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Abstract. In this work we present an application of nonlinear dimen-
sionality reduction techniques for video analysis. We review several meth-
ods for dimensionality reduction and then concentrate on the study of
Diffusion Maps. First we show how diffusion maps can be applied to
video analysis. For that end we study how to select the values of the pa-
rameters involved. This is crucial as a bad parameter selection produces
misleading results. Using color histograms as features we present several
results on how to use diffusion maps for video analysis.
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1 Introduction

Most of the available techniques for video analysis begin reducing the amount of
information via feature extraction. Usually this means a strong reduction in the
amount of data contained in a video sequence. Recently, due to the increase of
memory and processing power in actual computers, some algorithms for video
analysis are based on a more detailed description of the video using a big number
of features [7U10]. Some of these methods can be rooted to image analysis method
that use all the pixels and visualize the image as a point in a high dimensional
space [7]. Other methods for video analysis recently proposed in the literature
use pixel-wise histograms to describe video segments [6]. These methods keep a
lot of information from the beginning of the processing. Although, it has been
shown that this is beneficial, novel methods for high dimensional data analysis
must be developed.

Although the idea of high dimensional data analysis is not new, recently sev-
eral authors presented new results in this direction. One of the main problems in
the context of high dimensional data analysis is dimensionality reduction. The
two main goals of this step are: visualization and extraction of smaller set of
meaningful and useful coordinates. In what follows we present a brief overview
of existing methods for dimensionality reduction.

The most popular method for dimensionality reduction is Principal Compo-
nent Analysis (PCA). PCA finds the basis of a projection space (of smaller
dimension) minimizing the square reconstruction error. It is well known that the
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subspace which produces the minimum reconstruction error is the subspace with
maximum variance. Therefore, this method intends to preserve the covariance
structure [9]. PCA has two advantages. First, the projection is performed with
a linear transformation which is extremely easy to apply. Second, any new vec-
tor can be easily projected. Unfortunately, not all spaces are linear and a linear
combination of basis vectors will not produce good results. In the same category
we can find Independent Component Analysis (ICA) which also uses a linear
projection and Multi Dimensional Scaling [9].

The main drawback of the previous methods is that they are not capable of
dealing with nonlinear spaced]. For this reason, recently several authors pre-
sented nonlinear methods for dimensionality reduction. Some of them are graph
based methods. Basically, the idea is to discover the underlying structure of the
data constructing a graph which joins data points with a given criteria. ISOMAP
[11] is one example of these techniques. Other methods such as Locally Linear
Embedding (LLE) [8], Laplacian and Hessian Eigenmaps [II3], and others [5]
minimize the reconstruction error using a local linear expansion. That is, each
sample is linearly reconstructed using nearby samples. In this way this method
overcomes the linear limitation. Diffusion Maps [5l2] provide a unified vision of
previous spectral methods in a unified framework. Also, this method includes a
natural notion of scale and distance. In next section we review diffusion maps.
The weakness of these methods is that is difficult to project a new sample in the
obtained projected space. The embedding is given by the data and there is no
general method to obtain the projection. In [4] the authors propose a solution
to solve the extension to new data points.

Before concluding this section we review some works that apply nonlinear
dimensionality reduction for video analysis. In [7] Pless uses Isomap to explore
video sequences. The results are for simple sequences. The work is similar to
ours but it does not include the notion of scale given by diffusion maps. We
also present results with general sequences with transitions. In [I0] uses LLE to
discover periodicity in video sequences.

The outline of the paper is the following. In next section we present a detailed
review of diffusion maps. In section [3] we analyze how to select the appropriate
diffusion map parameter values. Then, in section [4] we present several examples
of diffusion maps applied to video analysis. Finally in section [l we discuss our
results and present our main conclusions

2 Review of Diffusion Maps

In this section we review Diffusion Maps (DM) following [5]. Let 2 = {z1, ...,z }
be a set of data points of dimension N and d(z;,x;) a distance between data
points. The idea behind DM is to construct a graph with each data point z;
being a vertex and w(x;, x;) a weight function between vertices. In what follows
we restrict ourselves to w(w;, z;) = exp(dn(z;, x;)?)/0?). This graph intends to
reflect the knowledge of the local geometry of 2. Once we have the definition of

! There are some extensions of PCA and other methods to deal with this problem.
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the graph a Markov random walk can be defined over it. If d(z) = Y, w(z, 2)

is the degree of node z the quantity py(z,y) = “’d(a’i’) can be interpreted as the

probability of transition from x to y. The 1 means that this transition is made
in one step and therefore reflects first order information of the graph structure.
Let the matrix P be the one with entries p1(x,y). Considering powers, P?, infor-
mation over larger neighborhoods can be captured. In this way p;(z,y) means
the probability of transition form x to y in ¢ steps. As ¢ increases P! captures
more global information and this enables us to view ¢ as a scale parameter.

If the graph is connected it can be shown that: lim; .. pi(x,y) = ¢o(y) =

5 d(j)d(z) where ¢g(x) is the stationary distribution. Based on the above elements
z€

the distance between points in {2 can be computed as the distance between its
corresponding distributions p;. Thus, the diffusion distance, D¢(x,y) is defined
as:

2 T _ T _ 2 _ (pt(a;,z) _pt(yvz))Q
Di(z,y) = llpe(z,.) = pe(y, Il /g, z;} b(2) :

Observe that the distance includes the normalization by ¢o(z) which is used to
decrease the influence of points with small densities. The main result for diffusion
distance is the following. The diffusion distance can be expressed as:

n—1
D (w,y) = Y A (thi(w) —hi(y))?, (1)
i=1

where \; and 1; are the eigenvalues and eigenvectors of P (P; = \jt;). It can
be shown that 1 = |[Ag| > |A1| > ... > |\,—1] and ¢y = 1. Due to the ordering
of eigenvalues the diffusion distance can be approximated taking only the first
coordinates. The number of retained terms depends on the desired precision and
on t. The diffusion map is defined as:

@, = (M (@), Xtoa (), My oaro () (2)

where M (t) is the number of retained terms. The mapping projects the graph
information to a lower dimensional space.

3 Application of Diffusion Maps

DM not only project the data points to a lower dimensional space, but also
provide a notion on scale ¢ and precision M (t). This means that we obtain a
lower set of coordinates with an associated significance score. In this section we
show how to use these ideas for video analysis.

First we must discuss the representation of each image in the video sequence
and the associated distance, dg,. In this work we will use a representation based
on histograms?. We describe each frame with its histogram h;(g). For color

2 We are currently investigating a representation based on pixels.
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frames we will take =; = {hF(q), h{(q), 2 (q)} a concatenation of the histograms
of each color channel. The distance in the original space ,dgo(x;, z;), will be the
Lo distancdd. In following paragraphs we address the specification of the DM
parameters: o and M (t).

How can we select o? The value of o must be carefully selected since it deter-
mines the final graph and P. This parameter affects the weights, w(z,y), and
with them the connection between nodes. If o is set too big it may cause the
graph to be fully connected while a too small value may produce a completely
disconnected one. At the end of the day its value is reflected in the graph topol-
ogy which is in turn what we expect to obtain as a natural description of the
data.

To set the value of o we assume that each point (frame), z;, must be connected
with at least two other points (typically nearby frames). We set the minimum
weight for farthest points with distance d;,q, as 6 so:

o= dmax
V1og(1/6)

In all the experiments we use 6 = 0.1.

How can we decide the value of M(t)? It is clear form equation ()
that M (t) determines the precision of the distance approximation. Since are
ordered and less or equal than one, we know that to achieve a certain level
of approximation we must retain the first coordinates. From equation () we
conclude that the diffusion map gives a parametrization of the data in a lower
dimensional space. Furthermore, the scale of the dimensionality reduction is
given by ¢ and the decay of the eigenvalues.

How many data points are needed? In the case of video we may en-
counter restrictions on the amount of data points available with respect to the
dimensionality of the feature space. On one hand DM are insensitive to points
density and therefore permit to recover intrinsic data properties [4]. On the other
hand, they are more resilient to the number of samples comparing with other
existing methods such as [§]. We will confirm this in the experiments where we
have in some cases more features than samples. We will have three histograms
with 256 bins producing a feature vector of dimension 768 while some of the
video sequences have around 300 frames.

Do we need to include temporal information? Traditionally, video anal-
ysis is strongly linked to temporal relations. In fact, most of existing methods
study the distance between frames at different timedd. This turns to produce an
aperture problem since we observe the data across a given temporal window.
Diffusion Maps, and other of the methods reviewed above, enable us to link
frames without taking into account small temporal windows. At the end of the
day, the method discovers the relevant coordinates within the data and sorts
them according to its relevance. This interesting feature comes with the expense

3 Other distance can be used.
4 Shot detection is a classical example.
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of bigger data sets. In the experiments we will show that there is no need to
explicitly include temporal information.

4 Experiments

In this section we present a set of experiments of video analysis using the ideas
discussed in previous sections. In the two first experiments we show the results
for video sequences which contain a smooth transition. Later we will show some
results on abrupt changes which are easier to detect.

In the first experiment, see Figure[I]we processed a sequence with a wipe which
starts at frame 120 and ends at frame 165. If we observe the first coordinate of
the diffusion map at Figure [Il we can see that it correctly detects this smooth
transition. From frames 1 to 119 and from frames 166 to 259 this coordinates
has little variation. This means that when looking a coarse description these two
sets are disjoint. Between frames 120 and 165 we observe a gradual transition
between both sets. Therefore, in this case the first coordinate correctly captures
the essence of the video sequence. If we observe the remaining coordinates up
to the fourth one, we confirm that in finer scales this transition can also be
detected. In Figure [[}(b) we depict the video trajectory along the first three

Fig. 1. (a) First coordinate showing clearly showing the structure of the sequence. (b)
Video trajectory in the first three coordinates. As we can see the beginning and end
of the sequence produces two clusters while the wipe-transition produces a trajectory

between them. (c) Remaining coordinates.
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Fig. 2. (a) Features along frames, Distance Matrix and Weight Matrix for sequence in
Figure [l (b) The same for sequence in Figure Bl Observe the video structure.

coordinates. As we can see, there is a transition which expands form frames 120
to 165. To complete the information for this sequence we show the histograms
evolution along frames, the Distance and Weight matrices (see Figure [2)).

The second experiment presents the results for a dissolve transition. These
are the most difficult transitions to detect. As we can see in Figure[3 in this case
we can successfully detect the transition. The dissolve starts at frame 115 and
ends in frame 145. It is interesting to note the stability of the first coordinate
at the beginning and end of the sequences. This shows that the first coordinates
classifies, at coarse level, all these frames in the same cluster. This behavior is
repeated in the other coordinates. Obviously, as we increase the coordinate num-
ber, its corresponding eigenvalues decreases and with it its importance. Finally
we note a peak in coordinate ¥y at frame 31. This is due to an error on the video
as can be seen in Figure Bl(b). Therefore, at finer scales we are able to detect
such small discrepancies between frames. As we did in the first experiment we
show other complementary information in Figure

For our third experiment we used sequence with 1561 frames and mainly
abrupt transitions. Observing Figure @l we see that once again the first compo-
nents successfully summarize the characteristic of the sequence. If we look at
finer scale, in coordinates ¥g to W1, we can see a gradual changes within a shot
obtained at coarser scales. This gradual changes are caused by a panning (see
7,0 in Figure @).

To further evaluate the power of discrimination of the method we tested the
algorithm with a small sequence with only smooth transitions. In this case, the
first coordinate clearly detects a shot from frames 175 to 200, however, it is
difficult to declare other shots while looking only the first coordinate. On the
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Fig. 3. (a) First coordinate showing clearly showing the structure of the sequence. (b)
Frame with error visible at finer scales (¢) Remaining coordinates.

other hand, if we observe ¥s we can see a block of frames from frames 45 to
125. However, there is still a big variation within this block which indicates
other cluster at finer scale. This is can be confirmed observing ¥y, W5 and ¥r.
Hence, we conclude that the method effectively detects the structure of the video
sequence. However, to do so we must observe several coordinates to discriminate
at finer scales.
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Fig.4. (a) First nine coordinates. (b) Details at finer scales showing pannings and
some detailed activity within a shot that it is not visible at coarse levels.
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Fig. 5. First nine coordinates for the fourth example

5 Discussion and Conclusions

In this work we study the application of DM to video analysis. We showed
how this method can be successfully applied. We presented estimations for the
method parameters and confirmed this in the experiments. We showed how the
coordinates obtained compress the information of the sequence structure in few
coordinates. Although in several cases the information is compressed in the first
few components, this depends on the sequences, and in some cases we will need
to explore finer scales. This was confirmed with our last experiments. Therefore,
although this are mainly preliminary results, they are very promising. We are
currently testing other descriptions and a more exhaustive evaluation of the
results and their comparison against other methods.
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