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Abstract. Safety issues of cooperating embedded systems are very important 
since they are closely related to our living. In this research, modeling 
techniques and safety analysis techniques for cooperating embedded systems 
are provided. Behaviors of embedded systems and safety properties are 
described by Labeled Transition Systems (LTS). For convenient and effective 
analysis, we provide a slicing method of the state space of a system according 
to a property. Based on the slice models, we provided an equivalence algorithm 
of LTS models and a compositional analysis technique of safety properties.  
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1   Introduction 

Recently, cooperating embedded systems via internets have been widely used in our 
lives. The main task of embedded software is to engage the physical world, 
interacting directly with sensors and actuators in distributed processing nodes. Since 
even a simple failure of software may lead to severe consequences, safety properties 
of embedded software should be checked before delivery. 

Various static analysis techniques have been proposed for verifying properties of 
distributed systems, which include model checking [1], inequality-necessary 
conditions analysis [2], data flow analysis [3,4], explicit state enumeration [5,6,7,8], 
and compositional reachability analysis[9, 10]. Among these analysis techniques, our 
approach focuses on compositional reachability analysis techniques, especially based 
on property automata [10] due to its scalability.  

In this paper, we propose an efficient approach to verifying safety properties of 
cooperating embedded systems using Labeled Transition Systems (LTS). We 
introduce a slice model concept for easily checking behavioral equivalence between a 
system model and safety properties. After LTS models and safety properties are 
transformed into slice models, respectively, safety analysis for each property is 
performed in the incremental and iterative manner. 

The remainder of the paper is organized as follows. Related works for LTS 
modeling and compositional analysis techniques are described in Section 2. Section 3 
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provides a description technique of system behaviors and safety properties by LTS. 
Section 4 presents a slice model concept and an algorithm for checking equivalence 
between two LTS models using slice models. In Section 5, a compositional safety 
analysis technique and its procedure are described. Section 6 evaluates the generated 
state space in the compositional safety analysis. Conclusion and future work appear in 
Section 7. 

2   Related Works 

LTS computation model has been widely used for specifying and analyzing 
distributed systems. To perform analysis based on LTS, it is necessary to construct the 
whole behavior model from the specification of the primitive processes. The whole 
behavior of the system can be described by the composite LTS which is constructed 
by composing the LTS1, LTS2, …, and LTSn of its constituent processes. This 
approach is generally known as reachability analysis. A major problem with 
reachability analysis is that the search space involved can grow exponentially with the 
increase in the number of concurrent processes. 

To cope with this problem reduction techniques have been proposed by reducing 
the search space. These reduction techniques can be categorized into two classes; 
reduction by partial ordering and reduction by compositional minimization. In the 
reduction techniques by partial ordering, the search space is reduced by excluding the 
paths formed by the interleaving of the same set of transitions [6]. In techniques by 
compositional minimization, also known as compositional reachability analysis, the 
search space is reduced by compositionally constructing the composite LTS where 
globally observable actions are abstracted out [9,11,12,13]. 

We will adopt and extend the compositional reachability analysis since it is 
amenable to automation and can reflect the architecture of distributed software. In the 
compositional safety analysis method [10], safety properties are described by state 
machines, called a property automata, which is augmented with a special undefined 
state (π). A property automata is automatically transformed to its corresponding 
image property automata by adding the π state for capturing potential violation of 
safety properties. For example, we want to check a safety property which an event 
‘on’ should be followed by event ‘off’ in all cases. Fig. 1 (b) and (c) show examples 
of a property automata and its image property automata, respectively. 
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Fig. 1. Examples of compositional safety analysis  
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Fig. 1 (a) shows a simplified system model, whose main behaviors include on  c 
 d*. In the example system, behaviors of the system do not have the safety property. 

However, the violations of the safety property in the model are not detected by the 
image property automata. For rigorously checking safety properties, the equivalence 
checking between safety properties and the system model should be enforced.  

3   Modeling System Behaviors and Properties 

Suppose that we have a gas oven that can be remote-controlled at home or outside 
using mobile devices. This remote control system may be useful for turning off the gas 
oven when we forgot to turn it off at going outside or when we want to control the 
oven remotely at home. However, it is unsafe to control a gas oven remotely since we 
can not check its status such as gas leakage and inflammable materials on it.  
Therefore, for safety, we need some complementary devices such as a flame detection 
sensor, which can be monitoring the status of the gas oven. Fig. 2 shows the overall 
structure of the gas oven that can be remote-controlled. Now, is the gas oven system 
safe ? 
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Fig. 2. An example of remote-controlled gas oven system 

Fig. 3 represents a block diagram of the remote-controlled gas oven system. For 
simplicity, we abstractly describe only core components. The gas oven system is 
composed of a gas oven controller, a valve controller, a flame sensor, a 
communication media, and mobile devices.   
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Fig. 3. A block diagram of the remote-controlled gas oven system 
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Each component of the block diagram is described by LTS. Fig. 4 shows the LTS 
models of the remote-controlled gas oven system. Communicating channels 
between components such as vCon and cCon are described by shared labels. In a 
LTS, all the states are considered as accepting states. The parallel composition of 
two LTS models, denoted by P || Q, models the synchronized behavior of shared 
labels. Local events behave independently while the shared labels should be 
synchronized.  
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Fig. 4. The LTS models of the gas oven system 

Safety properties can be represented by a sequence of events or be related with 
system states. And they can be described in positive form or negative form. In this 
paper, we support a state-based property and an event-based property in both the 
descriptions by extending property automata description technique [10]. Safety 
properties are also represented by LTS. But, a safety property model has several 
accepting states not all accepting ones. Followings are two types of safety properties: 
a state-based one and an event-based one. 

- State-based safety property: safety properties are described based on state 
variables. 
Safety Property 1 (SP1): When the valve controller component is in the 
“V1” state, the event “con” must not be occurred ( !(State(V1)  con) ) 

- Event-based safety property: safety properties are described as a sequence of 
events. 
Safety Property 2 (SP2): After a gas valve is opened, it should be closed  
( von  voff ). 

Fig. 5 represents the safety property models of SP1 and SP2. In the figure, double 
circled states means the accepting states. 
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Fig. 5. Examples of describing the safety properties   

Analysis of safety properties is performed in two ways. Negative safety properties 
can be checked whether the corresponding positive behaviors of the negative safety 
property can be occurred in the system model or not. In the case of positive safety 
properties, the behavior of a safety property should be always satisfied in the system 
model. Therefore, the satisfaction of the safety property can be checked whether its 
abstracted system behaviors are equivalent to behaviors of the property.  

4   Slicing System Model Based on State Variables 

It is not easy to compare two large LTS models. In order to simply compare the 
structures of LTS models, we slice the LTS models by restructuring them in the 
perspective of each state variable for effectively checking safety properties. 

Definition 1. Slice models of LTS 
A slice model of LTS is an LTS model that has only two boolean system states related 
and their related transitions, which has only four types of transitions (00, 01, 10, 11). 

Fig. 6 shows an example of representing a slice model in a graphical and a tabular 
form, which represents the valve controller component shown in Fig. 4.  
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Fig. 6. Graphical and tabular representations of the slice models 

For transforming an LTS model into the slice models, the states in the LTS model 
are represented by state variables. For each state variable, one or more slice models 
can be generated. If a state variable has several enumerated values, it is represented by 
several slice models. Followings show the steps for transforming a LTS model into 
the slice models. 
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Step 1: If there are the same labels in a LTS model, rename all the same transitions 
for differentiating all the transitions. For example, the ‘voff’ transition that 
appears severally in the gas oven controller component is renamed into voff1, 
voff2, and voff3. 

Step 2: For each transition in the LTS model, record the transition label in the each 
pattern of changes for each state variable in the slice models. As shown in 
Fig. 7, the ‘con’ transition from the state O0 to the state O1 is transformed 
into the ‘10’ transition of S0, the ‘01’ transitions of S1, respectively. 

Fig. 8 shows the slice models of the communication media component. There are 
two state variables: GON(command on) and GOFF(command off). The 
equivalence of an original LTS model and the composition of the slice models can 
be easily checked. Since we assume that all the transitions in the LTS model are 
different, there is one-to-one and onto mapping between two transition sets. The 
transition information between the corresponding transitions is equivalent since 
the transition rules preserve the transition information. The memory space for 
representing slice models in the tabular form is equivalent to the original LTS 
representation.  
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Fig. 7. An example for transformation rules 
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Fig. 8. Two slice models of the communication media component 
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Fig. 9 shows simple reduction rules for slice models. The event which is always 
occurred at any state can be reducible since it has no effects in enabling the other 
events. 
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Fig. 9. Reduction rules for the slice models 

Checking equivalence of two finite state machines is generally not easy since it is 
difficult to find the corresponding parts between different models. As shown in Fig. 
10 (a) and (b), two finite state machines have the same equivalent behavior. But, their 
structures are different. In the observation equivalence [15], the behavioral 
equivalence of two systems is checked by composing the corresponding states. But, 
this approach needs an additional space for recording the corresponding states 
information. In the slice models, behavior equivalence is checked by comparing each 
slice model in pair-wise manner. Fig. 10 (c) and (d) show the slice models of LTS2 
model and its reduced model by sequentially applying reduction rules. We can easily 
find out that the transformed slice models are the same. 
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Fig. 10. Checking equivalence of two LTS models 

5   Compositional Verification of Safety Properties 

For effective analysis, it is important to minimize the state space of a system model 
by localizing and reducing features unrelated to the safety property. During making an 
reduced model by the compositional approach, local transitions are abstracted by the 
λ elimination rules of transformations from the λ−acceptor to the λ−free machine 
[14]. Fig. 11 shows the overall procedure of our algorithm. In the start of analysis 
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procedure, the system model and the safety property are composed since we need the 
same reference points between two models for easily finding corresponding ones. 
During reduction procedure, the state variables and transitions of the property model 
are preserved.  

Safety properties are categorized into a positive form and a negative form. Safety 
analysis is differently performed according to its form. Followings are overall 
explanation of two safety analysis approaches.  

- Negative safety property: A safety property in the negative form describes 
that a situation should not be occurred. For checking these properties, we 
check whether the reversed positive situation is occurred in the system model 
or not. If the situation occurs, the property is not satisfied.  

- Positive safety property: A safety property in the positive form means that the 
property should be always satisfied in the system model. In this case, we 
check the equivalence of the property model and the abstracted system model 
against the property model.  

Main analysis procedure is performed on the slice models. Therefore, the reduced 
system model and the property model are transformed to the slice models. Inclusion 
of two models is decided by checking whether each slice model of the property model 
is equivalent to the corresponding slice model of the system model. Equivalence of 
two models is checked by the equivalence of all the corresponding slice models. 
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Fig. 11. Safety analysis procedure of LTS models 

Fig. 12 shows the analysis steps of the safety property (SP2) using the 
compositional analysis technique. Fig. 12 (a) shows the abstract model of 
(communication media || mobile device), called C1. Fig. 12 (b) represents the 
composed model of C1 and the gas oven controller component. In Fig. 12 (b), local 
transitions such as gon and goff are transformed into the λ transition and eliminated 
by the λ−elimination rules [14] such as the λ−loop elimination and the λ−transition 
reduction ( q0 =λ=> qt –s->q1  q0 –s-> q1) to become the model shown in Fig. 12 
(c). Through several composition and reduction steps, the final composed model C4 is 
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Fig. 12. Analysis steps of the safety property SP2 

generated as shown in Fig. 12 (d). Finally, we compare the final model and the safety 
property model after transforming into the slice models. In this example, we can 
easily find their differences of two models. In the consequence of analysis, we 
conclude that the safety property 2 is not satisfied in the system behavior due to the 
modeling error in the gas oven controller. 

6   State Space Evaluation of Slice Model Approach 

In this section, we evaluate the state space for the slice models and the compositional 
safety analysis. At first, we calculate the state space of the slice models. Let n and m 
be the number of the states and transitions of a system, respectively. Since the number 
of the slice models is dependent on the number of system states, it is calculated by 
log2(n). For each slice model, there can be m transitions in 00, 01, 10, and 11 slots at 
worst cases. Therefore, the slice model approach needs the state space of log2(n) * m 
* 2 (bits for identifying 4 transition slots). This number is the same to that of the FSM 
approach in which, for each transition, the source and destination states information 
(log2(n)) should be recorded.  

Next, we consider the state space for performing equivalence checking based on 
the slice models. In the observational equivalence approach, additional state space 
(the same or more size of the original model) is needed since the mapping information 
between corresponding states in two models should be recorded, while the slice model 
approach needs no additional space due to pair-wise comparison of each slice model.  

Table 1 shows the generated state spaces for checking the safety property SP2. As 
shown in Table 1, the compositional approach is more efficient than the FSM 



 Safety Property Analysis Techniques 123 

approach. Our compositional safety analysis method can fully utilize these merits of 
the compositional approach. 

Table 1. The generated analysis spaces for checking the safety property SP2 

Compositional approach   Approaches 
Composed 
models 

State diagrams 
(number of states and tr
ansitions) 

Original 
Models 

Reduced Mo
dels 

Reduction Rate
s (%) 

C1 = S1 || S2 4 (4) 3 (4) 3 (2) 0.0 (50.0) 
C2 = C1 || S3 10 (19) 5 (8) 3 (6) 40.0 (25.0) 
C3 = C2 || S4 10 (19) 3 (6) 2 (3) 33.3 (50.0) 
C4 = C3 || S5 14 (23) 2 (3) 2 (3) 0.0 (0.0) 

Total 38 (65) 13 (21) 10 (14) 23.1 (33.3) 

Legends: S1: Communication Media, S2: Mobile Device, S3: Gas Oven Controller, S4: Flame 
Detection Sensor, S5: Valve Controller. 

7   Conclusion and Future Work 

Safety issues are very important in the embedded system literature. In this paper, 
cooperating embedded systems such as the remote-controlled embedded system are 
described and analyzed by LTS. For convenient and effective compositional analysis 
of safety properties, we provide a slicing method of the system state space based on 
the system property, which is obtained by restructuring the LTS model. Based on the 
slice models, we provided an equivalence algorithm of LTS models and a 
compositional analysis technique of safety properties. 

Currently, we are developing a modeling and analysis tool that helps to describe 
LTS models and to automatically partition a LTS model into the slice models. In 
future work, we will add timing concepts in our analysis approach. 
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