
R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 171–180, 2007.
© IFIP International Federation for Information Processing 2007

An Embedded Integration Prototyping System
Based on Component Technique

Youngjin Jung1, Jeongbae Lee1, Jinbaek Kwon1,
Keewook Rim1, and Sangyoung Cho2

1 Department of Computer Science, Graduate School, Sunmoon University,
Kalsan-ri, Tangjeong-myeon, Asan-si, ChungNam, 336-840, Korea

2 Department of Computer Science and Engineering, Hankuk University of Foreign Studies,
89, Wangsan-ri Mohyun, Yongin-si, Kyounggi-do, 449-791, Korea

yjjung.kr@gmail.com, {jblee, jbkwon, rim}@sunmoon.ac.kr,
sycho@san.hufs.ac.kr

Abstract. Nowadays in the development of embedded system, cutting-edge
embedded system products are quickly disappearing from the markets because
of their short product development period which shortens the product life cycle.
Therefore, strengthening its competitiveness and minimizing its development
cost can be said to be one of the most important factors. For this motive, an
Embedded Integration Prototyping (IP) system based on Component Technique
was designed and implemented through this paper. The system is composed of
Physical Prototyping (PP) providing the environment in which the product can
be tested by using Actuator(Motor), Sensor and reusable Blocks, and Virtual
Prototyping (VP) in which visual test on the product can be carried out by ap-
plying various components and libraries based on technique related to the com-
puter. And, IP System was built in order to mutually compensate for drawbacks
latent in both of physical and virtual prototyping environment by making use of
component module. The module will be able to enhance the product competi-
tiveness, through spending less time in developing kinds of the component
owning almost same features, using it again for different embedded system
products, and accordingly minimizing spent cost and time for developing the
component.

Keywords: Component, Embedded System, Integration Prototyping (IP),
Physical Prototyping (PP), Virtual Prototyping(VP), Simulation.

1 Introduction

The Embedded System has been widely used in a diversity of industry fields includ-
ing military affairs, aerospace, information appliance, etc. In general, it is the compli-
cated combination of hardware and software equipped with unique operation envi-
ronment, independent architecture, special interface, and so on. And, because embed-
ded products applying latest technology have short life and development cycle for
them, they are disappearing from the market in fast speed, after their launch into the
market.

172 Y. Jung et al.

As result of these reasons, prototyping technology used for developing embedded
system product was needed to strengthen its competitiveness, with lessening the cost
to be spent for initial development stage, as well as applying Time-to-Market shorter
than before [1]. And, any problematic matters or errors possibly to take place at built-
in function and hardware after product’s launching into the market can be found in
advance by using prototyping technology and applying it in the product‘s features and
function from the stage of designing hardware. Besides, such found errors can be
immediately modified at found time points to carry out test on them again. Like this,
prototyping technology enables product to have higher level of reliability and per-
formance until its launch by gradually repeating these series of process. Prototyping
technology already known until present includes: PP in whose technology real em-
bedded system built in factory automation system, vending machine, washing ma-
chine, mobile phone, etc is tested and produced by using Embedded System Prototyp-
ing Suit (ESPS)[2]; VP in whose technology using computer-related technology 3D
model product can be visually created by providing libraries and various components;
IP under currently active research in whose technology physical and virtual prototyp-
ing can be integrated. But, PP technology can’t support diverse components and li-
braries to closely control small-sized appliances built with embedded system. On the
other hand, VP technology can’t support practical test environment for embedded
system, even if it is possible for the system to execute virtual simulation with using
computer technology. IP system at current times is implemented to give and receive
only simple data, by using communication technology between physical and virtual
prototyping. Besides, to be troublesome, it needs additional tasks initializing and
declaring data set up in actuator and sensor to let the system operate.

To solve these problems, Component-based IP system was designed and developed
at this paper in order to make it easier and promptly to reuse actuator and sensor built
in currently developed IP system to different embedded systems. This system set up
Double Rock Spin (DRS) system built in embedded system as its target, and con-
structed PP environment using ESPS, while it made use of RapidPLUS[3] tool visu-
ally providing 3D object to carry out simulation, and constructed VP environment.
The remainder of this paper is structured as follows. In the next section, we discuss
related works on embedded system prototyping. In section 3, we describe the design
of our integration prototyping component system. Section 4 presents the implementa-
tion of integration prototyping component system for DRS, and section 5 provides a
final discussion on our work and plans for future research.

2 Related Works

2.1 Physical Prototyping

A Prototype is miniature or real sized model product made during product develop-
ment prior to production. A prototype is applied to test product’s appearance and
performance before its launch, and belongs to the part of production. As computer
technology is developing in recent days, the process in which testable prototype equal
to real product is created by applying advanced visual and engineering technology
based on computer is called “Prototyping” [4-6]. PP can produce and test practically

 An Embedded Integration Prototyping System Based on Component Technique 173

embedded product such as model of factory automation system or vending machine.
To do so, PP supports operation environment similar to target model, by modifying
real-time operation system, Real-Time(RT) Linux kernel and producing board and
device driver for turning the product into drive. And, it can be applied as a tool of
promoting mutual understanding among professional developers in various fields
required due to the characteristic of embedded system in order to work together and to
invent efficient solution to settle problems. Using PP allows hardware and software
developers to carry out respective tasks at the same time in the middle of development
stage, and allows problems possibly occurring (if software may be applied) to be
directly communicated to hardware developer in order to solve them, as well as al-
lowing developers to improve in their mutual understanding. In addition, it guarantees
end product’s quality from its development stage. This PP enables smooth communi-
cation among developers, together with lessening cost, and thus has merit in product’s
price competitiveness, whereas it can strengthen ability of coping with any faults in
hardware found at the stage of developing software. But, PP environment can not
completely support various components or fully controlling libraries of small infor-
mation appliance product equipped with embedded system program, unlike VP envi-
ronment can do. Lots of development tools have been studied and developed, as im-
portance has been put on this PP concept in recent years.

2.2 Virtual Prototyping

VP using computer technology provides varied components and libraries. It supports
visually simulating real product with visual 3D modeling on the computer in order to
allow for the convenience in design modification and full control. Accordingly, with
technology development and application expansion related to computer, engineers
currently make use of VP technology in developing complicated systems. Current
physical prototype needs new prototype in order to change product’s appearance and
adding another function, but virtual prototype can easily change design by using mod-
eling method on GUI on condition that the design still exists on the computer. And it
also can add new function without difficulty, because a function is linked to appear-
ance expressed in formal specifications. But, it can not guarantee certainty of correct
simulation in embedded system environment, because it adopts visual simulation with
sense of sight using computer technology. VP like this is utilized in developing appli-
ance, designing car audio system, building visual factory, designing airport’s control
system, other validation field, etc, and is expected to enhance productivity by devel-
oping product through it in most of production realm, afterwards. Tools of developing
it includes RapidPLUS, ASADAL[7], Rahpsody[8] and Virtio-made Virito[9].

3 The Design of Integration Prototyping Component System

This section explains the architecture built up in component-based IP system to be
applied to various embedded system fields. Because this component module exists in
the middle of physical and virtual prototyping environment, it can add, delete, or
modify actuator and sensor component’s data and property set through TCP/IP
Socket. Data values set in component module and API(Application Programming

174 Y. Jung et al.

Interface) already produced for actuator and sensor are used in PP environment. User-
Defined Object (UDO) and RapidPLUS are used to be applied to values set in com-
ponent module in VP environment. Fig. 1 shows the architecture of component-based
IP system.

Fig. 1. The Architecture of IP Component System

3.1 The Design of Physical Prototyping

This section explains architecture of PP environment required for IP component sys-
tem. This system constructed simulating environment turning actuator and sensor into
operate, by using ESPI-API and data set in Component Module. Fig. 2 below dis-
plays the architecture of device driver and API for controlling several SMC(Sensor
Motor Controll) devices. Each SMC device driver acts like real-time task for operat-
ing each device in RTLinux environment. This device drivers control sensor and mo-
tor to operating via I/O port, Interrupt and DMA to be assigned to each oneself. Also,
each device driver communicate with user layer, higher-layer via RT-FIFO. And
SMC API has Application Programming Interface for using easier device driver of
user application.

Fig. 2. The Architecture of Device Driver and API

 An Embedded Integration Prototyping System Based on Component Technique 175

Fig.3 describes the role of device driver and API for PP. In user level, ESPS-API
carries out its role in connecting RT-Task and Linux process. RT-Task in RT kernel
carries out its role as device driver. RT-FIFO is needed as method of communicating
to this device driver. ESPS-API existing in kernel level executes its communication to
RT-Task, by internally using FIFO. ESPS-API was developed so that user could eas-
ily control LEGO board. ESPS-API can directly call LEGO device’s driver task from
kernel level. It is available for precise control, but has difficulty in programming.

Fig. 3. The Role of Deice Driver and API for PP

3.2 The Design of Virtual Prototyping

This section explains the construction of VP environment, by using RapidPLUS - tool
available for simulating embedded system product on User Interface (UI). Target
product is designed with RapidPLUS, as the process steps below.
① Placement: Place various objects provided for the appearance of targeted embed-
ded system product, dependent on the Layout.
② Design: Use objects to create Product appearance, and then design Mode, Transi-
tion, Trigger, Activity, etc to turn product into work.
③ As final step, use prototype provided in VP environment to test former process and
simulate product with debugged errors and problems.

Fig.4 expresses the relationship between application and UDO for constructing VP
component to be built in IP component system. It is possible to create/control actuator
and sensor in PP environment by setting up component in VP environment using UDO.

Fig. 4. The Relationship between Application and UDO

176 Y. Jung et al.

• Exported Functions: Sole function usable from other application
• Events: UDO reports its status change to parent application.
• Properties: Some types of data on object held.
• Messages: Able to send message to both of UDO and parent application by defining

its structure type.

3.3 The Design of Component Module

This section describes component module connecting physical respective PP and VP
components designed as above. Fig. 5 shows the design of component module be-
tween PP and VP. Component module for actuator and sensor was designed by using
PP and VP constructed in former clause. Component module is organized by each
class including actuator, sensor, and SensorMotor Component, as shown in class
diagram in Fig. 5. The Class is composed of:

• Actuator Class: Holds properties related to actuator channel number, direction, and
speed;

• Sensor Class: Sensor channel number and direction;
• SensorMotor Component Class: Holds objects of Actuator and Sensor Class.

This system was designed to create and control components in PP and VP environ-
ment, by using three classes set up in component module.

Fig. 5. The Design of Component Module between PP and VP

Fig. 6 describes the architecture of sensor and actuator’s component for IP system.
This component has property for changing specific status(channel, dir and speed) of
sensor and actuators and interface(sm_stop, sm_start, sm_pause, sm_restart, and set
motor, and so on) for setting/getting status of the component between physical and
virtual environment. And it has event for setting sensor and actuator’s status or using
or calling some information from outside.

Also, component module classes require data specification for connecting between
PP and VP. This data specification is shown in Table 1. The data specification is clas-
sified by Component, Function and Property for Actuator and Sensor.

 An Embedded Integration Prototyping System Based on Component Technique 177

Fig. 6. The Architecture of Sensor and Actuator for IP System

Table 1. The Data Specification of Component Module for IP System

Type Factor Definition
Component Actuator/Sensor Select Actuator/Sensor Component

Initialize Initialize properties of Actuator and Sensor
Start/Stop Set up Start/Stop Function

Function

Order Set up Auto/Manual Mode
Num Set up Actuator/Sensor’s Channel

Dir Set up Actuator/Sensor’s Direction

Property

Speed - Set up Actuator’s Speed

4 The Test and Evaluation of Integration Prototyping Component
System

This section describe the implementation of PP and VP for setting up targeted product
as DRS among embedded system products, and implementation of IP component
system through designing component-based system. We also describe the results
using component-based IP System in this section. Fig. 7 shows the test scenario for

Fig. 7. The Test Scenario

178 Y. Jung et al.

component-based IP System. Above all, we select component to be used and compo-
nent’s channel number (①-Selection). After that, we connect to PP and VP each using
socket communication for the selected components and then set up direction and
speed (②-Setup). Lastly, we operate function such as initialize, start, stop, and pause
(③-Operation).

4.1 System Test

(1) Physical Prototyping Side
Fig. 8 below displays PP for DRS already developed toward IP component system. In
this PP, four actuators are used, and they are operated by ESPS–API. Actuators in-
cluded here works so that DRS can revolve inward and outward. And sensors are used
to control work of the above defined motors.

Fig. 8. The DRS PP

(2) Virtual Prototyping Side
For DRS, VP can more easily and faster implements UI than PP, by realizing it with
using computer technology. Besides, it can test functions like almost real product, and
can easily find and modify problems. Fig. 9 describes functions of Actuator and Sen-
sor Component UI and shows that actuator and sensor components of VP environ-
ment required for the system are selected and setup. In this system, we use channel
number 1, 2 for Actuator and Sensor respectively. Because each of these components
has its own individual property and data, it is needless to create component again, for
other embedded system products. Furthermore, it will be able to lessen time and cost
to be spent in producing embedded system product, because it reuses components.

Fig. 9. Selection (left) and Setup (right) Actuator and Sensor Component UI

 An Embedded Integration Prototyping System Based on Component Technique 179

4.2 Evaluation

Table 2 below defines value, property and function of used actuator and sensor com-
ponent in IP System. We use two motors and two sensors to handle the motor work in
this system. And this system initializes value of defined actuator and sensor compo-
nent’s property. It also defines Start/Stop/Pause functions about work of the system
and function of order operation such as Auto and Manual Mode.

Table 2. The Used Simulation Data in IP System

Type Factor Descriptions (Value)
Sensor Select Sensor Component Component
Motor Select Motor Component

Initialize Initialize values of the above Actuator and Sensor (4)
Start/Stop Set up Start/Stop (1/2)

Function

Order Set up Manual Mode (2)
Num Set up available Sensor/Motor’s Channel(1,2/1,2)
Dir Set up selected Sensor/Motor’s Direction (0,1)

Property

Speed Set up selected Motor’s Speed (0x0, …., 0xF)

The result of simulated data shows that components implemented between PP side
and VP side are synchronized. And we can simulate fast and easily component-based
IP system to handle operation and change direction and speed of selected component
using setting Actuator and Sensor components.

5 Conclusion and Future Studies

Previously, IP system was an interlocking system to simulate target product in virtual and
physical environment. In developing embedded system, strengthening its competitive-
ness and minimizing its development cost can be said to be one of the most important
factors. For this motive, Component-based IP System was designed and implemented
through this paper. Implementing component-based system using sensor and actuator
that is highly reusable could make it possible to easily and fast implement IP systems
for various embedded system products. Reliable embedded system products pertinent
to Time-to-Market will be able to be launched into markets, by applying component-
based IP system. In addition to it, it will make contribution to strengthening product
competitiveness, too.

Implemented component-based IP system will be made in formal specification to ex-
pand its application to more industry fields, and debugger finding and then modifying
any errors will be additionally developed, afterwards. And, further studying the method
of assessing functionality built in embedded system product is for future study plan.

Acknowledgment. This study was supported by the Ministry of Information and
Communication of Korea under the Information Technology Research Center Support
Program supervised by the Institute of Information Technology Assessment (IITA-
2006-C1090-0603-0020).

180 Y. Jung et al.

References

1. Gaver, B., Dunne, T., Pacenti, E.: Cultural Probes. Interactions 6(1), 21–29 (1997)
2. ESPS, http://www.artsystem.co.kr
3. RapidPLUS, http://www.e-sim.com
4. Song, J.-H.: Institute of Information Technology Assenssment. Korea Information Science

Society, 23, 7–11(Dig. 9th Annual Conf. Magn. Jpn. p. 301 (1982)) ISSN 1229-6821
5. Lawson, B.: How Designers Think. Architectural Press (1997)
6. SONY, AIBO, http://www.sony.net/Products/aibo/
7. ASADAL, http://selab.postech.ac.kr/realtime/public_html/
8. Rhapsody, http://www.ilogix.com
9. Virtio, http://www.virtio.com

	An Embedded Integration Prototyping System Based on Component Technique
	Introduction
	Related Works
	Physical Prototyping
	Virtual Prototyping

	The Design of Integration Prototyping Component System
	The Design of Physical Prototyping
	The Design of Virtual Prototyping
	The Design of Component Module

	The Test and Evaluation of Integration Prototyping Component System
	System Test
	Evaluation

	Conclusion and Future Studies
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

