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Abstract. Intravascular ultrasound (IVUS) is an invasive imaging mo-
dality capable of providing cross-sectional images of the interior of a
blood vessel in real time and at normal video framerates (10-30 frames/s).
Low contrast between the features of interest in the IVUS imagery re-
mains a confounding factor in IVUS analysis; it would be beneficial
therefore to have a method capable of detecting certain physical fea-
tures imaged under IVUS in an automated manner. We present such a
method and apply it to the detection of blood. While blood detection al-
gorithms are not new in this field, we deviate from traditional approaches
to IVUS signal characterization in our use of 1-class learning. This elim-
inates certain problems surrounding the need to provide “foreground”
and “background” (or, more generally, n-class) samples to a learner. Ap-
plied to the blood-detection problem on 40 MHz recordings made in vivo
in swine, we are able to achieve ~95% sensitivity with ~90% specificity
at a radial resolution of ~600 pm.

1 Introduction

Intravascular ultrasound (IVUS) is currently the gold-standard modality for in-
travascular imaging. However, the use of this imagery has been hampered by
the fact that some tasks remain difficult as a result of the indistinguishability
of certain features under IVUS. To help alleviate these problems, a number of
computational methods have been proposed over the last decade which aim to
detect or characterize one or more features in the IVUS image (e.g., plaque com-
ponents [I], contrast agents [2], or blood [3]). Digitally enhancing the contrast
between a feature and its background allows easier manual interpretation as well
as improved computer-aided analysis. For instance, blood detection may serve
as a pre-processing step for segmentation of the luminal border.

Our contribution in this paper is to investigate the feasibility of 1-class learn-
ing to the problem of distinguishing a single feature imaged under IVUS. In
particular, we apply this to the problem of blood detection. The primary ad-
vantage to our approach is the fact that “background” samples need never be
provided. In our case, as well as others in the field, the background can consist of
a wide variety of other imaged tissues. As such, providing suitable background
samples for training may be labor-intensive and subjective. With 1-class learn-
ing, we circumvent this problem by ignoring the background during training.
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Instead, training only requires samples of the foreground class which, in general,
can be obtained relatively easily from expert annotations. In practical terms, our
method has an advantage over luminal-border segmentation methods in that it
is not inherently tied to only detecting luminal blood. For example, we intend
to apply this framework to detect extra-luminal blood as well, specifically in the
microvascular network known to feed the coronary arteries and plaques [4].

An apparent disadvantage to our approach is that it need not necessarily work
at all: as the learner is never exposed to negative examples, it could naively
classify every sample as positive and give a 100% true-positive rate along with
a 100% false-positive rate. Features which provide little distinguishing power
between foreground and background will also result in a high false-positive rate.
This being the case, our study has two goals: to describe how the recognizer
framework may be applied to problems such as that of blood detection under
ultrasound, and to examine specific features for accomplishing this. In Sec. 2] we
provide background on the problems surrounding our task. In Sec.[3, we discuss
our contribution. We conclude with results (Sec. ) and a discussion (Sec. Hl).

2 Background

Intravascular ultrasound: The IVUS catheter consists of either a solid-state or a
mechanically-rotated transducer which transmits a pulse and receives an acous-
tic signal at a discrete set of angles over each radial scan. Commonly, 240 to 360
such one-dimensional signals are obtained per (digital or mechanical) rotation.
The envelopes of these signals are computed, log-compressed, and then geo-
metrically transformed to obtain the familiar disc-shaped IVUS image (Fig. [J).
However, most of our discussion will revolve around the original polar repre-
sentation of the data. That is, stacking the 1-D signals we obtain a 2-D frame
in polar coordinates. Stacking these frames over time, we obtain a 3-D volume
I(r,0,t) where r indicates radial distance from the tranducer, 6 the angle with
respect to an arbitrary origin, and ¢ the time since the start of recording (i.e.,
frame number). The envelope and log-compressed envelope signals we will rep-
resent by I. and I; respectively. Note that I contains real values while I, and
I; are strictly non-negative. The I; signal represents the traditional method of
visualizing ultrasound data, in which log compression is used to reduce the dy-
namic range of the signal in order for it to be viewable on standard hardware.
This signal is the basis for texture-based characterization of IVUS imagery. The
signal I has a large dynamic range and retains far more information, including
the frequency-domain information lost during envelope calculation. This “raw”
signal is the basis for more recent radiofrequency-domain IVUS studies [II5].

One-class learning: The backbone of our method is the 1-class support vector
machine (SVM); a widely-studied 1-class learner or “recognizer.” The problem
of developing a recognizer for a certain class of objects can be stated as a problem
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Fig. 1. @ The log-compressed envelope of the IVUS signal in polar format. The r
axis is horizontal (the origin being at the left, at the catheter) and the 6 axis vertical
(of arbitrary origin). The same signal after Cartesian transformation. The arrows
marked A and O (provided for orientation only) are positioned similarly in the polar
and Cartesian spaces. Diagram of the features of interest (from the center outward:
the catheter, blood, plaque, and adventitia and surrounding tissues).

of estimating the (possibly high-dimensional) PDF of the features characteriz-
ing those objects, then setting a probability threshold which separates in-class
objects from all other out-of-class objects. This threshold is necessary since, as
learning does not make use of out-of-class examples, the in-class decision re-
gion could simply cover the entire feature space, resulting in 100% true- and
false-positive rates. Following the approach of Schélkopf et al. [6], we denote
this threshold as v € (0,1). We note that as the learner is never penalized for
false positives (due to its ignorance of the negative class), it is essential that the
PDEF’s of the positive and negative classes be well-separated in the feature space.

The other parameter of interest is the width, v, of the SVM radial basis
function (i.e., k(x,x') = exp(—7 ||x — x/||?) for a pair of feature vectors x and
x'). Properties of a good SVM solution include an acceptable classification rate
as well as a low number of resulting support vectors. A high number of support
vectors relative to the number of training examples is not only indicative of
overfitting, but is computationally expensive when it comes to later recognizing
a sample of unknown class. A further discussion of the details of SVM operation
is outside the scope of this paper; the unfamiliar reader is encouraged to consult
the introduction by Hsu et al. [7].
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3 Materials and Methods

3.1 Data Acquisition and Ground Truth

Ungated intravascular ultrasound sequences were recorded at 30 frames/s in vivo
in the coronary arteries of five atherosclerotic swine. The IVUS catheter’s center
frequency was 40 MHz. Each raw digitized frame set I(r,0,t) consists of 1794
samples along the r axis, 256 angles along the # axis, and a variable number of
frames along t (usually several thousand). The envelope I. and log-envelope I
signals were computed offline for each frame.

For training and testing purposes, a human expert manually delineates three
boundaries in each image: one surrounding the IVUS catheter, one surrounding
the lumen, and one surrounding the outer border of the plaque (as in Fig.|[L(c)]).
The blood within the lumen is used as the positive class in training and testing.
As our goal is to separate blood from all other physical features, we use the
relatively blood-free tissue of the plaque as the negative class in testing. For
most of these studies we have ignored the adventitia and surrounding tissues;
in many cases this region contains blood-containing vessels and/or is difficult to
reliably interpret.

3.2 Features

We investigate two classes of features: those intended to quantify speckle (i.e.,
signal randomness in space and time) and those based on frequency-domain
spectral characterization. The former are traditionally used for blood detection
and the latter for tissue characterization. These featured] are defined for a 3-D
signal window of dimensions g X 0y X tg as follows:
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! These features were inspired by the principles behind temporal averaging in ultra-
sound (e.g., [8]) and tissue characterization (e.g., [I]).
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where stddev(+) returns the sample standard deviation of the samples in its argu-
ment and corr(+) returns the correlation coefficient of its argument compared to a
linear function (e.g., a constant signal), returning a value on [—1, 4+1]. The function
I indicates the magnitude of the Fourier spectrum of I. Function FFT(-) computes
the magnitude of the Fourier spectrum of its vector input (the vector result will be
half the length of the input due to symmetry) and mean signal(-) takes the mean
of the 0t IVUS signals in the window, producing one averaged 1-D signal.

The features represent measures of temporal (F, and Fs) and spatial (F)
speckle, a measure of signal strength (Fj3), measures of high-frequency signal
strength (F and, normalized by total signal strength, F;)), and a vector feature
consisting of the raw backscatter spectrum (F,). In practice, this final feature
is windowed to retain only those frequencies within the catheter bandwidth
(~20-60 MHz in our case). Each feature, with the exceptions of (F¢, F,, F,),
are computed on I, and I; in addition to I. Hence, features (Fy, Fs, Fs, F¢)
actually consist of vectors of three values. Feature (F),) consists of a vector that
varies according to the sampling rate and bandwidth of the IVUS system.

Samples are extracted by setting a fixed window size (rg, 0o, to) and, from a
set of consecutive IVUS frames (i.e., a volume) for which associated manually-
created masks are available, placing the 3-D window around each sample in the
volume. If this window does not overlap more than one class, the above features
are computed for that window and associated with the class contained by it.
To improve the scaling of the feature space, each feature of the samples used
for training are normalized to zero mean and unit variance. The normalization
values are retained for use in testing and deployment.

3.3 Training and Testing Scheme

In general, given a set of positive S+ and negative S_ samples (from the lumen
and plaque respectively), which typically represent some subset of our seven
features, a grid search over v and v is performed to optimize a one-class SVM
(Fig.[). Optimization in this case aims to obtain an acceptable true positive rate
on Sy, true negative rate on S_, and low number of support vectors. In order
to avoid bias, at every (v,r) point on the grid, 5-fold cross-validation is used.
That is, the recognizer is trained on one-fifth of S} and tested on the remaining
four-fifths of S and all of S_ (the negative class is never used in training).

As feature selection is especially critical in a one-class training scenario, we
will gauge the performance of each feature individually. More elaborate feature
selection schemes (e.g., genetic algorithms) could be employed, but as one of our
goals is to determine which features individually best characterize the blood, we
will not investigate this issue here.

4 Results

In each case described here, thirty frames were manually segmented into “blood”
and “non-blood” for training and testing purposes. (This number was deemed suf-
ficient as the backscatter properties of the blood should not change significantly
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Fig. 2. SVM optimization over v and . Contour maps represent@blood true-positive
rate and [(b)] support vector count. The marker at (y = 1, v = 0.01) indicates a true-
positive rate for blood of 97.1% and 101 support vectors. Similar plots (not shown) are
made to show the false-positive rate in the plaque, in order to aid optimization.

over the course of recording.) For each of our seven features, we obtained the best
possible results using the training method described previously. Specifically, we
chose the parameters v and ~ such that there was a true-positive rate (sensitiv-
ity) of ~98%, where possible, and a minimal false-positive rate. (The 98% value
was chosen arbitrarily to be a reasonable level.) The number of support vectors
at this point is indicative of the generalization power of the feature; however, this
information was not used for optimization purposes except as a sanity check, as a
large number of support vectors is indicative of overfitting. A final parameter to
be mentioned is the window size for feature extraction. In previous experiments
we determined a reasonable tradeoff between window size and spatial accuracy
to be (ro,00,t0) = (255,13, 13); this equates to a radial resolution of ~600 pm,
angular resolution of ~18°, and temporal resolution of ~0.4 s. In all experiments
presented here we use this window size.

We describe the results from one case in detail and two in summary. For
Case 1, Table [[l summarizes the results for each feature for a typical sequence.
To determine whether the performance of a particular feature was mainly due
to that feature’s application to a specific form of the data (i.e., either the raw
signal, its envelope, or its log-compressed envelope), this table also lists the re-
sults of subdividing three of the highest-accuracy features into their components
and performing experiments on these alone. Results from additional cases were
similar as we employed the same hardware and the same type of subject (i.e.,
swine). In Case 2 as in Case 1, we classified blood against non-blood (i.e., plaque
tissue) to obtain results of 97%/82.3%/2.8% (sensitivity, specificity, support vec-
tor fraction). In Case 3, we classified blood against manually-selected adventitial
tissue to obtain results of 95.3%/100%/4%.

It should be noted that in all cases, the blood content of the extra-luminal
tissue we compare against can affect specificity in an unknown manner. The
high specificity of Case 3 is probably due to our choosing as our non-blood class
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Table 1. Statistics relating the classification accuracy obtained by each feature with re-
spect to true/false (T/F) positives/negatives (P/N). Positive/negative examples used:
8737/9039. Sensitivity is defined as TP /(TP + FN); specificity as TN/(TN + FP). Sup-
port vectors (SV) are listed as an absolute value and as a percentage of the number of
(positive) examples used for training. Also shown are statistics relating the classifica-
tion accuracy obtained by features Fi, Fe, and F¢ when they are applied to only one
type of signal: the original®, envelope’, and log-envelopet.

Feature TP FP TN FN Sensitivity Specificity SV (%)
(

F. 8644 705 8334 93  98.9 92.2 106 (1.2)
Fs 872738685171 10 99.9 57.2 17 (0.2)
Fs 8649 8796 243 88  99.0 269 102 (1.2)
F. 8716 2 9037 21 998 100 33 (0.4)
F. 86531264 7775 84  99.0 86.0 98 (L.1)
F, 86002334 6705 137  98.4 742 246 (2.8)
F, 5010 27 90123727  57.3 99.7 8083 (92.5)
Fr 8404 3446 5593 333 96.2 61.9 271 (3.1)
Fl 8064 2811 6228 673  92.3 68.9 391 (4.5)
FI 8094 2552 6487 643  92.6 71.8 373 (4.3)
F* 7838 3488 5551 899  89.7 61.4 271 (3.1)
FI 7623 2962 6077 1114 87.2 67.2 187 (2.1)
F! 75421860 7179 1195  86.3 794 191 (2.2)
F; 8576 3241 5798 161  98.2 64.1 163 (1.9)
F} 859132645775 146 98.3 63.9 160 (1.8)
F} 841732775762 320  96.3 63.7 147 (1.7)

extra-luminal tissues which were likely to be blood-free. In Cases 1 and 2 we
used the entire plaque region as our negative class, in spite of the fact that this
region may in reality contain detectable blood.

5 Discussion and Conclusion

Our highest performance was obtained using features which attempt to directly
measure the amount of variability (“speckle”) present in the signal, either tem-
porally (Fy,), spatially (F), or in the frequency domain (F¢, F;)). Direct learning
from the Fourier spectrum tended to perform poorly (F,). This is likely because
one-class learning is ill-suited to determining the subtle differences in frequency
spectra between the backscatter of various features imaged under ultrasound.
The performance of these features as applied to a single signal type (e.g., F.¥)
tended to be poorer than the results obtained otherwise (e.g., F,). However, this
trend does not extend to increased performance when a larger number of features
are combined during training. For instance, we found that using all features
except Fy together results in prohibitively poor specificity (<20%). This is an
expected result for one-class SVMs, as their performance will degrade with the
inclusion of features in whose spaces the objects of interest are poorly separated.
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In the experiments described here, training and testing were performed on
each sequence independently. A topic of future investigation is whether a recog-
nizer trained on one sequence will have similar accuracy when applied to another
(for instance, a sequence recorded in a different subject). We also plan to per-
form histological validation to determine the true accuracy of our approach when
applied to the detection of extra-luminal blood. To achieve our ultimate goal of
visualizing the microvasculature, we will also attempt to increase the resolution
of our method to near the diameter of the vasa vasorum (~50-200 pm) [4].
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