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Abstract. Motivated by the current limitations of automated quantitative image 
analysis in discriminating among intracellular immunohistochemical (IHC) 
staining patterns, this paper presents a two-fold approach for IHC 
characterization that utilizes both the protein stain information and the 
surrounding tissue architecture. Through the use of a color unmixing algorithm,  
stained tissue sections are automatically decomposed into the IHC stain, which 
visualizes the target protein, and the counterstain which provides an objective 
indication of the underlying histologic architecture. Feature measures are 
subsequently extracted from both staining planes. In order to characterize the 
IHC expression pattern, this approach exploits the use of a non-traditional 
feature based on textons. Novel biologically motivated filter banks are 
introduced in order to derive texture signatures for different IHC staining 
patterns. Systematic experiments using this approach were used to classify 
breast cancer tissue microarrays which had been previously prepared using 
immuno-targeted nuclear, cytoplasmic, and membrane stains.   

Keywords: Quantitative IHC analysis, texture descriptors, expression 
signatures, automated classification, breast cancer. 

1   Introduction 

The capacity to quantify and characterize protein expression reliably is central to 
several key areas of investigative cancer research and discovery. Biomarkers can 
provide tremendous insight into the underlying mechanisms of disease progression 
and can have significant impact with regard to patient prognosis, treatment, and 
therapy planning.  For instance, the presence of biomarkers such as the Her-2/neu 
(also called ErbB2) receptor in breast cancer indicates that a given patient may 
respond to treatment with Trastuzumab. Immunohistochemistry (IHC) is used to 
visualize these proteins by labeling them with a stain, such as diaminobenzidine 
(DAB). However, manual scoring of IHC stained pathology suffers from several 
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drawbacks. The most striking limitations include the inability to reproduce results, 
subjectivity of analyis, and intra- and inter-observer variability.  

It has already been reported in the literature that quantitative IHC image analysis 
provides more consistent scoring than traditional manual scoring[1, 2] and better 
concordance with existing gold standards e.g. fluorescence in situ hybridization 
(FISH)[3, 4].  However, discrepancies between IHC scoring and actual clinical 
outcomes often arise  irrespective of the means by which analysis is performed i.e. by 
eye or computer-assisted [3-5].  To address these ambiguities, this paper proposes a 
fresh approach for characterizing in-situ protein expression by utilizing  texture-based 
feature metrics.  

 

Fig. 1. Images taken at 20x resolution for breast tissue TMA cores stained with DAB (brown 
regions) and counter stained with hematoxylin (blue regions). Inserts (upper left) show 
representative regions of staining from each of these cores at high resolution. Note that ER and 
PR are generally nuclear proteins, keratin is generally found in the cytoplasm, and Her-2/neu is 
active in disease processes when concentrated on the cytoplasmic membrane. 

 
Constructing a model for quantifying in-situ protein expression required a close 

examination of the design specifications for our experiments. The first criteria was 
that the proposed model would reliably and reproducibly capture and quantify the 
underlying staining characteristics of the protein. Second, in order to be clinically 
meaningful, a means for detecting and objectively representing the contextual cellular 
and tissue-level architecture would need to be incorporated into the model since many 
proteins are only considered active or clinically relevant when they are localized in 
specific  subcellular compartments[4, 6, 7]. Using these criteria we have developed a 
model that uses the texton signatures of the immunstains to characterize the protein 
expression pattern, and histological features to determine intracellular localization of 
target proteins. This information provides important insight into the in-vivo status of 
these proteins in tumors, such as indicating whether they are being overexpressed and 
specifying their functional location.   

In this paper, we report the design, development, and evaluation of  a two-fold 
model for IHC characterization that utilizes both the information provided by the 
targeted protein (visualized by the DAB stain), and the histological context 
(visualized by the hematoxylin stain). The model is evaluated on a breast cancer 
tissue microarray (TMA) stained for four proteins:  keratin (indicating regions of 
carcinoma) and three clinically used markers: estrogen receptor (ER), progesterone 
receptor (PR), and Her-2/neu.  Proficient characterization of IHC with this model is 
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demonstrated by its ability to classify ER and PR, keratin, and Her-2/neu into three 
respective classes: nuclear, cytoplasmic, and membrane staining.  Highlights of this 
paper include the use of texton-based features to characterize protein expression, the 
design and systematic investigation of a new set of filter banks, and the use of a two-
fold model which combines information derived from both protein staining pattern 
and underlying tissue architecture. Throughout the course of these experiments a 
stringent  1/2 cross-validation analysis was carried out to ensure the reliablility and 
robustness of the results. 

2   Two-Fold Modeling of In-situ Protein Expression 

The two-fold modeling approach we present (Fig. 2) utilizes color decomposition[8] 
to separate the immunostained tissue disc  into its constituent staining maps: the 
diaminobenzidine (DAB) staining plane which indicates level and distribution of the 
targeted protein, and the hematoxylin plane, which reveals cellular and tissue 
architecture.  

 

Fig. 2. The color image is decomposed into the targeted protein (DAB) and the hematoxylin 
(H) staining maps. Features are extracted from each map and combined for classification. 

 
The DAB staining map is characterized using textons, a texture feature composed 

of a vocabulary of consensus filter responses derived through cluster analysis [9, 10]. 
The vocabulary is learned directly from the image by convolving a filter bank with 
image patches from the immunohistochemically stained map and clustering the 
response vectors in order to obtain IHC (in this case, DAB) textons.  IHC textons are 
derived for each class of staining pattern and combined to form the vocabulary. An 
IHC texture histogram is derived by convolving the segmented immunohistochem-
ically stained regions with the same filter bank and matching the resulting filter 
responses to the closest IHC texton. A normalized histogram of textons detected in 
the stained area is then generated. 

In the tissue architecture map, regions corresponding to the segmented DAB stain 
are analyzed with various features such as an intensity histogram, mean, standard 
deviation, median intensity, and Haralick’s 2nd order features[11]. The intensity 
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histogram is a normalized tally of intensities (0-255) where 2 intensities are placed 
per bin for smoothness. Since the counterstain usually does not stain very strongly, 
our preliminary results show that using intensities 0 through 31 (a 16 dimensional 
vector) was sufficient to capture the discriminating information present in the 
intensity histogram. 

HDAB DDD +=  . (1) 

The DAB stain feature and the hematoxylin (H) feature distances were computed  
between training and test images and summed according to Eq.1 in order to arrive at 
the total combined feature distance, D. The χ2 distance metric was used for DDAB and 
DH . A weighted K-Nearest Neighbor classifier was implemented to perform this 
operation. 

2.1   Filter Bank Construction and Development 

A range of filter banks was systematically applied in order to derive IHC textons that 
optimize classification. Based on its superior classification performance when used to 
assess a natural image database, the first filter bank chosen was the MR8 Filter 
Bank[10]. Subsequently, a set of novel filter banks were introduced based on the 
observation that cellular features tended to be more isotropic and less like edges in 
nature: such as blob-like nuclei and circlular membranes. Adapted from the MR8 
filter bank, the first biologically based filter bank 1 (BF1) also contains isotropic 
filters developed by Schmid[12] as well as two sizes of Gaussian and Laplacian of 
Gaussian (LOG) filters. This filter bank produces an 8 dimensional response vector 
(Fig. 3).   

 

Fig. 3. The BF1 filter bank (left), includes edge filters at 2 scales and 6 rotations (σx, σy) = 
{(1,3), (2,6)}, a black and white-centered bar filter at one scale (1,3) and 6 rotations, 2 sizes of 
isotropic Gaussian and LOG at 2 scales σ = {5,10}, and 4 Schmid filters where 
(σ, τ)  = {(4,1), (4,2), (6,1), (6,2)}. In order to achieve rotational and size invariance, the six 
rotations for bar and edge filters and the two scales for the Gaussian and LOG were collapsed 
down to their maximum response, resulting in an 8 dimensional response vector.  Similarly, the 
BF2 filter bank (right) produces a 10 dimensional response vector through rotation invariance 
of the smallest BF1 bar and edge filters, but retaining responses from each isotropic filter. 

 
Similarly, the second biologically based filter bank (BF2) was derived through 

principle component analysis of a subset of IHC texton histograms generated with 
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BF1. Based on this analysis, the number of bar and edge type filters were reduced, 
while isotropic filters would retain size differences.  The result of BF2 is a 10 dimen-
sional response vector (Fig.3). The filters are L1 normalized so that outputs are of 
similar range. 

2.2   Breast TMA Data Set 

Tissue microarray datasets comprised of 186 breast carcinoma cases, with two tissue 
cores extracted from each case. Consecutive sections 34 and 35 were stained with 
anti-keratin 5/8. Sections 36, 38, 39 were stained with anti-estrogen receptor antibody, 
Her-2/neu, and progesterone receptor, respectively. These specimens were all 
counter-stained with hematoxylin. 

Images were digitized utilizing a Trestle MedMicro (Irvine, CA) automatic whole 
slide scanner system using a 40x volume scan setting. The TMA image was 
automatically registered, parsed into separate tissue cores at 20x equivalence, and 
decomposed into DAB and hematoxylin maps [8].  

In order to treat stained regions as texture, background pixels near DAB pixels 
were segmented using a stain mask derived by blurring the DAB region with an 
11x11 pixel averaging filter and applying Otsu’s method[13] for thresholding. 212 
cytoplasmic-stained images were obtained from tissues that stained specifically for 
anti-keratin 5/8 and 212 nuclear-stained images from ER and PR positive tissues. Two 
image patches (150x150 pixels) taken from twenty (~10%) randomly chosen images 
per class were dedicated to vocabulary formation, leaving 192 per class for training 
and classification. 50 Her-2/neu images with positive membrane staining were 
obtained. Similarly, 2 image patches taken from five randomly chosen images were 
used for vocabulary formation, and reused solely as training.   

3   Results 

In order to demonstrate robustness of our method, 1/2 cross-validation was used 
throughout the experiments, wherein 50% of our images from each class were used 
for training and 50% were used for testing.  Due to the relatively limited number of 
specimens from the membrane staining class (only 15-30% of breast cancer patients 
overexpress Her-2/neu[14]) two sets of experiments were carried out.  The two-class 
classification experiment contains 212 nuclear-staining images and 212 cytoplasmic-
staining images.  The three-class classification experiments used a balanced set of 
nuclear-staining, cytoplasmic-staining, and membrane-staining images of 50 each. 
Three filter banks, MR8, BF1, and BF2, were used to derive texton libraries of a 
range of sizes based on DAB information. Results are reported for performance with 
DAB information alone and in combination with hematoxylin stained tissue 
information (a 16 dimensional truncated intensity histogram). 

All three filter banks classified the two-class case with >90% accuracy (Figure 4,  
left). When using the BF1 filter bank, the texton feature from DAB stain alone 
allowed us to classify the two class case with 94% correct classification.  When tissue 
information was added to the experiment, the result modestly increased to about 96%.  
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Fig. 4. Nuclear and cytoplasmic staining were classified by DAB textons with and without the 
addition of information from hematoxylin stained tissue (H)(left).The membrane staining class 
was added in the three class experiment (right). The same legend  is used for both figures. 

 

Fig. 5. Three sets of test images (top row) from the three class experiment and their closest 
matches(bottom row). High resolution regions (upper left inserts) are shown. 

 
Figure 4 (right) shows the results from the three class (nuclear, cytoplasmic, and 

membrane staining) experiments. The results for DAB textons derived from the BF1 
filter bank are similar to those of MR8 filter bank, while those from BF2 clearly 
provide better classification performance. Significant improvement is noted in the 
three class case with the addition of tissue information to DAB textons derived from 
the MR8 and BF1 filter banks. 
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Experiments were also conducted on a range of features extracted from the 
hematoxylin map including 1st order features: mean, standard deviation, and median, 
as well as 2nd order texture features: Entropy, Angular Second Moment, Contrast, and 
Correlation. The combination of the first five features resulted in about 70% correct 
classification for the 2-class case. However, when combined with the DAB features 
according to Eq.1, there was no significant improvement in performance. 

Figure 5 shows performance results from the three-class experiment utilizing 45 
DAB textons (BF2, 15 textons per class) and hematoxylin information. Please note 
that since all cores were stained and imaged under identical conditions, the resulting 
texton library carries normalized staining intensity information. As a result, our model 
also captures the staining intensity level (Fig. 5, right panel).   

4   Discussion and Conclusion 

In this paper, a system for extracting biologically distinct feature sets was developed 
in order to classify and aid assist in characterizing immunohistochemically stained 
tissue specimens. The basic framework of this algorithm decomposes an IHC stained 
image into two clinically motivated parts: the protein of interest and its tissue context. 
A range of different feature sets are extracted from these images at both the 
expression and contextual levels and subsequently combined to improve classification 
performance. This approach allows the quantification of two key components for 
reliably interpreting immunohistochemistry, namely the protein of interest and its 
histological context.  

The texton library-based texture feature was chosen in our studies to characterize the 
staining pattern of the protein of interest because of its ability to adapt to complex tissue 
textures, which have repetitive structures at multiple scales.  We introduced a set of new 
biologically oriented filter banks into the algorithm that proved to reliably capture the 
subtle morphological differences among various staining patterns and im-prove 
classification performance. We have also demonstrated that by incorporating the 
underlying tissue architecture into the formulation that performance is further enhanced. 

This paper presents a proof-of-concept study that demonstrates the feasibility of 
discriminating among IHC staining patterns based on the simultaneous consideration 
of texture and tissue architecture. In its present form the model and associated 
algorithms may be used for investigating cases where there exists discrepencies  
between what is expected based on standard IHC analysis and  response to therapy or 
other measures of protein amplification. Cases where discrepencies exist can 
potentially lead to the withholding of targeted therapies or the unwarranted exposure 
to drug toxicity.  The textural information underlying the protein expression pattern 
may be an additional factor in elucidating these clinical inconsistencies and thus 
provide patients with the proper treatment protocol.  In the next phase of our studies 
we plan to investigate the usefulness of this approach in analyzing a broader range of 
immunostains and disease states.  
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