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Abstract. This paper presents a novel and fast probabilistic method for white
matter fiber tracking from diffusion weighted MRI (DWI). We formulate fiber
tracking on a nonlinear state space model which is able to capture both smooth-
ness regularity of fibers and uncertainties of the local fiber orientations due to
noise and partial volume effects. The global tracking model is implemented us-
ing particle filtering, which allows us to recursively compute the posterior dis-
tribution of the potential fibers. The fiber orientation distribution is theoretically
formulated for prolate and oblate tensors separately. Fast and efficient sampling
is realised using the von Mises-Fisher distribution on unit spheres. Given a seed
point, the method is able to rapidly locate the global optimal fiber and also provide
a connectivity map. The proposed method is demonstrated on a brain dataset.

1 Introduction

White matter fiber tracking or “tractography” estimates possible fiber paths by tracing
the local fiber orientations. However, the local fiber orientations measured by DTI are
not completely reliable due to both noise, partial volume effects and crossing fibers. To
deal with this uncertainty, probabilistic fiber tracking methods have received consider-
able interest recently [1I213]. Instead of reconstructing the fiber pathways, they aim to
measure the probability of connectivity between brain regions. These methods can be
described in terms of two steps. Firstly, they model the uncertainty in fiber orientation
measurements at each voxel using a probability density function (PDF) [1I3]. Secondly,
the probabilistic tracking algorithms simply repeat a streamline propagation process
1000 ~ 10000 times with propagation directions randomly sampled from the PDF. The
fraction of the streamlines that pass through a voxel provides an index of the strength of
connectivity between that voxel and the starting point. Most previous methods estimate
the connectivity map by sampling directly from the PDF for fiber orientations. The sam-
pling process is challenging, thus it is necessary to resort to MCMC methods [1] or to
evaluate the PDF discretely with low angular resolution [3]]. The intrinsic drawback of
the previous methods is their computational complexity (often more than several hours
on a modern PC [[113]]), and this is unacceptable in practice.

In this paper, we propose a new probabilistic method for white matter fiber tracking.
Our contributions are threefold: First, we formulate fiber tracking using a nonlinear state
space model and recursively compute the posterior distribution using particle filtering
[4]. The proposed model can capture both smoothness regularity of the fibers and the
uncertainties of the local fiber orientations. Our second contribution concerns the PDF
modeling of local fiber orientations from DTI. To do so, we build PDFs for prolate and
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oblate tensors separately. For prolate tensors, we characterise the uncertainty using the
axially symmetric model [3]]. For oblate tenors, we model the PDF using the normal
distribution of the angle with the smallest eigenvectors of tensors. Finally, we use the
von Mises-Fisher distribution to model prior and the importance density for sampling
particles. This spherical distribution provides a natural way to model noisy directional
data, and it can be efficiently sampled using the Wood’s simulation algorithm [6].

2 Tracking Algorithm

The problem of fiber tracking is to extract the best possible fiber pathway from a prede-
fined seed point. We formulate the problem using a nonlinear state space model.

2.1 Global Tracking Model

A white matter fiber path can be modeled as a sequence of unit vectors P, +1 = Ug., =
{0, ..., U }. Let ) be the set of image data, and the data observed at ; is y; = Y(0;) =
Y(x;). Our goal is to propagate a sequence of unit vectors that best estimates the true
fiber based on prior density p(0;+1|0o.;) and the observation model p(Y|0o.; ).

We assume that the tracking dynamics forms a Markov chain, so that p(0;.+1|00.;) =
p(0;41]0;). Thus, the prior of the fiber path is p(o.n,) = p(90) [T}, p(0i]0i—1). An-
other assumption is that the diffusion measurements are conditionally independent given
00:n» 1.6 P(V|00:n) = [],c0P(V(r)|00:r). We also assume that the measurement at a
point does not depend on any points in the history of the path, i.e p(y;|00.;) = p(y:|0:).
Using the prior p(?y.,, ), the posterior distribution p(?y.,,|)) can be expanded to

p(00:n|Y) = (00| Y) [ ] p(0i0i-1, V). (1
=1

Applying Bayes theorem, we have

P(yi|0:)p(0:]05-1)
p(yi)

where p(y;) is a constant regularity factor, i.e. p(y;) f p(y:|0;)p(0;]0;—1). Most pre-
vious probabilistic methods [2I1]] estimate the posterior p(vo_n |) by sampling stream-
line paths from p(y;|?;). The sampling is difficult and time consuming. Moreover, it
does often not take into account the smoothness constraint for fibers. In contrary, Friman
et al. [3] estimate the posterior by sampling from p(?;|0;—1, )). To avoid sampling dif-
ficulties, they discretise the problem using a finite set of directions. In addition to intro-
ducing errors, this discretised sampling is still very time consuming. Moreover, some
simple sampling methods may degenerate as path becomes longer [4]].

p(0i|0i-1,Y) = ; (2)

2.2 Recursive Posterior Using Particle Filtering

We wish to estimate the posterior distribution iteratively in time. By inserting Equation
@) into Equation (IJ), we have

p(@o:n\y) = p(’[}o‘y) Hp(@ZWZ 1 H p;yzh}z 3)
i=1 i=1
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where p(99|)) is predefined. The modeling of the transition probability p(;|0;—1) and
the distribution p(y;|?;) will be detailed in the next section. We recast the problem
of tracking the expected fiber path as that of approximating the MAP path from the
posterior distribution. It is straightforward to obtain the following recursive formula for
the posterior from Equation (3)

P(B0:051]Y) = p(ﬁO:i‘y)p(Uz+1 0:)P(Yi+1|0it1) _ (4)
P(yi+1)

Since the denominator contains a complex high-dimensional integral, it is not feasible
to locate the maximum likelihood path analytically. Like methods discussed above, we
evaluate the posterior using a large number of samples which efficiently characterise
the posterior. Thus, the statistical quantities, such as the mean, variance and maximum
likelihood, can be approximated based on the sample set. Since it is seldom possible
to obtain samples from the posterior directly, we use the particle filtering to recursively

compute a finite set of sample paths from the posterior based on the Equation (4).
To sample a set of K paths, we set K particles at the starting location and allow

them to propagate as time progresses. Given the states of the set of particles {@é{?, k=

., K} at time i, the process of sequentially propagating the particles to the next
time step ¢ + 1 can be described in three stages. These are referred to as prediction,
weighting and selection. Let m(0¢.;|)) be a so-called importance function which has a
support including that of the posterior p(?.;|)). For our sequential importance sam-
pling, suppose that we choose an importance function of the form [4]] 7 (%¢.,|Y) =
m(00|V) [T}, 7(:|0;—1,)). In the first prediction stage, each simulated path ﬁ(()i? with

index k is grown by one step to be ﬁ(()l?Jrl through sampling from the importance function

( 0, +1 |v , V). The new set of paths generally is not an efficient approximation of the
posterior distribution at time ¢+ 1. Thus, in the second weighting stage, we measure the
reliability of the approximation using a ratio, referred to as the importance weight be-
tween the truth and the approximation wg_’?l:p(vo i1 Y)/(m (A (k) D)) ( l+1 |v ).

We are more interested in the normalised weights wz(i)l = wZ el / Z =1 W; +)1 Inserting

Equation (@) and expression of wgi)l into the expression of wz( +)1, it goes as

k)
wz(f»)loc (k)P( z+1|v )(yl+1|vl+l). (5)

7T( z+1‘v Vy)

The choice of importance function will be detailed in the next section. At this point
the resulting weighted set of paths provides an approximation of the target posterior.
However, the distribution of the weights rbg_]i)l may becomes more and more skewed as
time increases. The purpose of the last selection stage is to avoid this degeneracy. We
measure the degeneracy of the algorithm using the effective sample size N5 [4], i.e.

N = 1/505 (@ ZJrl) When N,y is below a fixed threshold NV, then a resam-
pling procedure is used. The key idea here is to eliminate the paths or particles with
low weights wgﬂ and to multiply offspring particles with high weights. We obtain the

surviving particles by resampling K times from the discrete approximating distribution
according to the importance weight set {rbg_?p k=1,., K}
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Both fiber reconstruction and connectivity map can be easily solved based on the
discrete distribution of the posterior. The MAP estimate of the true fiber is the path
with the maximal importance weight. The probability of connectivity between x( and a
specific voxel is computed as the fraction of particles that pass through that voxel.

3 Algorithm Ingredients

In this section, we give the details of the local ingredients of the global tracking model.

3.1 Observation Density

Let Ay > A2 > A3 > 0 be the decreasing eigenvalues of D and é1, és, é3 be the corre-
sponding eigenvectors. We can classify the diffusion tensors into prolate tensors (A1 >
(A2 &= A3)) and oblate tensors ((A\; & A2) < A3) by using fractional anisotropy (FA)
[7] and the metric proposed by Westin et al. [8], i.e. c; = (A\; — Xa)/1/A} + A3 + A2
In the case of prolate tensors, we assume that a single dominant diffusion direction,
é1, s collinear with the true underlying fiber orientation ©. Borrowing ideas from [3]], we
suppose the prolate tensor is axially-symmetric. Let A | be the diffusivity of directions
perpendicular to . Then, the diffusion along a gradient direction g; can be written as
151 7 Dgj = A +3(0- §;)*(A — A1), where X = ¢r(D)/3. By inserting this expres-
sion into the Stejskal-Tanner equation [[7], we have s; = soe b A +3(2:9)*(A=A0))
where b; is the scanner parameter and sy is the intensity of the baseline image. Due
to noise, the intensity u; measured by the scanner is a noisy observation of the true
intensity s;. In [9]], Salvador et al. showed ¢; = log(u;) — log(s;) ~ N(0, Qj_l),
where o; = s;/0; is the signal-to-noise ratio (SNR). Let the intensities observed at 4
be y; = {ug, u1, ..., ups . Then the observation density for prolate tensors is given as

g? (log uj—logs; )2

p(yil0;) = H \/277 : 2 . (6)

Panels (a) and (c) of Fig. [l show two examples. The figure tells that the orientation
distribution is very concentrated when its ' A and ¢; are relatively large.

In the case of oblate tensors, the dominant direction of diffusion is ambiguous and
Equation (@) is inappropriate. It is possible that the plane defined by é; and é; contains

High

Low

() (b) (©

Fig. 1. Examples of observation density. (a) a prolate tensor F'A = 0.9299, ¢; = 0.9193. (b) a
prolate tensor F'A = 0.3737, ¢; = 0.3297. (c) an oblate tensor FFA = 0.7115, ¢; = 0.2157.
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several crossing fiber tracts. In this case, we represent the fiber orientation ¢ in spherical
coordinates. Let ' be the polar angle from the és-axis, i.e. 8/ = arccos(v - é3), and ¢’
be the azimuth angle. The vector ¢ is mainly distributed on the plane spanned by ¢€; and
é2. Hence, we choose the distribution of 6’ to be normal with mean 7/2 and standard
deviation o. The azimuth ¢ is assumed to have a uniform distribution over [0, 27].
Thus, our fiber orientation distribution for oblate tensors is given by

(arccos(d - é3) —w/2)2. 1

202 ) 27’ ™

o1 _
p(yilv) = /2 exp(

Panel (c) of Fig.[Il shows an example of the density of an oblate tensor in white matter.

3.2 Prior Density

The transition density p(0;41|0;) specifies a prior distribution for the change in fiber
direction between two successive steps. Here, we adopt a model of the prior density
based on the von Mises-Fisher (vMF) distribution over a unit sphere. For a d-
dimensional unit random vector x, the vMF distribution is given by

d/2—1

T
exp(kp” X), (8)
27T)d/2jd/2—1(ﬁ) (rpax)

Ja(x;p, ) = (
where k > 0, ||| = 1, and I4/5_:(-) denotes the modified Bessel function of the first
kind and order d/2 — 1. The density fq(X; i, k) is parameterised by the mean direc-
tion vector p and the concentration parameter x. The greater the value of « the higher
the concentration of the distribution around the mean direction p. The distribution is
rotationally symmetric around the mean g, and is unimodal for x > 0. In our case,
the directions are defined on a two dimensional unit sphere in R3,ie.d = 3. Thus,
we choose our prior density as the vMF distribution with mean ¢; and concentration
parameter k, i.e.

p(Dit10:) = f3(Dig1;0is K). €))
The value of the concentration parameter ~ here controls the smoothness regularity
of the tracked paths. It is set manually to optimally balance the prior constraints on
smoothness against the evidence of v;,1 observed from the image data.

3.3 Importance Density Function

As discussed in Doucet et al. [4]], the optimal importance density is p(0;+1|0;, V). How-
ever, it is difficult for sampling. Thus, our aim is to devise an suboptimal importance
function that best represents p(y;+1|0;+1)p(0i+1|0;) subject to the constraint that it can
be sampled from. A most popular choice is to use the prior distribution as the impor-
tance function, i.e

T(Vig1]0i, V) = f3(Vig1; 04, ). (10)

The vMF distribution in Equation (9) can be efficiently sampled from using the sim-
ulation algorithm developed by Wood [6]. However, the prior importance function is
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not very efficient. Since no observation information is used, the generated particles are
often outliers of the posterior distributions. Indeed, if the diffusion tensor at 9; is pro-
late, then the movement to the state v;1; is mainly attributable to the fiber orientation
distribution, which is difficult to sample from. To overcome this problem, we model the
observation density in Equation (@) using the vMF distribution. Since we use an axially
symmetric tensor model, the distribution in Equation (@) is also rotationally symmetric
around the direction of largest probability (see Fig.[I)). We thus use the leading eigen-
vector, é¢, of tensor D; as the mean direction. We have found experimentally that ¢ is
almost identical to the direction of maximum probability in Equation (&). The average
difference between them is less than 2° due to a test on 1000 prolate tensors from brain
MRI data. The concentration parameter v; at each state v; is set to v; = 90 x ¢;(D;).
This choice is based on empirical trial and error. A better way is to fit the vMF distri-
bution to Equation (€) using the algorithm presented in [[11]]. However, it would need
more computation time. Moreover, particle filtering requires an importance density that
is close but not necessarily identical to the observation density. Therefore, for prolate
tensors we set the importance density as

(03410, V) = f3(Dig1; €4, v4). (11)

For oblate tensors, since the observation density in Equation (7)) is wide, we can still
use the prior as the importance density given in Equation (I0Q).

3.4 Algorithm Outline
Given K particles at step i: 13((){?, k =1,..., K, the iteration steps is summarised as

— compute diffusion tensor ng) for each particle k
— Prediction: fork =1,.... K
o if D) is a prolate tensor, sample ﬁ*gi)l using Equation (II)

o if Dz(k) is a oblate tensor, sample UA*E-i)l using Equation (I0)

Weighting: for k =1, .. K
e if prolate, compute wz +1 from Equation (@) using Equation (@), @) and (1)

e if oblate, compute 1" +1 from Equation (@) using Equation (Z), (@) and (10
Selection: normalise all the weights and evaluate Ny s
o If Nojs > Ny, then for k = 1, ..., K, 8% = o+
o If N, j < Ns, then for k = 1, ..., K, sample an mdex z(k) from discrete distribution
(k) _ U*(z(k» (k) 1
1+1 - N

{werl}k 1,...k, and set O

4 Experimental Results

We have tested the algorithm on a brain dataset with size 128 x 128 x 58 and 2 x 2 X 2mm
resolution. A six-direction gradient scheme was used with b = 1000s/mm?. Since our
particles propagate in a continuous domain, we choose the trilinear method in for
interpolation. A step length of 1mm and 5000 particles were used for all examples. The
propagation of a particle is stopped when it exits white matter (FA<0.2). We distinguish
prolate tensors (¢; > 7) and oblate tensors (¢; < 7) by using a threshold 7 = 0.27.
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Fig.2la) shows the trajectories of 1000 particles seeded from a point in the Corpus
callosum. The figure shows that the sampled paths provide a robust delineation of the
expected fiber bundle. Fig. 2Ib) gives another example with two seed points in the Cin-
gulum bundles. This example reveals how our probabilistic algorithm is able to handle
splitting fibers and ambiguous neighborhoods. Fig.2l(c) shows the global optimal MAP
paths of the examples in Fig. 2(a) and Fig. 2Ib). We also compared our result with
that of Friman’s method using the same seed points in Cingulum bundles, as shown in
Fig.2l(c). In our method, particles with low probability of existence are eliminated dur-
ing the resampling stage, and the sampled paths are most concentrated around the final
optimal fiber. In contrast, the sampled paths of the Friman’s method are more dispersed,
with a number of paths which have low probabilities. Thus, our method samples more
representative paths surrounding the optimal candidate. Moreover, our algorithm runs

(d) (e) (f)

Fig. 2. (a): 1000 particle traces from a seed point in Corpus callosum. (b): from two seed points
in the left and right Cingulum bundles. (c): Optimal MAP paths of (a) and (b). (d): 1000 path
samples using Friman’s method [3]] from the same seed points as in (b). (e): Zoomed particle
traces of two seed points from the MAP path of example (a). (f): Optimal MAP paths of (e).

much faster than Friman’s algorithm (more than 30 times faster due to our MATLAB
implementation). To further evaluate the algorithm, we set two seed points from the
MAP path of the example in Fig. Pa) and let the algorithm track from them toward
each other. Fig. 2(e) shows 1000 sample paths from each seed point. The figure tells
that the sampled paths from two seed points are almost overlapped with each other.
Fig. D) gives their two optimal MAP paths, which are very close to each other. Thus,
the second seed point can successfully go back to the first one along with the MAP path.
This example shows that the performance of our algorithm is robust and stable. On the
other hand, based on the particle traces, we can calculate the probability of connection
between the seed voxel and a specific voxel by computing the fraction of particles pass-
ing through that voxel. We thus can produce a probability map of connections between
the seed and all other voxels. In Fig.[B(a), we show the probability map depicted from
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Fig. 3. Probability map of our algorithm from (a): a seed point in the Corpus callosum, and, (b):
from two seed points in the Cingulum bundles. (c): Probability map of Friman’s method from the
same seed points as in (b).

a seed point in Corpus callosum. The coloring shows the belief of our algorithm that a
fiber initiated at the seed voxel reaches respective voxel. Fig. B(b) gives a probability
map of longer fiber tracts seeded from Cingulum bundles. The result here is compared
to that of Friman’s method, as shown in Fig. Blc), which gives a wider distribution.

5 Conclusion

We have presented a new method for probabilistic white matter fiber tracking. The
global tracking model is formulated using a state space framework, which is imple-
mented by applying particle filtering to recursively estimate the posterior distribution
of fibers and to locate the global optimal fiber path. Each ingredient of the tracking
algorithm is detailed. Fiber orientation distribution is formulated in a theoretical way
for both prolate and oblate tensors. Fast and efficient sampling is realised using the
vMF distribution. As a consequence, there is no need to apply MCMC sampling [1]]
or to discretise the fiber orientation distribution [3]] for sampling paths. Unlike previ-
ous methods [113] which are computationally expensive, our method is able to rapidly
locate the global optimal fiber and compute the connectivity map for a given seed point.
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