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Abstract. Because of their physiological meaningfulness, cardiac phys-
iome models have been used as constraints to recover patient information
from medical images. Although the results are promising, the parame-
ters of the physiome models are not patient-specific, and thus affect the
clinical relevance of the recovered information especially in pathological
cases. In view of this problem, we incorporate patient information from
body surface potential maps in the physiome model to provide a more
patient-specific while physiological plausible guidance, which is further
coupled with patient measurements derived from structural images to
recover the cardiac geometry and deformation simultaneously. Experi-
ments have been conducted on synthetic data to show the benefits of the
framework, and on real human data to show its practical potential.

1 Introduction

In order to describe the physiology of the heart, cardiac physiome models have
been developed from invasive or in vitro experiments of anatomy, biomechanics,
and electrophysiology. These models typically comprise an electrical propaga-
tion model (E model), an electromechanical coupling model (EM model), and
a biomechanical model (BM model), which are connected together through a
cardiac system dynamics. Because of their physiological meaningfulness, phys-
iome models have been posed as model constraints to recover patient cardiac
information from medical images. In the recently proposed cardiac kinematics
recovery framework [1], given the image-derived motion information at salient
features such as heart boundaries, the cardiac kinematics of the patient is recov-
ered through the guidance of the physiome model with improved physiological
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plausibility. The physiome model has also been used for recovering the local
myocardial contractility from known displacement, with the aid of a relatively
detailed anatomical heart model derived from patient’s structural images [2].
Nevertheless, regardless of the promising potentials of the physiome models,
most parameters used by these algorithms are not patient-specific, and thus
the clinical relevance may be reduced especially under pathological conditions.
Furthermore, following the spirit of [3], the segmentation and the deformation
recovery tasks should be unified into a coherent process for more consistent and
appropriate results.

In view of these problems, we propose a framework for simultaneous cardiac
segmentation and deformation recovery, guided by a physiome model specified
by information from body surface potential maps (BSPMs). Using the meshfree
method [4], the heart is represented by a set of nodes bounded by surface ele-
ments, and simultaneous segmentation and deformation recovery is achieved by
evolving the nodes through the physiome model and medical images. Adopting
the recently proposed algorithm [5], the transmembrane potentials (TMPs) are
recovered from BSPMs to give the patient-specific excitation sequence of the my-
ocytes. This sequence is transformed into active contraction stresses through the
EM model to provide the patient-specific physiological guidance for the recovery.
On the other hand, a voxel matching algorithm based on comparing voxel simi-
larities between two consecutive structural cardiac images is utilized to provide
displacements of the boundary nodes as image-derived measurements. These
BSPM-derived active stresses and image-derived measurements are coupled to-
gether through state-space equations composed of cardiac system dynamics, and
filtering is applied to recover the cardiac geometry and deformation simultane-
ously in a statistically optimal sense. With this algorithm, functional images
(BSPMs) are integrated with structural images through the physiome model
to benefit both segmentation and deformation recovery. Experiments have been
conducted on synthetic data to show the advantages of our framework, also on
real human data to show its practical potentials.

2 Methodology

With the recent biological and technical breakthroughs, models describing
cardiac physiology across different spatiotemporal scales are available, and ap-
propriate models should be chosen depending on the specific purposes of the
applications. As our proposed framework aims at recovering patient cardiac in-
formation from medical images, the cardiac physiome model being used should
be able to capture the most significant cardiac physiological phenomena while
ensure the computational feasibility of the complicated inverse problem. In con-
sequence, we have chosen the FitzHugh-Nagumo model as the E model [5], a
simple ordinary differential equation described in [2] as the EM model, and an
anisotropic, elastic material model as the BM model [1]. These models are con-
nected together through the total Lagrangian (TL) cardiac system dynamics to
describe the relatively complete macroscopic physiology of the heart [1].
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Using this physiome model as the central link, our proposed framework con-
sists of three parts: integrating BSPMs with the physiome model to provide a
relatively patient-specific physiological guidance, the voxel matching algorithm
providing displacements of boundary nodes as image-derived measurements, and
the state-space filtering framework coupling the measurements with the phys-
iome model for simultaneous recovery of cardiac geometry and deformation.

2.1 Integrating BSPMs with Physiome Model

As described in the introduction, the physiome models used by the previous
efforts are not patient-specific [1,2]. In order to partially address this problem,
we utilize the algorithm proposed in [5] to recover TMPs from patient’s BSPMs.

The algorithm consists of a spatiotemporal 3D TMP evolution model de-
scribed via FitzHugh-Nagumo-like reaction-diffusion equations 1:

{
∂Ue

∂t = −M−1
e KeUe + c1Ue(1 − Ue)(Ue − a) − c2UeVe

∂Ve

∂t = b(Ue − dVe)
(1)

where Ue and Ve are vectors of TMPs and recovery variables. Me and Ke,
constructed based on the meshfree method, account for the intercellular coupling
of electrical propagation. a, b, c1, c2 and d are parameters defining the shapes
of the action potentials.

To relate the observed BSPs with TMPs, the TMP-BSP projection model for
the system-observation process follows the quasi-static electromagnetism:

Φ = HeUe (2)

where Φ represents BSPs and He is the transfer matrix obtained via a boundary
element integral with embedded meshfree approximation.

Concerning about the system uncertainties of the TMP evolution model and
observation errors of the measurements (BSPMs), (1) and (2) are written into
state-space representations:

xe(t + Δte) = Fe(xe(t)) + ωe(t + Δte) (3)
ye(t + Δte) = H̃exe(t + Δte) + νe(t + Δte) (4)

where xe(·) =
[
UT

e (·) VT
e (·)

]T is the state vector and ye(t + Δte) = Φ(t + Δte)
is the observation vector. Fe(·) is the transition function in correspondence with
the E model (1) and H̃e = [He 0]. ωe(t + Δte) and νe(t + Δte) are mutually in-
dependent vectors with zero-mean and known covariances, representing additive
system uncertainties and observation errors.

With (3) and (4) available, unscented Kalman filtering described in [5] can be
used to recover TMPs from patient BSPMs in a statistically optimal sense. Fig. 1
shows an example for the difference between TMPs obtained solely from the E
model (Fig. 1(a)) and those recovered from BSPMs (Fig. 1(c)).
1 In order to preserve the typical notations while avoiding confusion, some notations of

the E model and the BM model are added with right subscripts e and m respectively.
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(a) Normal TMP propagation

(b) RLPBBB TMP propagation

(c) RLPBBB TMP propagation recovered from BSPMs

Fig. 1. Synthetic data. Volumetric TMP propagations at the beginning of ventricular
excitations: depolarization at 1.5, 2.7, 5.4, 7ms (from left to right).

The recovered TMPs are then transformed into active contraction forces of
the myocytes through the EM model [2], providing patient-specific physiological
guidance to the recovery process through the cardiac system dynamics.

2.2 Extracting Motion Measurements from Structural Images

A voxel matching algorithm is used to provide displacements of the nodes rep-
resenting the cardiac boundaries as the image-derived measurements.

Every boundary node is assumed to be lying on a voxel (source voxel) repre-
senting the heart boundary in the image at time t (source image), and searching
for a corresponding voxel (target voxel) in the image at time t + Δt (target im-
age). Every source voxel is given a searching window, within which the target
voxel is the one which has the minimum value of:

p = pedginess[α pappearance + β pshape] (5)

where pedginess is related to segmentation, pappearance and pshape are related to
motion tracking. α and β are selected to reflect the varying data constraints at
different parts of the heart at different time frames.

As the new positions of the boundary nodes in the target image need to be on
the voxels representing the heart boundaries for segmentation purpose, pedginess

has the form:
pedginess = 1/(1 + ‖∇I‖) (6)

where ‖∇I‖ is the magnitude of the image intensity gradient.
pappearance is the Gaussian weighted sum of the squared intensity difference

between the voxel patches centered at the source voxel and the candidate tar-
get voxel respectively, thus it is related to the appearance similarity [6]. pshape is
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Fig. 2. Synthetic data. Structural images converted from synthetic heart deformations
under RLPBBB condition (during systole, at 0, 60, 120, 180, and 240 ms).

calculated in the same way as pappearance, with the squared intensity difference
replaced by the bending energy [7]:

Ebending = 0.5 [ (κ1,source − κ1,target)2 + (κ2,source − κ2,target)2 ] (7)

where κ1,source, κ1,target, κ2,source, and κ2,target are the principal curvatures
of the isointensity surfaces in the source and target images [8]. Thus, pshape

accounts for the shape coherence. As a result, the target voxel is lying on the
heart boundary with similar appearance and/or shape to the source voxel.

The displacements of the boundary nodes become the image-derived measure-
ments, providing patient’s information for the recovery process.

2.3 Simultaneous Cardiac Segmentation and Deformation Recovery

In order to perform simultaneous cardiac segmentation and deformation recovery
by evolving the node set representing the heart, state-space equations composed
of the cardiac system dynamics is necessary to couple the BSPM-derived active
stresses of section 2.1 with the image-derived measurements of section 2.2. The
cardiac system dynamics represented by the TL formulation is in the form [1]:

t
0Mm

t+ΔtÜm + t
0Cm

t+ΔtU̇m + t
0K̃mΔUm = t+ΔtRc + t+ΔtRb − t

0Ri (8)

where t
0Mm and t

0Cm are the mass and damping matrices, and t
0K̃m is the

strain incremental stiffness matrix which contains the internal stresses, the ma-
terial and deformation properties of the BM model at time t. t+ΔtRc is the
force vector containing the BSPM-derived active stresses, t+ΔtRb is the force
vector for enforcing boundary conditions, and t

0Ri is the force vector related to
the internal stresses at time t. t+ΔtÜm, t+ΔtU̇m and ΔUm are the respective
nodal acceleration, velocity and incremental displacement vectors at time t+Δt.
The BSPM-derived active stresses is now connected with the cardiac kinematics
through this cardiac system dynamics.

While the BSPM-derived active stresses provide a relatively patient-specific
physiological guidance to the recovery process, however, most parameters of the
physiome model still not coincide with the physiological properties of the patient,
and thus introduce the system uncertainties. On the other hand, the cardiac im-
ages cannot provide perfect measurements of the patient, and thus introduce
the observation errors. In order to compromise the patient measurements and
the physiome model with each other, a statistical filtering framework is required
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(a) Ground truth of RLPBBB.

(b) Recovery without BSPMs information.

(c) Recovery with BSPMs information.

Fig. 3. Synthetic data. Geometry and kinematics at 180ms, defined on a cylindrical
coordinate system (r, θ, z), with the long axis of the left ventricle as the z-axis. Left to
right: displacement magnitude map overlapped with image, radial strain map, circum-
ferential strain map and radial-circumferential strain map.

to couple them together. As a result, (8) is rewritten as a TL-updated state-space
equation which performs nonlinear state (displacements) prediction [1]:

xm(t + Δtm) = Fm(t)xm(t) + R(t + Δtm) + ωm(t + Δtm) (9)

where xm(t) = tUm and xm(t + Δtm) = t+ΔtmUm are the state vectors, con-
taining the nodal displacements at time t and t + Δtm, the kinematics we want
to recover. Fm(t) is the transition matrix comprised by the t

0Mm, t
0Cm and t

0K̃m

matrices. R(t + Δtm) is the input vector which contains the right hand side of
(8). ωm(t + Δtm) is the zero-mean, additive, and white system uncertainties.

Furthermore, as described in section 2.2, the measurements are the image-
derived, patient-specific displacements of the boundary nodes. In order to relate
these measurements with the kinematics we want to recover, they are defined
to be a subset of the state vector added by the zero-mean, additive, and white
observation errors νm(t + Δtm). Then the measurement vector ym becomes:

ym(t + Δtm) = Hmxm(t + Δtm) + νm(t + Δtm) (10)

where Hm is the measurement matrix containing only 0 and 1.
With the BSPM-derived active stresses t+ΔtRc embedded in (9) and the

image-derived measurement vector ym in (10), Kalman filtering procedures can
be performed to evolve the whole node set representing the heart in a statistically
optimal sense [1]. In consequence, the patient cardiac geometry and deformation
are recovered simultaneously.
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Table 1. Synthetic data. Deviations of the recovered kinematics against the ground
truth. Strains (εαβ) are calculated under a cylindrical coordinate system (r, θ, z), with
the long axis of the left ventricle as the z-axis.

Without BSPMs information With BSPMs information
Um (in mm) 0.9907±1.0800 0.9760±1.0430

εrr 0.0341±0.0498 0.0296±0.0434
εθθ 0.0302±0.0501 0.0272±0.0388
εzz 0.0447±0.4329 0.0383±0.1741
εrθ 0.0236±0.0373 0.0221±0.0330
εθz 0.0212±0.0574 0.0192±0.0282
εzr 0.0215±0.0550 0.0193±0.0334

3 Experiments

3.1 Synthetic Data

In order to show the benefits of our proposed framework, experiments have
been conducted on synthetic data. Using the heart-torso model with geometry
and cardiac fiber architecture adopted from [9] and [10], a specific pathologi-
cal condition involving the right and left posterior fascicle branch bundle block
(RLPBBB) has been studied. The major effect of the block is the disruption of
the normal, coordinated and simultaneous distribution of the electrical signal to
the two ventricles, which thus contract sequentially rather than simultaneously.
The abnormal TMP propagation is shown against its normal counterpart in Fig.
1 (with 500ms in one cardiac cycle) . The simulated BSPMs are mapped from
the TMPs with 10dB SNR white Gaussian noises added. The cardiac deforma-
tions are also converted into a gray scale structural image sequence of 50 frames
with image size 75x75x16, added by 10dB SNR white Gaussian noises so that
the information provided are sparse and noisy (Fig. 2). These synthetic data are
used as inputs to our experiments.

Cardiac geometry and kinematics are recovered using the physiome model
without BSPMs information and our proposed framework. Fig. 1(c) shows the
TMP propagation recovered from BSPMs, which is similar to the RLPBBB case
and substantially different from the normal case. From the color maps shown
in Fig. 3, it can be seen that the geometry and kinematics recovered using our
proposed algorithm are closer to the ground truth. This is because complemen-
tary information from both BSPMs and structural images are utilized. The same
conclusion can be made through the numerical results shown in Table 1.

3.2 Human Data

Experiments on a normal human cardiac MR image sequence have been con-
ducted to show that our proposed framework is applicable to real data with
complicated structures. The image sequence contains 20 frames of a cardiac cy-
cle. Each 3D image frame contains 8 image slices, with 10mm inter-slice spacing,
in-plane resolution of 1.56mm/voxel, and temporal resolution of 43ms/frame
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(a)

(b)

Fig. 4. (a). MR image sequence of a normal human heart during systole (frame #1, #3,
#5, #7). (b). Recovered geometry and kinematics using the proposed algorithm (frame
#5). Left to right: displacement magnitude map, radial strain map, circumferential
strain map, and radial-circumferential strain map.

(Fig. 4(a)). The initial meshfree representation of the heart is obtained by seg-
mentation of the first image frame (end of diastole), and fibers are mapped
from the fiber architecture of the heart model from the University of Auckland
[1,10]. Since the BSPMs of the patient are not available, synthetic BSPMs are
currently used. Geometry and kinematics recovered using our proposed frame-
work are shown in Fig. 4(b). Further experiments on diseased human and animal
hearts are ongoing for further verifications.
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