 8. 410 subjects were included in the test set; with the
number of samples per subject ranging from 1 to 22 for a total of 4007 scans and
images. It is worth mentioning that 31 samples of the training set were discarded for
our experiments, because the provided landmarks were off their mark by more than
50mm.

For the purpose of these experiments we use all of the training data to train face
matching algorithms. To study the effects of changes over time we choose a subset of
285 users from the test data such that each one has a sequence of more than 6 accesses
within the observed 250 days. Instead of just using the first image as template, we
also used the second and third images as templates. When the second image is used
for this purpose, the first image is not used to construct the genuine user sequence of
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match scores. This makes sense because one cannot compare a template with a sample
acquired before the template is constructed.

Three sets of face verification experiments are described in this study. These are the
PCA baseline system [6] supplied by FRGC (3D-baseline), 3D face verification with an
error-correcting output-code based matcher (3D-ECOC) and 2D face verification with
a local binary pattern based matcher (2D-LBP).

The 3D-ECOC method follows that described in [7]. Angular linear discriminant
analysis is used to establish a low-dimensional feature space in which individuals are
reasonably well separated. An error-correcting output code ensemble of Gaussian SVM
classifiers is then trained within this feature space and the outputs from this ensemble
are used to define a new feature space in which separation is further improved. A fi-
nal similarity measure between pairs of 3D scans is obtained based on the Manhattan
distance in this second feature space.

For the 2D-LBP matcher each face image is subdivided into a 7×6 grid of rectangular
non-overlapping regions and a local binary pattern histogram [8] computed for each
region. A similarity measure between pairs of images is then computed based on the
mean Manhattan difference between corresponding histograms.

The 3D verification experiments require accurate registration and this is performed
using the method of dense correspondence with a 3D model as described in [9].

4 Performance Trend Analysis

We first examined if the user-specific performance is template dependent or not. For
this purpose, we selected a user at random from the 2D-LBP experiment. Using the
first three images in the time-stamped sequence as templates, we plotted the fitted re-
gression function with time being the input (independent) variable and score being the
output (dependent) variable (see Figure 2). Their corresponding EERs are also shown
at the bottom of each sub-figure. As can be observed, the user-specific performance is
template dependent.

We then proceeded to compare the EER trends of different persons but used the
first image as a template for all users. The purpose is to examine if the user-specific
performance is person dependent or not. The results are shown in Figure 3. As can
be observed, different users can exhibit dramatically different EER trend even though
the same verification system is used. While most users decrease in performance, there
are users who actually improve in performance over time. In any case, the user-specific
performance is unlikely to be constant. This experimental result supports our conjecture
that biometric authentication (and recognition in general) is a dynamic pattern recogni-
tion problem. Furthermore, the user-specific performance is both person and template
dependent. Between the two, the choice of template seems to play a less important part
in determining the trend.

Lastly, we plotted the system performance, using DET curves, over the whole popu-
lation of users for the three different templates used. The results are shown in Figure 4.
A DET curve [10] is a plot of false rejection rate (FRR) or FNMR versus false accep-
tance rate (FAR) or FMR. As can be observed, the DET curve also changes over time.
In particular, when we analyzed the EER point in Figure 4(d), we observe that there is a
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Fig. 2. The evolution of scores as estimated by regression (in the top row of figures) and their
corresponding EER trend (bottom row) when using the first (column one), second (column two),
third (column three) images according to the time-stamped sequence of a given user. The system
used here is the 2D-LBP system. In the top figures, thick continuous lines are the expected trends
of the genuine user match scores over time and thick dashed lines are that of the impostor match
scores. Around these lines are their corresponding ± two standard deviations (shown in dotted
lines).

general decrease in error rates over time before increasing again. It can be argued that,
in general, biometric users become more acquainted with the system. As a result, the
system performance may increase with use. However, because biometrics may change
over time, the query images may gradually differ from the reference template. As a
result, the system may degrade in performance. The system-level performance can be
regarded as the average performance across users and so the above explanation cannot
be readily observed from the set of individual user performance.

5 Conclusions

In this paper, we proposed a method to estimate user-specific performance. This is a
difficult problem mainly due to the paucity of the genuine score samples. The availabil-
ity of scores in time depends very much on how regular a biometric system is used. In
the FRGC database, the most frequent interval is 7 days, followed by 14 days. By using
an empirical error estimation approach, it is thus possible to estimate the error rate on a
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Fig. 3. The EER trend of all 256 users. Each of the 4 × 8 figures shows the trend of 8 users. The
X-axis shows the number of days in [0, 250] and the Y-axis is EER (%) in [0, 50].

per day basis. By imposing the constraints that the user-specific class-conditional score
sequence is continuous in time and that it takes on a particular distribution (Gaussian
in our case), we demonstrated that our method can estimate the error rate on a per day
basis. While the use of Gaussian assumption can be appropriate in our case, we do not
claim that this is, in general, the case. The methodology, however, should be equally
applicable on other data sets with a sensible choice of distribution.

Our experiments highlight the importance of user-specific performance analysis.
This may open up a new research avenue towards customized biometric verification
system, i.e., a system that is designed to adapt to the individual characteristic of a user.
The proposed method can serve as an evaluation tool for this purpose. Customized bio-
metric system is fascinating because learning with user-specific samples is a difficult
task due to the small training sample size.

To the best of our knowledge, our study may be the first attempt to uncover person-
dependent performance in a more principled way.

Our experiments show that the impostor score sequence does not need to evolve with
time due to the aggregate effect of considering multiple impostor score sequences from
a pool of impostors. As a result, modeling the genuine user sequence is of critical im-
portance. Although a polynomial regression was used in this study, it may be logical to
replace it with one that does not assume equal variance over the entire score sequence.
Another obvious improvement is to replace the Gaussian assumption with a more real-
istic one.
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(a) DET: model 1
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(b) DET: model 2
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(c) DET: model 3
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Fig. 4. The evolution of the entire DET curve over the population of users (285 in total) on a 50-
day interval given that the (a) first, (b) second and (c) third images in the time-stamped sequence
are used as templates. Figure (d) shows the EER trend of the three models over 250 days. The
system used here is the 3D-baseline system. The other two systems give similar trends, although
their absolute performance differs slightly.
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