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Abstract. Fastest three-dimensional (3D) surface reconstruction algo-
rithms, from point clouds, require of the knowledge of the surface–normals.
The accuracy, of state of the art methods, depends on the precision of esti-
mated surface–normals. Surface–normals are estimated by assuming that
the surface can be locally modelled by a plane as was proposed by Hoppe
et. al [1]. Thus, current methods for estimating surface–normals are prone
to introduce artifacts at the geometric edges or corners of the objects. In
this paper an algorithm for Normal Estimation with Neighborhood Reor-
ganization (NENR) is presented. Our proposal changes the characteristics
of the neighborhood in places with corners or edges by assuming a locally
plane piecewise surface. The results obtained by NENR improve the qual-
ity of the normal with respect to the state of the art algorithms. The new
neighborhood computed by NENR, use only those points that belong to
the same plane and they are the nearest neighbors. Experiments in syn-
thetic and real data shown an improvement on the geometric edges of 3D
reconstructed surfaces when our algorithm is used.
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1 Introduction

The computational representations of physical objects have large and wide ap-
plications in distinct areas like industrial design, computer simulations and
medicine, among others: an object digitalization can be easily studied, modi-
fied or replicated. In a initial stage, a complex real object is detailed scanned, by
using of a proper device, for acquiring of a point cloud with thousand or millions
of points. In a second stage, a reconstruction algorithm is applied on the point
cloud for producing a, generally triangular, mesh that approximates the object
surface. Thus the resulting mesh is a suitable representation of the real object.

The reconstruction algorithms must be able to approximate, at a reasonable
computational time, the geometric features of the real object. Among the re-
construction algorithms reported in the literature, Multilevel Partition of Unity
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Implicits (MPUI) [2] deserves our special attention. Currently, the MPUI is con-
sidered as one of the fastest and most up-to-date algorithms for surface recon-
struction, however, it is important to notice that the MPUI like the rest of the
volumetric methods [1,3,4] requires an estimation of the normal at each point.
Clearly, good normal estimations are necessary for a good surface reconstruction.

Some complex three–dimensional (3D) scanner devices estimate the surface
normals at the acquisition time. However, in order to eliminate any dependency
to those devices it is better to infer such normals from the point set. For in-
stance, Refs. [1,5] reported algorithms for addressing the surface normal prob-
lem. But those methods fail, to estimate correctly normals, at sites close to edges
or corners. In this paper we propose an edge preserving normal regularization
technique based in an adaptive rest condition spring system proposed by Rivera
and Marroquin in [6] that allows us to improve the normal-surface estimation at
points close to edges and, consequently, improving the quality of the final surface
reconstruction.

The paper is organized as follows. In Sect. 2 we present a brief review of the
reconstruction algorithms that have been developed. In Sect. 3 we describe a
pioneering technique [1], that still, is widely used for normal estimation in point
clouds. In Sect. 4 we propose an algorithm for normal estimation that increase
the accuracy in regions with edges. In Sect. 5 we compare the performance of
the MPUI algorithm [2] when the surface–normal are estimated with the method
presented in [1] and with the method we propose here. Finally, some conclusions
are discussed in Sect. 6.

2 Surface Reconstruction

Currently, one can distinguish two main lines of research in the field of surface
reconstruction from point clouds. The algorithms developed in the context of
Computational Geometry (CG) constitute a line of research [7]. In CG-based
methods the surface is reconstructed from the Delaunay tetrahedrization of the
point cloud [8,9,10]. Unfortunately, CG-based methods are very sensitive to noise
and computationally expensive; their computational complexity is of polynomial
order with respect the number of points. On the other hand, volumetric methods
constitute the alternative research line [1,2,3,4]. In this case, implicit functions
are fitted to the point cloud and the surface is extracted (see [11,12,13]) as the
zero level set of the computed functions. These methods are used extensive be-
cause their better noise tolerance and because they are able to handle large point
clouds. However, it is necessary to supply reliable information about the normal
at each point. The current state of the art in this approach includes the MPUI
algorithm based on quadratic functions [2]. It is one of the few reconstruction
algorithms able to process sharp features and also one of the fastest techniques
available [2].

The MPUI algorithm works as follows. First it creates an octree-based subdi-
vision of a box that bounds the point cloud. At each cell of the octree the local
shape is approximated with a piecewise quadratic function. These functions work
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like a signed distance function taking a positive value inside of the point cloud
and negative outside of it. The normals of the points are used to distinguish the
orientation locally. If the local approximation into a cell is not accurate, then
the cell is subdivided; such a procedure is repeated until a desirable accuracy
level is reached. The global implicit function describing the surface is given by
assembling the local approximations using local weights.

The MPUI algorithm has three types of quadratic functions that allows to
model a large variety of point set configurations. Additionally, MPUI provides
test–rule for choosing the appropriated quadratic form to fit at each cell. These
test–rule give to the algorithm the ability to deal with surface edges. The MPUI
algorithm input are the point cloud and the respective surface–normals. In the
case were only the point cloud is given (surface normals are not provided), Ohtake
et al. [2] suggest to compute such surface–normals with the technique proposed
by Hoppe et al. in [1]. The surface-normal estimation method is described in
next section.

3 Standard Surface–Normal Estimation

The estimation of surface–normals from a point cloud is usually done in two
stages, as proposed Hoppe et al. in [1] (NE–Hoppe). In the first stage the Tangent
Plane (TP) is estimated at each point. Thus the Orthogonal unitary vector to
the Tangent Plane (OTP) will be used as an approximation of the normal at
such point. In the second stage the orientation of the OTP, spatially coherent,
is computed.

Given a point set P = {p1, . . . , pN} and let be Vi the set of k nearest neighbors
(neighborhood) of the point pi. Then the TP at pi is obtained by fitting a plane
to the points in Vi by using a least-squares procedure, then the surface–normal,
ni, is the normal to the TP. Hoppe et al. [1] proposed to compute, ni, as the
third eigenvector (associated with the smallest eigenvalue) of the local covariance
matrix:

Ci =
∑

j∈Vi

(pj − ci) ⊗ (pj − ci) (1)

where ⊗ denotes the outer product vector operator1. If λ1
i ≥ λ2

i ≥ λ3
i are the

eigenvalues of Ci, their associated eigenvectors v1
i , v

2
i , v

3
i , respectively, form an

orthonormal basis. Then ni is either v3
i or −v3

i . The neighborhood size is chosen
manually based on visual inspection of the resulting normals and it is the same
for each point in the set.

The Oriented OTP (OOTP) is computed such that nearby planes are consis-
tently oriented. The NE–Hoppe algorithm, proposed in [1], considered the state
of the art, is following described. First, an Euclidean Minimum Spanning Tree
is created over the TP centers {c1, . . . , cn} and it is enriched adding the edge
< i, j > if either ci ∈ Vj , or cj ∈ Vi. Then the edge cost is equaled to 1−|ni ·nj |.
1 If v and u have components vi and uj respectively, then the matrix v ⊗ u has uivj

as its ij-th entry.
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Next, the Minimum Spanning Tree of this graph is computed. The OTP whose
TP center has the largest z coordinate is forced to point towards +z axis. Root-
ing the tree at this node, then the tree is traversed in depth first order, if during
traversal the current node i has been assigned the orientation ni and the node
j is the next node to be visited, then nj is replaced with −nj if ni · nj < 0.

Pauly et al. [5] noticed that nearby points in the neighborhood of a point
pi should have a stronger influence than distant points. Therefore, they assign
different weights to elements in the neighborhood by depending on their distance
to pi. The weighting function is proposed to be the Gaussian: w(pj − pi) =
exp(−‖pj − pi‖2/(2σ2)), where σ is chosen as one third of the square distance
between pi and its farthest neighbor: σ2 = (1/6)maxpj∈Vi ‖pj − pi‖2.

Although the previous algorithms [1,5] work well in the presence of smooth
regions and moderate noise, they perform poorly in those regions near corners
or edges. If the neighborhood at each of the points has a fixed size and it is
constructed using only the Euclidean distance then it is possible that points
considered as outliers for a certain region be used in the computation of the
normal. Hence, it is important to develop a new robust strategy that estimate
the local surface–normal by discarding neighbor points that lay beyond of a
surface edge or a corner. Figure 1 shows the normal estimation by different
approaches for a step function in two dimensions. Figure 1(a) shows the ground
truth and Fig. 1(b) shows the computed normals using neighborhoods based
only in a proximity measure, note the effect in corners of the step function. On
the other hand, Fig. 1(c) shows the results applying our approach (that will be
introduced in next section).
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Fig. 1. Normal estimation comparison in two dimensions for a step function. (a)
Ground Truth, (b) NE–Hoppe algorithm and (c) NENR algorithm.

4 Normal Estimation with Neighborhood Reorganization
(NENR)

The normal estimation using the OOTP is equivalent to apply a low-pass band
filter to the point cloud, so the resulting normal, will have a smoothness degree
which is proportional to the neighborhood size. If OOTP is used, one is implicitly
assumed that the neighborhood around each point may be modelled by simple
plane. Such assumption is incorrect at points close to edges or corners. An al-
ternative approach could be to weight each point in the neighborhood; however
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the underlying representation of each neighborhood still it is a unique plane. A
more appropriated model is to assume a plane–piecewise model. Half-quadratic
regularization (HQR) is an edge-preserving regularization technique for restor-
ing piecewise smooth signals [14,15,16,17]; the general HQR energy function is
given by

U(h, l) =
∑

i∈Ω

[
(hi − gi)

2 + α‖∇hi‖2 (1 − li)
2 + αβl2i

]
; (2)

where g is a given signal, h is the filtering signal with edge-preserving and α,
β are parameters which control the signal smoothness. li acts as an indicator
variable which disconnects the ∇hi terms with a huge contribution to the general
cost function. This technique is also applied by Calderon in [18,19], for Image
Registration.

In case of a piecewise constant surface, for a given neighborhood, we ap-
proximate this surface by TPs and it is desirable to get out points of the cloud
belonging to different TPs. So a new neighborhood is computed considering only
the nearest neighbors who belong to the same TP. Figure 2(a) shows the stan-
dard plane estimation, for the case of three points on a corner, and Fig. 2(b)
shows the plane estimation when a point is rejected, a desirable condition in
those cases. We propose a HQR cost function for this purpose and the indicator
variable in our case, is used as non-membership term, lij = 1 means that the
j − th point, in the original neighborhood, it is not in the same TP that i − th
point. The OOTP smoothness is controlled with the parameters α and β. We
proposed to compute the surface-normal as the minimization of a constrained
HRQ cost function. The additional constraint imposes a unitary norm to the flat
piecewise normal vector mi:

U(m, l) =
∑

i∈Ω

⎧
⎨

⎩‖mi − ni‖2 + α
∑

j∈Vi

[
‖mi − mj‖2 (1 − lij)2 + βl2ij

]
⎫
⎬

⎭ , (3)

s.t. ‖mi‖ = 1, ∀i ∈ Ω;

where ni is the normal vector computed with the NE–Hoppe algorithm described
in Sect. 3 for some neighborhood size. Then by using the Lagrange multipliers,
γ, we include the constraint in the Lagrangian:

L (m, l, γ) = U(m, l) −
∑

i∈Ω

γi

(
3∑

d=1

m2
i,d − 1

)
(4)

Then the solution is computed solving the Karush-Khun-Tucker conditions:

∇mL (m, l, γ) = 0, (5)
∇lL (m, l, γ) = 0, (6)

‖mi‖ = 1; (7)

where ∇x denotes the partial gradient operator. We propose to use the Gauss-
Seidel algorithm, for solving this system of equation, due the fact that the system
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of equation has a banded, diagonally dominant and semi-positive defined matrix,
so the t-th Gauss-Seidel Iteration is given by the equations (8, 9 and 10):

m̂
(t)
i,d =

m
(t)
i,d√

∑
k

(
m

(t)
i,d

)2
∀i ∈ Ω, (8)

l
(t)
ij =

∥∥∥m̂
(t)
i − m̂

(t)
j

∥∥∥
2

β +
∥∥∥m̂

(t)
i − m̂

(t)
j

∥∥∥
2 ∀ < i, j >∈ Ω2, (9)

m
(t+1)
i,d =

ni,d + α
∑

j∈Vi
m̂

(t)
j,d

(
1 − l

(t)
ij

)2

1 + γi + α
∑

j∈Vi

(
1 − l

(t)
ij

)2 . (10)
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Fig. 2. Different plane estimations using three points on a corner. (a) Plane over the
three points and (b) plane over points pi and ph when pj is not included.

The restriction for the equation (3) is fulfill at each iteration according with
equation (8), so the Lagrange multiplier γ can take any value, because their
contribution to the constrained HRQ cost function will be zero at each iteration,
for simplicity we put γi = 0 in equation (10).
The NENR algorithm is resumed in the next steps:

1. Compute the OOTP ni for some neighborhood with size k
2. Compute the reorganized neighborhood and the filter normal mi doing

– (a) Set m
(0)
i = ni and t = 0

(b) Normalize the vectors m
(t)
i applying (8)

(c) Compute the memberships l
(t)
ij using (9)

(d) Update the normal vectors m
(t+1)
i applying (10)

(e) Set t ← t + 1
(f) Repeat steps (b-e) until

∥∥∥m
(t+1)
i − m

(t)
i

∥∥∥ < ε
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3. Finally compute the robust OTP with the weighted covariance matrix:

Ci =
∑

j∈Vi

(
1 − l∗ij

)
[(pj − c∗i ) ⊗ (pj − c∗i )] (11)

with

c∗i =

∑
j∈Vi

(
1 − l∗ij

)
pj∑

j∈Vi

(
1 − l∗ij

) (12)

using the finals (optimum) memberships l∗ij , then compute the OOTP as was
described in Sect. 3.

5 Experimental Results

We perform experiments in both synthetic and real data, for comparing NE–
Hoppe and NENR algorithms. The synthetic data corresponds to a step function
and a 3D model with a ground truth while the real data corresponds to 3D models
widely used in the literature. All the 3D models were reconstructed using the
Ohtake’s MPUI implementation available at [20].

The results for the step function in two dimensions are presented in Fig. 1.
The normal vectors in Fig. 1(a) were assigned manually according with the step
function and the normal field estimated by NE–Hoppe and NENR are shown
in Figs. 1(b) and 1(c), respectively. The neighborhood sizes for both algorithms
were k = 2 and the NENR parameters were α = 50000 and β = 0.001. Note the
similarity between the NENR (Fig. 1(c)) and the original normals (Fig. 1(a))
also note the problem presented by NE–Hoppe algorithm in corners of the step
function.

For the synthetic 3D model, the normals have been assigned manually accord-
ing to the characteristics of the surface object and its surface reconstruction is
shown in Fig. 3(a). The resulting surface is used as a reference for a qualitative
comparison. The MPUI parameters in this case were a grid size of 0.005, and
a max error of 0.005 at each cell. For the rest of the parameters we took the
default configuration of Ohtake’s MPUI implementation. The neighborhood size
was taken equal to 15 for both normal estimation algorithms. Additionally, for
the NERN algorithm, we took α = 1000 and β = 0.01. The surface reconstructed
using the NE–Hoppe is presented in Fig. 3(b). Note that the edges of the re-
constructed surface are over–smoothed as a direct consequence of bad normal
estimation near these regions. Finally, Fig. 3(c) shows the surface reconstructed
using the NENR algorithm. We must notice that NENR algorithm increases the
quality of the reconstruction, shown sharped geometric edges without affecting
the smooth areas, as you can see comparing Figs. 3(b) and 3(c).

For a quantitative comparison between NERN and NE-Hoppe algorithms, we
compute the angle between the ground truth surfaces normals and the estimated
normals using both algorithms. The mean angle and standard deviation are
shown in Table 1 for the step function (Fig. 1) and the synthetic 3D model
(Fig. 3). Note the better results for the normal estimation using NERN than
NE-Hoppe in both cases.
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(a) Ground Truth (b) NE–Hoppe (c) NENR

Fig. 3. Surface reconstruction using MPUI and different Surface–Normal Estimations

Table 1. Normal estimation angle between ground truth normals and the estimated
normals of both methods

Algorithm
Step Function Synthetic Model

Mean Angle Std. Deviation Mean Angle Std. Deviation
NE-Hoppe 5.7169◦ 15.2029◦ 7.5544◦ 13.5544◦

NERN 0.1764◦ 0.1852◦ 0.9973◦ 2.0968◦

(a) Bunny (b) Golf club

Fig. 4. Surface reconstruction using MPUI and NENR for real models

Figures 4(a) and 4(b) show reconstructions, using the MPUI method with
NENR–computed normal, from a couple of real 3D models widely used in the
literature. The MPUI parameters for both models were, a grid size of 0.004, and
a max error of 0.002 at each cell. The rest of the parameters took the default
values setting by the Ohtake’s MPUI implementation. For the bunny model the
NERN parameters were k = 15, α = 100, β = 0.01 and in the case of the golf
club model were k = 12, α = 1000, β = 0.01.
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6 Conclusions

In general, the normal estimation algorithms based on the covariance matrix
as NE–Hoppe approximate a neighborhood by a unique plane independently of
its local shape. Some algorithms, in order to improve the approximation by a
unique plane, reduce the neighborhood size or weight the covariance matrix,
nevertheless the approximation continues to be a unique plane.

The NENR algorithm produces a reduction in the neighborhood size, rejecting
the neighbors that have large differences. This condition warranties that the
neighbors have the same smoothness degree between them. The NERN algorithm
was tested using synthetic examples building with shape discontinuities. The
experiments presented better quantitative and qualitative results using NENR
than NE–Hoppe.

In cases of real models, a couple of experiments were done and the results were
very similar for both algorithm, therefore, using NENR in real smooth models
does not represent a lost in quality for surface reconstruction. In general, NENR
produces a better normal estimation than NE–Hoppe, in places located near
to edges, corners and geometric discontinuities. The NERN algorithm does not
have troubles with smooth regions or smooth models.
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