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Abstract. Deformation morphometry provides a sensitive approach to
detecting and mapping subtle volume changes in the brain. Population
based analyses of this data have been used successfully to detect charac-
teristic changes in different neurodegenerative conditions. However, most
studies have been limited to statistical mapping of the scalar volume
change at each point in the brain, by evaluating the determinant of the
Jacobian of the deformation field. In this paper we describe an approach
to spatial normalisation and analysis of the full deformation tensor. The
approach employs a spatial relocation and reorientation of tensors of each
subject. Using the assumption of small changes, we use a linear model-
ing of effects of clinical variables on each deformation tensor component
across a population. We illustrate the use of this approach by examining
the pattern of significance and orientation of the volume change effects
in recovery from alcohol abuse. Results show new local structure which
was not apparent in the analysis of scalar volume changes.

1 Introduction

Repeated structural magnetic resonance imaging (MRI) of the brain [1], when
combined with image analysis tools, is an increasingly useful tool in the study
of neurodegenerative conditions [2,3,4,5,6,7,8,17]. In particular, non-rigid regis-
tration based methods have been developed to map subtle geometric changes
in brain anatomy, and separate true volume changes from local tissue displace-
ments [17]. This is important in both brain development and degeneration where
volume change is a key physical property of interest, whereas displacements of
tissue may only be a secondary surrogate marker of tissue integrity change and
collapse. In this paper we are interested in studying common patterns of volume
change across a population by using accurate spatial normalisation to bring indi-
vidual volume change maps into a common space. Previous studies have focused
on examining the determinant of the deformation tensor at each point, which
provides a scalar measure summarizing change. Such scalar data can be evalu-
ated using univariate voxelwise statistical parametric mapping [10] to examine
the relationship between local atrophy rate and variables of interest (such as
diagnosis) together with other confounding variables (such as age).
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Critically, these studies cannot reveal orientation specific characteristics in
the pattern of volume changes and their relationship to clinical variables. For
example: whether contractions associated with a particular anatomical region
in a clinical condition are predominantly anterior-posterior or medial-lateral.
Such characteristics may reveal changes that are related to underlying tissue
properties, and on a more basic level, they may be important from a purely
signal detection view point. For example: in regions where volume changes at a
given point in anatomy are only well defined in one axis and are poorly defined
in other directions, the determinant of the deformation tensor may be corrupted
by the noise from the poorly defined directions. This may reduce the strength
of the statistical relationship with clinical variables of interest. Thus, looking at
modeling specific orientation components of the deformation tensor may provide
a more sensitive correlation with clinical variables of interest.

In this paper we describe the basic steps used to form a multi-variate linear
model of the elements of the deformation tensor of anatomical change, and their
relationship to clinical variables across a population of subjects. This analysis
includes the process of re-orienting each subject’s deformation change tensor
into a common space and then building a statistical model of the relationship
between clinical variables and the elements of the deformation tensor matrix at
each voxel.

2 Method

2.1 The Deformation Tensor of Anatomical Change

Given a pair of images of a subject n, using a fluid registration algorithm, we can
estimate a transformation TΔn(xn) = x + u(xn) that captures the anatomical
changes from the earlier to the later time point. The volume changes at a given
location can then be characterized by the deformation tensor [11,12,13]:

JΔn(xn = [xn, yn, zn]T ) =
[
∂TΔn(xn)
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where the transformed coordinates at the second time point are:

xΔn = [xΔn, yΔn, zΔn]T = TΔn(xn). (2)

This Jacobian can be normalised by the scan interval 1
Δtscan

to give the rate
of deformation over time in studies where the interval varies between subjects.
For a population of subjects, we can also estimate a transformation TRn(xR)
which maps from a location xR in a reference anatomy to the first time point
for each subject, as illustrated in figure 1. To analyze the deformation tensor
matrix (1) describing the change in individual subjects in a common reference
coordinate system, we need to both spatially relocate and reorient JΔn(xn) into
the reference coordinate system. Reorientation of the tensor from a locally affine
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Fig. 1. Using non-rigid registration to capture local shape differences between subjects
from the transformations TRn. To examine common patterns across subjects, maps of
shape measures derived from these transformations may be transformed and compared
in the common anatomical space.

transformation is achieved by using information provided by the deformation
tensor of the spatially normalizing transformation, TRn, denoted by JRn(xR) =[

∂TRn(xr)
∂xr

]
. We can follow a similar approach to the analysis of diffusion tensor

image data [14] and apply a normalisation transformation matrix S to the subject
change tensor JΔn(xn):

JΔn(xn)′ = SJΔn(xn)ST (3)

The required form of this normalisation transformation is influenced by our
interests in analyzing the pointwise volume change rate across subjects. If S is
a full affine transformation, then it will account for changes in the relative size
and shape of this element of anatomy when mapping from reference to subject
space. Thus, for a subject with a temporal lobe which is twice a big as another
subject, their atrophy rate will be increased by a factor of two when mapping the
change deformations into the reference space. Here we are interested only in the
pointwise rate of change of a given tissue. i.e. we are investigating the equivalent
rate of expansion of a tissue element at xR across different subjects. We thus use
the rigid components of the local deformation given by the decomposition [15]:

R = (JRnJT
Rn)−1/2JRn (4)

This locally describes the reorientation of an element of tissue from the refer-
ence coordinates to the subject coordinates, without changing its local shape or
size. To bring the subject change tensor back into the coordinate system of the
reference anatomy we therefore set S(xR) = R(xR)−1 and apply equation (3).



314 C. Studholme and V. Cardenas

In terms of common reference anatomy coordinates xR, the deformation matrix
JΔn for subject n, in reference coordinates is then:

JΔn(xR)′ = SJΔn(TRn(xR))ST (5)

2.2 Modeling of Differences in the Deformation Tensor Components

After spatial normalisation, we have a set of maps of deformation tensor matrices,
the elements of which describe the rates of contraction or expansion of points of
tissue in each of the three axes with respect to the three axes in the reference
anatomy. We want to examine whether there is a relationship between one or
more of these directions of volume change and variables of interest related to
each subject (such as age or clinical criteria). This can be explored using a
multivariate general linear model such that at a given voxel:

Y(xR) = XB(xR) + U(xR), (6)

where Y(xR) are the deformation parameters at each voxel, XR are the clin-
ical variables associated with each subject, B(xR) are the parameters to be
estimated, determining the strength of the linear relationships, and U are the
errors. Here, in general, there are n subjects, 9 deformation variables at each
voxel (the elements of the 3x3 deformation tensor) and p numbers of parameters
to estimate. We form matrix Y from the elements of the spatially normalized
Jacobian matrix, from each subject. The right hand side of the equation is con-
ventionally divided into the variable of interest and the p′ = p − 1 confounding
variables such that:

Y(xR) = X1B1(xR)+ X2B2(xR)+ U(xR)
(7)

(n × [3 × 3]) (n × 1)(1 × [3 × 3]) (n × p′)(p′ × [3 × 3]) (n × [3 × 3])

Standard linear least squares methods are used to solve for B(xR) of the full
model and B2xR of the reduced model. Statistical inference on B is obtained
by computing the Wilks Λ test statistic, where Λ is the determinant of the error
sum of squares and products of the full model divided by determinant of the
error sum of squares and products of the reduced model [13]. Significance and
p-values are based on transforming Λ to an approximate F statistics using Rao’s
approximation [16].

The final estimated model B for each voxel consists of matrix for each model
parameter (age, grouping and offset). Each of these matrices holds the estimate
of the increase or decrease of the rate of contraction or expansion, in elements
of (1) associated with a subject variable X.

2.3 Implementation and Reduction of Spatial Normalisation
Variance

For this work we have used a robust fluid based non rigid registration to map
changes over time in each subject dataset [17]. The derivatives of this deformation
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field were then evaluated using finite differences in the coordinate system of each
subject’s first time point. We then employed a fine scale B-Spline based spatial
normalisation [18] regularized to prevent folding, to estimate a mapping between
a single subject reference brain and the first time point scans of each individual.
This deformation field, parameterized using a 1.8mm regular B-Spline lattice,
was converted to a voxel displacement field and local derivatives of this were
then evaluated using finite differences. One of the key factors in the population
based analysis is the spatial normalisation step. The transformation between
subject anatomies for spatial normalisation can be ill defined in many regions.
Critically, in regions of uniform tissue (for example in uniform white matter), the
local orientation may be poorly defined. In our orientation based analysis this
can introduce significant unwanted variance into the serial deformation tensor
morphometry data (derived from within subject registration). We have therefore
used a pre-filtering step on the deformation field, using a Gaussian kernel applied
to the three directional components just prior to calculation of the derviatives
used to form JRn. (we note that this does not influence the spatial location since
that uses the unfiltered deformation field). In this initial work we choose a filter
size experimentally to reduce orientation variance and improve the final quality
of the fitting.

2.4 Application to the Study of Recovery from Alcoholism

We applied the analysis to a study of brain volume changes in alcohol abuse
and recovery. The data consisted of 24 pairs of high resolution T1W MPRAGE
MRI scans of a group of subjects recovering from alcohol abuse, imaged using
a 1.5T MRI scanner. The subjects were imaged twice, approximately 8 months
apart. The baseline study was conducted within a week of entering treatment
for alcoholism. The 24 subjects were divided into 16 consistent abstainers (188±
66 days since last drink), and 8 relapsers (8 ± 6) days since last drink) who
failed to abstain from alcohol. Collectively they had a mean age of 48 years.
We analyzed the data using deformation tensor morphometry and formed a
voxelwise multivariate analysis with the grouping as the variable of interest, and
age as a covariate.

3 Results

Figure 2 shows a comparison of F statistic maps of the relationship between
the grouping (abstainer vs relapser) to the deformation parameters: using the
Jacobian determinant (scalar) and the full deformation tensor. Larger areas of
improved model fitting are shown for the model containing directional informa-
tion. Figure 3 shows the corresponding maps of the estimated group effect for the
scalar determinant model and the direction effects. For the directional effects,
differing directional patterns of volume change are revealed in the deeper white
matter and sub-cortical grey matter structures.
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Fig. 2. A comparison of the voxel F statistics showing the local quality of fits for
conventional analyses using the scalar Jacobian determinant (bottom row) and the
individual Jacobian matrix elements (top row)

4 Discussion

We have described an approach to population based analysis of directional infor-
mation in deformation tensor morphometry data from multi-subject serial MRI
studies. The approach takes into account the reorientation of deformation ten-
sors evaluated in subject coordinates and maps them into a common space for
analysis. We then employ a multi-variate linear model to examine relationships
between clinical variables and directional volume changes. One step in this pro-
cess is to transform deformation tensors to a common coordinate system. We use
approaches derived from the transformation and analysis of diffusion tensor data.
An alternative for this step is to examine the transformation of the underlying de-
formation fields as in [19]. However we have focussed on the deformation tensor
because of the underlying interest in volume changes, rather than displacements.

By using directional information about the volume changes over time, we may
reveal additional relationships with underlying tissue properties, and addition-
ally provide an improved model fitting in regions of anatomy for which volume
changes are poorly constrained, because of anatomical structure, in one or more
axes. Preliminary results on an imaging study of brain changes in recovering
alcoholics show both improved significance of model fits and the ability to reveal
hidden directional characteristics in the volume changes over time. It is also not
clear for which clinical applications this methodology will be most useful: it will
certainly depend on the disease being studied and how it influences brain tissue.
Our aim in this paper is simply to present the methodology. Further work is
underway to examine how these directional patterns relate to the shape of re-
gional brain anatomy and to any underlying tissue properties.
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Fig. 3. (a) A comparison of the effect maps for the difference between groups (abstain-
ers vs relapsers) for the scalar volume change maps (bottom) and the directional models
(top). Directional effects are shown by three effect vectors whose length indicates the
relative size of the effect and the colour indicates direction of effect. Enlargements of
an area are shown for one slice in (b) and (c).
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