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Abstract. In this paper, we explore the use of fiber bundles extracted
from diffusion MR images for a nonlinear registration algorithm. We
employ a white matter atlas to automatically label major fiber bun-
dles and to establish correspondence between subjects. We propose a
polyaffine framework to calculate a smooth and invertible nonlinear warp
field based on these correspondences, and derive an analytical solution
for the reorientation of the tensor fields under the polyaffine transfor-
mation. We demonstrate our algorithm on a group of subjects and show
that it performs comparable to a higher dimensional nonrigid registration
algorithm.

1 Introduction

Diffusion tensor imaging (DTI) measures the molecular diffusion, i.e., Brownian
motion, of the endogenous water in tissue. This water diffusion is anisotropic in
fibrous biological tissues such as cerebral white matter. Quantification of water
diffusion in tissue through DTI provides a unique way to look into white matter
organization of the brain [1].

Tractography is a common post-processing technique for DTI which aims at
reconstructing fibers from the tensor field [2]. The method works by tracing the
principal diffusion direction in small steps. The resulting tracts can be grouped
together into bundles. Even though the resolution of DTI is too low to measure
any individual axons, these bundles show similarity to anatomical structures and
suggest that at the bundle level we are able to capture structural information [3, 4].

A popular technique to investigate white matter anatomy is to manually select
regions of interest (ROIs) that are thought to correspond to a particular anatom-
ical white matter tract, and to analyze scalar measures derived from the diffusion
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tensors within the ROI. ROI based methods could be subject to user bias if the
ROIs are manually traced. Therefore several methods have been proposed to
identify anatomically meaningful regions from the DTI data. One class of meth-
ods uses tractography results and groups them into regions either interactively
or automatically, e.g. [3, 4]. A recent study reported that tractography-based
definitions of a pyramidal tract ROI are more reproducible than manual ROI
drawing [5].

An alternative to ROI-based studies is to perform spatial normalization for the
whole data set followed by voxel based morphometry in the white matter. There
are many registration techniques designed for aligning scalar MR images such
as structural T1 weighted images. Some of these linear and non-linear methods
have been applied to scalar images derived from the diffusion tensor data [6, 7,
8, 9, 10].

However, DTI is by nature a non-scalar image and potentially offers rich infor-
mation that can be used to determine voxel-wise correspondence across subjects.
This has been observed in some studies and resulted in: 1) multi-channel scalar
registration techniques that aim to account for orientational information, and 2)
correspondence validation techniques that are not not only based on voxel-wise
similarities but also on fiber tracts generated from the DTI data sets.

The contributions of this paper are multi-fold. Firstly, we propose a novel
algorithm to non-linearly register DTI data sets (of multiple subjects) based on
fiber bundles that have been automatically segmented. We employ a polyaffine
framework [11] to fuse the bundle-based transformations. This yields a global,
one-to-one nonlinear deformation. Secondly, we derive an analytical solution
for the reorientation of the tensor fields after the application of the polyaffine
deformation. Finally, we propose a new measure (of fiber-tensor fit, FiT) to
quantify the quality of the match between a deformed fiber tract and underlying
diffusion tensor field.

2 Methods

2.1 Fiber Bundles

Organization of tract fibers into bundles, in the entire white matter, reveals
anatomical connections such as the corpus callosum and corona radiata. By
simultaneously clustering fibers of multiple subjects into bundles, major white
matter structures can be discovered in an automatic way [12]. The results of
such a clustering can then saved as bundle models along with expert anatomical
labels to form a white matter atlas, which can later be used to label tractography
results of new subjects [12].

In this work, we use such an atlas to automatically label tractography re-
sults of a group of subjects. Since the labeling is consistent among multiple
subjects, the use of such an atlas not only provides individual’s label maps but
also correspondence between subjects. As described in the following Section, we
employ this correspondence determined by the label maps to perform nonlinear
inter-subject registration.
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2.2 Registration of Fiber Bundles

Inter-subject registration using fiber tracts is not a well studied problem. To our
knowledge, the only study that deals with this question performs registration on
a tract by tract basis utilizing a rigid invariant tract parametrization [13]. The
drawback of this framework is that it only allows for rigid transformations (with
6 independent variables) and is computationally very expensive due to the need
to process fibers individually.

Instead of registering tracts individually, we propose to register corresponding
bundles. To align the bundles from two subjects, we compute 3 dimensional
spatial probability maps for each fiber tract bundle in each subject. The goal
of our registration is to maximize the correlation between two corresponding
bundles’ probability maps. A fiber bundle bi consists of a set of tracts {tj},
where tj is represented by a set of points {xk}. Given a fiber bundle we define
bi’s spatial probability map as:

Pbi(x) =
1
Z

∑

tj∈bi

∑

xk∈tj

κ(x − xk),

where Z is the appropriate normalization for a valid probability density (calcu-
lated by summing the estimated spatial probability map), and κ(x − xk) is a
(Gaussian) kernel centered around xk, the kth sample from the tract tj .

Next, we discretize these probability maps to obtain a 3D scalar image for each
tract bundle in each subject. We employ a sequential quadratic programming
method [14] to find the 9 affine parameters that maximize the correlation coeffi-
cient between corresponding probability maps in different subjects. For a pair of
subjects, this yields a set of affine transformations that relate each corresponding
bundle pair. The last step of our algorithm is to fuse these affine transformations
to achieve a global, invertible nonlinear deformation. There are several ways to
achieve this. In this study, we employed the log-Eucledian polyaffine framework
[11] which guarantees invertibility.

2.3 Polyaffine Framework

The log-Euclidean polyaffine framework offers a fast method to calculate an in-
vertible and smooth nonlinear warp field with a small number of parameters [11].
matrices that define three dimensional affine transformations in homogeneous co-
ordinates. Abusing notation, we denote the affine transformation defined by the
matrix A as a vector valued function A(x) ∈ R

3 for x ∈ R
3. Our goal is to

obtain a global deformation field, Φ(x), that is computed by a weighted fusion
of these affine transformations (Ai’s). The most obvious way to combine these
transformations is through a weighted sum, but that does not in general yield
a smooth and invertible deformation [11]. One way of achieving a well behaved
deformation is to use the following stationary ordinary differential equation:

d

dt
x(t) =

S∑

i=1

wi(x(t)) log(Ai)(x(t)), (1)
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with x(0) = x0 and log(Ai) ∈ R
4×4 is the principal logarithm of Ai. Note

log(Ai)(x) is an affine transformation. The fused transformation is defined as:
Φ(x0) = x(1). A numerical solution to (1) is computed in the following manner.
Define:

TN (x) =
S∑

i=1

wi(x)A2−N

i (x) , (2)

where N is a small positive integer (typically 4 or 5), A2−N

i denotes the Nth
square root of Ai and the weights sum up to one, i.e.,

∑
i wi(x) = 1 for all x.

Note that A2−N

i (x) is also an affine transformation. The global transformation
Φ is then obtained in N steps:

Φ(x) = [T1 ◦ T2 ◦ · · · ◦ TN ]︸ ︷︷ ︸
N times

◦TN(x) , (3)

where Tn = Tn+1 ◦ Tn+1, for n ∈ {1, . . . , N − 1}, and ◦ denotes concatenation.
The inverse of Φ(x) is also calculated using the same formulation by replacing
each Ai with A−1

i in Equation 2 [11].

2.4 Diffusion Tensor Rotation

Deforming a tensor field is not as easy as interpolating the tensors at their
new locations. Since they carry directional information, diffusion tensors need
to be rotated when they undergo a spatial transformation [6]. Given the rota-
tional component R of the transformation, the tensors D should be reoriented
to RT DR. This rotational component is readily available in an affine trans-
formation. However, it needs to be estimated for a nonlinear deformation field.
One way to do so is to calculate the deformation gradient tensor (i.e., Jacobian
matrix) JΦ(x) ∈ R

3×3 of the deformation Φ. This captures the locally linear
component of the deformation and can be employed via the finite strain method
[6] to estimate the rotational component: R = (JJT )−1/2J . For an arbitrary
deformation field the Jacobian can be approximated with finite differences. We
used this method for the nonlinear benchmark algorithm in Section 3.

An interesting property of the polyaffine framework is that an analytic expres-
sion for the Jacobian can be derived. Let’s re-write A2−N

i from (2) as A2−N

i (x) =
Mix + ti. Notice that TN (x) =

∑S
i=1 wi(x)Mix + wi(x)ti. Then the Jacobian

of TN is:

JTN (x) =
S∑

i=1

wi(x)M i + (M ix + t) (∇wi(x))T

=
S∑

i=1

wi(x)M i + T (x) (∇wi(x))T
, (4)

where .T denotes transpose. Given JTN (x) and using (3), the Jacobian of Φ is
computed with the chain rule in N steps:
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Jφ(x) = [JT1(T2(x)) · · · JTN−1(TN (x)) · JTN (TN (x))]
︸ ︷︷ ︸

N times

·JTN (x) ,

where JTn = JTn+1(Tn+1(x))·JTn+1(x), for n ∈ {1, . . . , N−1}, JTN (.) is defined
in (4) and · is matrix multiplication.

2.5 Measure for Registration Quality: FiT

Two diffusion tensor images can be considered well registered if the tracts gen-
erated from one data set match well with the other data set’s tensor field after
deformation. To quantify this, we propose a measure we name Fiber-Tensor Fit
(FiT).

Given a three dimensional probability density p(x), its orientation distribution
function (ODF) is defined as [15]:

ψ(u) =
∫ ∞

0
p(ur)dr ,

where u ∈ R
3 is a unit vector and r is a scalar parameter (the radius in polar

coordinates).
In diffusion imaging, water diffusion is commonly modeled with a Gaussian

distribution. D(x) be the diffusion tensor at that location. The ODF at x can
be written as:

ψ(u(x)) =
∫ ∞

0

1√
(2π)3|D(x)|

exp(−1
2
ru(x)T D−1(x)u(x)r)dr

=
1√

(4π)2|D(x)|
1√

u(x)T D−1(x)u(x)
,

Note that for a given a diffusion tensor D(x), the ODF is upper bounded:
ψ(u(x)) ≤

√
λ1(x)/

√
(4π)2|D(x)|, where λ1(x) denotes the maximum eigen-

value of D(x). The tract ODF value at x is defined as ψ(ti(x)), where ti(x)
denote the tangent vector to a fiber tract ti at x. We define FiT as the sum
of the log ratios of the tract ODF values to the maximum ODF values. Thus,
ignoring constants, the FiT of a fiber tract ti on a tensor field D is defined as:

ϕ(ti; D) = −(
∑

x∈ti

log(ti(x)T D−1(x)ti(x)) + log(λ1(x))).

Notice that ϕ(ti; D) is not sensitive to an arbitrary ordering of eigenvectors
that have very close eigenvalues. Also, the value of FiT is maximized for the
first-order streamline tractography solution, since that would mean a perfect
alignment between the tract tangent vector and the principle eigenvector at
every sample along the tract. Even though FiT is well suited for quantifying the
fiber-tensor alignment, a direct optimization of this measure may not be feasible
since the algorithmic complexity of each iteration would be the same as running
a full brain tractography.
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3 Experiments

We analyzed 15 full brain Diffusion Tensor MR images of resolution 2.5 x 2.5 x
2.5 mm. Tractography was performed in each subject using Runge-Kutta order
two integration. As a benchmark, we employed an ITK implementation [16] of
an FA-based non-linear registration method (known as the demons algorithm)
that has been successfully applied to DTI data [7]. This method performs a
dense matching on the intensity images using a diffusion process. Regularization
is achieved through Gaussian smoothing.

Selecting the first subject as the template, we provide results for 14 pairwise
registrations using: 1) an FA-based global affine registration algorithm [17], 2)
the demons algorithm, and 3) the proposed bundle-based polyaffine algorithm.
Figure 1 includes 3D renderings of the registered tracts from a subject (in green)

Fig. 1. Top Row: 3D renderings of the registered tracts of a subject (in green) and
the template (in red) within ±5mm of the central axial slice overlayed on the central
FA slice of the template. “Aff” (left) stands for the FA based global affine, “Dem”
(middle) for the demons algorithm and “PA” (right) for the polyaffine framework as
proposed in this work. Arrows point to an area of differing qualities of registration.
Overlapping of the red and green fibers is indicative of better registration. Bottom Row:
Jacobian determinant images from the central slice of the volume: Yellow represents
areas with small changes in size, and the shades of red and blue represent enlargement
and shrinking, respectively. The Jacobian of the global affine registration is constant.
The Jacobian of the demons algorithm is smooth due to the Gaussian regularization.
The Jacobian of the polyaffine algorithm reflects the underlying anatomy because of
the fiber bundle-based definition of the deformation.
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DemonsAffine PA CC

CC: Corpus Collosum

Ci: Cingulum

Fr: Fornix

CR: Corona Radiata

Br: Brainstem

CP: Cerebellar Peduncle

Ci Fr Cr Br CP

Fig. 2. Left: Mean FiT values from 14 subjects’ DTI sets. Each subject’s DTI data is
aligned with the template and compared with the template’s fiber tracts. Thin lines
indicate the range of the FiT values, and the thick crossbars indicate the regions within
one standard deviation from the mean. Right: Mean FiT values from 14 subjects’ major
fiber bundles. For each bundle, the left error bar is for affine; the middle one is for
demons and the right one is polyaffine. Relative ranges of the fit values for major
structures are similar to the averages from the whole data sets, however differ from
each other in absolute terms.

and the template tracts (in red) overlayed on the central axial FA slice of the
template. The second row shows the central slice of the Jacobian determinant
volumes for the corresponding deformations computed by each registration al-
gorithm. Note that certain anatomical structures are visible in the proposed
algorithm’s Jacobian image. This is due to the bundle-based definition of the
underlying deformation field. The Jacobian image of the demons algorithm,
however, demonstrates no clear relationship with the underlying anatomy. A
close investigation of the fiber tract renderings in Figure 1 reveals that both
non-linear algorithms, in general, achieve significantly better alignment of the
tracts. There are some regions in this image, e.g. the corpus callosum, where
the bundle-based algorithm yields more accurate matching than the demons
algorithm. Figure 2 includes plots of average FiT values for the different algo-
rithms and some major bundles of interest. The nonlinear algorithms achieve
consistently better registrations than to the affine algorithm. The two nonlinear
algorithms yield comparable results.

4 Discussion

This paper explores an inter-subject bundle-based nonlinear registration algo-
rithm for DTI data sets. The algorithm performs comparable to a higher dimen-
sional nonrigid registration algorithm, and it has certain advantages that many
nonlinear algorithms lack, such as the ease of calculating the inverse transform.
We also showed that there is an analytic expression for the Jacobian matrix of
our deformation field, which was used for the reorientation of the deformed dif-
fusion tensor field. Furthermore, the quality of the registration can be improved
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with higher degrees of freedom, such as multiple affine components per structure,
without losing the cited advantages.

References

[1] Basser, P.J., Mattiello, J., Bihan, D.L.: MR diffusion tensor spectroscopy and
imaging. Biophys. J. 66, 259–267 (1994)

[2] Basser, P., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractog-
raphy using DT–MRI data. Magnetic Resonance in Medicine 44, 625–632 (2000)

[3] O’Donnell, L., Westin, C.F.: White matter tract clustering and correspondence in
populations. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749,
pp. 140–147. Springer, Heidelberg (2005)

[4] Maddah,M.,Mewes,A.,Haker, S.,Grimson,W.E.L.,Warfield, S.:Automated atlas-
based clustering of white matter fiber tracts from DTMRI. In: Duncan, J.S., Gerig,
G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 188–195. Springer, Heidelberg (2005)

[5] Partridge, S.C., Mukherjee, P., Berman, J.I., Henry, R.G., Miller, S.P., Lu, Y.,
Glenn, O.A., Ferriero, D.M., Barkovich, A.J., Vigneron, D.B.: Tractography-based
quantitation of diffusion tensor imaging parameters in white matter tracts of
preterm newborns. Magnetic Resonance in Medicine 22(4), 467–474 (2005)

[6] Alexander, D.C., Pierpaoli, C., Basser, P.J., Gee, J.C.: Spatial transformations of
diffusion tensor magnetic resonance images. IEEE TMI 20 (2001)

[7] Park, H.J., Kubicki, M., Shenton, M.E., Guimond, A., McCarley, R.W., Maier,
S.E., Kikinis, R., Jolesz, F.A., Westin, C.-F.: Spatial normalization of diffusion
tensor MRI using multiple channels. Neuroimage 20(4), 1995–2009 (2003)

[8] Jones, D.K., Griffin, L., Alexander, D., Catani, M., Horsfield, M., Howard, R.,
Williams, S.: Spatial normalization and averaging of diffusion tensor MRI data
sets. Neuroimage 17(2), 592–617 (2002)

[9] Leemans, A., Sijbers, J., Backer, S.D., Vandervliet, E., Parizel, P.M.: Affine coreg-
istration of diffusion tensor magnetic resonance images using mutual information.
In: Blanc-Talon, J., Philips, W., Popescu, D.C., Scheunders, P. (eds.) ACIVS
2005. LNCS, vol. 3708, pp. 523–530. Springer, Heidelberg (2005)

[10] Xu, D., Mori, S., Shen, D., van Zijl, P.C., Davatzikos, C.: Spatial normalization
of diffusion tensor fields. Magnetic Resonance in Medicine 50(1), 175–182 (2003)

[11] Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A fast and Log-Euclidean
polyaffine framework for locally affine registration. Research report RR-5865, IN-
RIA Sophia-Antipolis (2006)

[12] O’Donnell, L., Westin, C.F.: High-dimensional white matter atlas generation and
group analysis. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006.
LNCS, vol. 4191, pp. 243–251. Springer, Heidelberg (2006)

[13] Leemans, A., Sijbers, J., Backer, S.D., Vandervliet, E., Parizel, P.M.: Multiscale
white matter fiber tract coregistration: a new feature-based approach to align
diffusion tensor data. Magnetic Resonance in Medicine 55(6), 1414–1423 (2006)

[14] Fletcher, R., Powell, M.: A rapidly convergent descent method for minimization.
Computer Journal 6, 163–168 (1963)

[15] Tuch, D.S., Reese, T.G., Wiegell, M.R., Wedeen, V.J.: Diffusion MRI of complex
neural architecture. Neuron 40, 885–895 (2003)

[16] Ibanez, L., Schroeder, W., Ng, L., Cates, J.: The ITK Software Guide. 1st edn.
Kitware, Inc. ISBN 1-930934-10-6. (2003)

[17] Zollei, L., Learned-Miller, E., Grimson, W.E.L., Wells III, W.M.: Efficient popu-
lation registration of 3D data. In: ICCV, Computer Vision for Biomedical Image
Applications (2005)


	Nonlinear Registration of Diffusion MR Images Based on Fiber Bundles
	Introduction
	Methods
	Fiber Bundles
	Registration of Fiber Bundles
	Polyaffine Framework
	Diffusion Tensor Rotation
	Measure for Registration Quality: FiT

	Experiments
	Discussion



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




