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Abstract. Magnetic Resonance Spectroscopy (MRS) along with MRI
has emerged as a promising tool in diagnosis and potentially screening
for prostate cancer. Surprisingly little work, however, has been done in
the area of automated quantitative analysis of MRS data for identifying
likely cancerous areas in the prostate. In this paper we present a novel
approach that integrates a manifold learning scheme (spectral cluster-
ing) with an unsupervised hierarchical clustering algorithm to identify
spectra corresponding to cancer on prostate MRS. Ground truth loca-
tion for cancer on prostate was determined from the sextant location
and maximum size of cancer available from the ACRIN database, from
where a total of 14 MRS studies were obtained. The high dimensional
information in the MR spectra is non linearly transformed to a low di-
mensional embedding space and via repeated clustering of the voxels in
this space, non informative spectra are eliminated and only informative
spectra retained. Our scheme successfully identified MRS cancer voxels
with sensitivity of 77.8%, false positive rate of 28.92%, and false negative
rate of 20.88% on a total of 14 prostate MRS studies. Qualitative results
seem to suggest that our method has higher specificity compared to a
popular scheme, z-score, routinely used for analysis of MRS data.

1 Introduction

Prostatic adenocarcinoma (CAP) is the second leading cause of cancer related
deaths in America, with an estimated 220,000 new cases every year (Source:
American Cancer Society). The current standard for detection of prostate cancer
is transrectal ultrasound (TRUS) guided symmetrical needle biopsy which has a
high false negative rate associated with it [I]. Over the past few years, Magnetic
Resonance Spectroscopic Imaging (MRSI) has emerged as a useful complement
to structural MR imaging for potential screening of prostate cancer. Kurhanewicz
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et al. [2] have suggested that the integration of MRS and MRI could potentially
improve specificity and sensitivity for screening of CAP, compared to what might
be obtainable from any individual modality. MRS is a non-invasive analytical
technique for measuring the chemical content of living tissues which is used to
detect changes in the concentrations of specific molecular markers in the prostate,
such as citrate, creatine, and choline. Variations in the concentrations of these
substances can detect the presence of CAP.

Most automated analysis work for MRS for cancer detection has focused on
developing fitting techniques that yield peak areas or relative metabolic concen-
trations of different metabolites like choline, creatine and citrate as accurately
as possible. The automated peak finding algorithms suffer from problems asso-
ciated with the noisy data which worsens when a large baseline is present along
with low signal to noise ratio. Mcnight, et al. [3] have looked at z-score (ratio
of difference between population mean and individual score to the population
standard deviation) analysis as an automated technique for quantitative assess-
ment of 3D MRSI data for glioma. A predefined threshold value of the z score
is used to classify spectra in two classes: malignant and benign. Kurhanewicz,
et al. [] have worked on the quantification of prostate MRSI by model based
time fitting and frequency domain analysis. Some researchers have applied lin-
ear dimensionality reduction methods such as independent component analysis
(ICA), principal component analysis (PCA) in conjunction with classifiers [5] [6]
to separate different tissue classes from brain MRS. However, we have previously
demonstrated that due to inherent non linearity in high dimensional biomedical
studies, linear reduction methods are limited for purposes of classification [7].

In this paper we present a novel automated approach for identification of can-
cer spectra on prostate MRS via the use of manifold learning and hierarchical
clustering. Figure 1 illustrates the modules and the pathways comprising our au-
tomated quantitative analysis system for identifying cancer spectra on prostate
MRS. In the first step, a manifold learning [§] scheme (spectral learning or graph
embedding) is applied to embed the spectral data in a low dimensional space
so that objects that are adjacent in the high dimensional ambient space are
mapped to nearby points in the output embedding. Hierarchical unsupervised
k-means clustering is applied to distinguish non-informative (zero-padded spec-
tra and spectra lying outside the prostate) from informative spectra (within
prostate). The objects in the dominant cluster, which correspond to the spectra
lying outside the prostate, are pruned and eliminated from subsequent analysis.
The recursive scheme alternates between computing the low dimensional man-
ifold of all the spectra in the 3D MRS scene and the unsupervised clustering
algorithm to identify and eliminate non-informative spectra. This scheme is re-
cursed until the sub-clusters corresponding to cancer spectra are identified. The
primary contributions and novel aspects of this work are,

e The use of non-linear dimensionality reduction methods (spectral clustering)
to exploit the inherent non-linearity in the high dimensional spectral data
and embed the data in a reduced dimensional linear subspace.
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e A hierarchical clustering scheme to recursively distinguish informative from
non-informative spectra in the lower dimensional embedding space.

e The cascaded scheme enables accurate identification of cancer spectra effi-
ciently, and is also qualitatively shown to perform better compared to the
popular z-score method.

Input N Manifold learning to
MRS spectra embed spectra
—— |
Identify and Unsupervised

eliminate dominant
non-informative
cluster

clustering of spectra
in lower dimension

Fig. 1. Flowchart showing various system components and methodological overview

The rest of this paper is organized as follows. In Section 2 we present a detailed
description of our methods while in Section 3 we describe our results. Concluding
remarks and future directions are presented in Section 4.

2 Methods

2.1 Data Description

We represent the 3D prostate T2 weighted scene by C = (C, f) where C' is a
3D grid of voxels ¢ € C' and f is a function that assigns an intensity value to
every ¢ € C. We also define a spectral image C* = (G, g) where G is also a 3D
grid superposed on C' and G C C. For every spatial location u € G, there is an
associated spectra g(u). Hence while f(c) is a scalar, g(u) is a 256 dimensional
vector valued function. Note that the size of the spatial grid locations u € G is
equivalent to 8 x 8 voxels ¢ € C.

The spectral datasets used for the study were collected during the ACRIN
multi-site trial of prostate MRS acquired with 1.5 Tesla GE Medical Systems
through the PROSE(c) package (voxel width 0.4 x 0.4 x 3 mm). Datasets were
obtained from 14 patients having CAP with different degrees of severity. The
spectral grid was contained in DICOM images from which the 16 x 16 grid
containing N=256 spectra was obtained using IDL. Of these N spectra, over
half are zero-padded or non-informative lying outside the prostate. Figures 2
(a)-(b) show a spectral grid superimposed on a T2 MR image and the corre-
sponding spectra. Figure 2(c) shows the magnified version of a single 256 dimen-
sional MRS spectra from within G. Note that due to noise in the spectra, it is
very difficult to identify individual peaks for creatine, choline and citrate from

g(u).
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Fig. 2. (a) Slice of T2 weighted MR image with overlay of MRS grid (G), (b) Individual
MRS spectra acquired from each u € G, and (c) a single 256 dimensional MRS spectra
(g(w)). Note that the prostate is normally contained in a 3 X 6 or a 3 x 7 grid which
varies in different studies based on the prostate size. Radiologists look at relative peak
heights of creatine, choline and citrate within g(u) to identify possible cancer presence.

2.2 Determining Ground Truth for Cancer Extent on Prostate
MRS

Since whole mount histological sections corresponding to the MR/MRS studies
were not available for the ACRIN database, we were only able to determine ap-
proximate spatial extent of cancer within G [9]. During the MRSI ACRIN study,
arbitrary divisions were established by the radiologists to obtain a rough esti-
mate of the location of cancer. The prostate was first divided into two regions:
Left(L) and Right(R) and the slices were then further divided into three regions:
Base(B), Midgland(M) and Apex(A). Thus a total of 6 potential cancer loca-
tions were defined: Left Base(LB), Left Midgland(LM), Left Apex(LA), Right
Base(RB), Right Midgland(RM) and Right Apex(RA). Presence or absence of
cancer in each of these 6 candidate locations, determined via needle biopsy, was
recorded. The maximum diameter of the cancer was also recorded in each of the
6 candidate locations.

For a MRS scene C*, with known cancer in left midgland (LM), the prostate
contained in a 3x 6 grid and prostate midgland extending over 2 contiguous slices,
we define a potential cancer space GP C G, within which the cancer is present.
If we separate GG into two equal right and left halves of 3 x 3, the total number
of voxels u € G¥ is 18 (3 x 3 x 2). The total number of actual cancer voxels

within the cancer space, G*', is obtained by knowledge of maximum diameter of
(MaxDiameter)?
Az Ay

to the ceiling operation and Az, Ay refer to the size of voxel u in the x and y
dimensions. Hence for a study with a cancer with maximum diameter of 13.75
mm in LM, 8 voxels within G¥ correspond to cancer. Note that the cancer
ground truth we determine, does not convey information regarding the precise
spatial location of cancer voxels within G”, only the number.

cancer and given as: No of candidate slices x [ W, where [] refers

2.3 Manifold Learning Via Spectral Clustering

The spectra g(u), for u € Cf lies in a 256 dimensional space. Hence, our aim is to
find a embedding vector X (u) for each voxel u € G, and its associated class w
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such that the distance between g(u) and w is monotonically related to G in the
lower dimensional space. Hence if voxels u,v € G both belong to class w, then
[X(u) — X (v)]? should be small. To compute the optimal embedding, we first
define a matrix W representing the similarity between any two objects u,v € G
in high dimensional feature space.

W (u,v) = ellg(w) =gl RIGIXlGl, ()

where |G| is the cardinality of set G. The embedding vector X is obtained from
the maximization of the function:

, XT(D-W)X
Ew(X)=2y" 7 2
w(X) PTp% (2)

where D(u,u)=)_, W(u,v) and v = |G| — 1. The embedding space is defined
by the eigenvectors corresponding to the smallest A eigenvalues of (D — W)
X = ADW for every u € GG, the embedding X(u) contains the coordinates of u
in the embedding space and is given as, X (u) = [é4(u)||A € {1,2,---, 3}] where
éa(u), is a A dimensional vector of eigen values associated with w.

2.4 Hierarchical Cascade to Prune Non-informative Spectra

At each iteration ¢, for a subset of voxels u, Gy C G is obtained by eliminating
the non-informative spectra g(u). The voxels u € G, are aggregated into clusters
Vi, V2, V2 by applying k-means clustering to all u € G in the low dimensional
embedding X (u). The number of clusters k = 3 was chosen empirically to corre-
spond to cancer, benign and classes whose attributes are intermediate to normal
tissue and cancer (e.g. benign hyperplasia (BPH), high-grade prostatic intraep-
ithelial neoplasia (HGPIN)). Initially, most of the locations u € G correspond to
zero padded or non informative spectra and hence the scheme proceeds by elim-
inating the dominant cluster. Clusters corresponding to cancer and areas within
the prostate only become resolvable at higher levels of the cascade scheme after
elimination of the dominant non informative spectra. The algorithm below de-
scribes precisely how our methodology works.

Algorithm HierarclustM RSprostate
Input: g(u) for allu € G, T, G
Output: G, VA, V2, V3
begin
0. Initialize Gy = G;
1. for t =0to T do
2 Apply Graph Embedding to g(u), for all u € G; to obtain X;(u);
3. Apply k-means clustering to obtain clusters V!, V;2, V;3;
4 Identify largest cluster V;%;
5 Create set G441 C Gy by eliminating all u € V;8X from G,;
6.endfor
end
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Note that since we employ an unsupervised learning approach, it is not clear
which of V}}, V2 V32 actually represents the cancer cluster. The motivation
behind the HierarclustM RSprostate algorithm however is to obtain clusters
Vi, V2, V2 which represent, to the extent possible, distinct tissue classes.

3 Results

3.1 Qualitative Results

The images in Figure 3 demonstrate qualitative results of our hierarchical cas-
cade scheme for distinguishing informative from non-informative spectra. Figure
3(a) represents a spatial map of Gy (16 x 16) superimposed on the correspond-
ing T2 weighted scene and every u € Gy is assigned one of three colors, in turn
corresponding to one of the three classes determined based on the embedding
X (u). Note that the dominant cluster(spatial locations in blue in Figure 3(a))
has been eliminated in G; (16 x 8) (Figure 3(b)) and from Gy (8 x 4). The
lowest level in the cascade (G5 in 3(d)) is obtained from G after the spectra on
the periphery of the prostate (blue locations) have been removed. The cancer
spectra are visible as a distinct cluster (blue cells) on Figure 3(d). The cascade
scheme permits the resolvability of the 3 tissue classes (one of which is cancer)
which were collapsed together within the informative cluster at the higher levels
in the cascade (GO, Gy, ég)

(c) (d)

Fig. 3. Spectral grids for a single slice within C'*® are shown superimposed on T2 for
(a) Go, (b) G1, (c) G2, and (d) G3. Note that the size of the grid reduces from 16 x 16
(a) to 6 x 3 (d) by elimination of non-informative spectra on the 16 x 16 grid on T2. In 3
(d) cancer class could clearly be discerned as the blue class, since the cancer is located
in the right MG slice. Note that the right/left conventions in radiology are reversed.
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Fig. 4. (a)-(c) represents the potential cancer locations in blue. Figures 4(d)-(f) shows
our classification results for 3 different studies with the cancer voxels shown in blue,
while Figures 4(g)-(i) shows the z-score results. Note that for the last study in 4(f),
our method has 100% sensitivity with just 2 FP voxels.

Figures 4(a)-(c) shows the potential cancer location volume within G' on a
single 2D slice of a T2 weighted prostate MR scene for 3 different studies and
Figures 3 (d)-(f)show the corresponding result of our hierarchical scheme. In all
3 studies, the cancer cluster can be appreciated as a distinct class on the grid,
corresponding to the location specified in the pathology reports. In Figures 4
(d)-(i) we compare the grid maps obtained via our cascaded clustering scheme
(4(d)-(f)) with the corresponding plots obtained using the z-score (4(g)-(i)), a
popular MRS analysis scheme. In this method, the z-score value z(u), is assigned
to each u € G. The spectra g(u) is then assigned to one of the two classes
based on whether z(u) is lower or greater than a pre determined threshold. It is
apparent from the plots in 4(g)-(i) that none of the classes appear to represent
the cancer class. These results clearly suggest that our cascaded scheme has
higher specificity compared to the z-score method.

3.2 Quantitative Results

Table 1 shows the quantitative results for 14 different studies. True positive
(TP), False positive (FP) and False negative (FN) fractions for every dataset
were obtained by comparing the automated results with the ground truth vox-
els for all the 3 classes obtained. The class which corresponded to maximum
TP and minimum FP and FN rates was identified as the cancer class and the
respective TP, FP and FN values were reported for that particular class. TP,
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FP and FN percentage values for each of the dataset were then calculated by
dividing the TP, FP and FN fraction by the total number of ground truth voxels
determined as described in Section 2.2. Average results over 14 studies have been
reported. Clearly our scheme appears to have high cancer detection sensitivity
and specificity.

Table 1. Table showing the average percentage values of TP, FP and FN for our
automated detection scheme, averaged over a total of 14 MRS studies

Average TP Average FP Average FN
77.80 28.97 20.92

4 Concluding Remarks

In this paper we have presented a novel application of manifold learning and hier-
archical clustering for the automated identification of cancer spectra on prostate
MRS. Main contributions of our work are:

e The integration of unsupervised clustering with a manifold learning scheme
to identify and eliminate non informative spectra.

e The hierarchical cascade detection scheme to efficiently and accurately iden-
tify prostate cancer spectra.

e Comparison of our scheme against a popular current MRS analysis scheme
(z-score) with respect to an approximately detected ground truth suggests
that our hierarchical detection algorithm has comparable sensitivity and
higher specificity.

In future work we intend to extend our scheme for prostate MRS analysis
to incorporate corresponding structural MRI data in order to develop better
predictors for identifying CAP.
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