
R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 114–124, 2007.
© IFIP International Federation for Information Processing 2007

Safety Property Analysis Techniques for Cooperating
Embedded Systems Using LTS

Woo Jin Lee1, Ho-Jun Kim1, and Heung Seok Chae2

1 EECS, Kyungpook National University, Sangyeok-dong, Buk-gu, Daegu, South Korea
woojin@knu.ac.kr, sisqo00@nate.com

2 Department of Computer Science and Engineering, Pusan National University,
30 Changjeon-dong, Keunjeong-gu, Busan, 609-735, South Korea

hschae@pusan.ac.kr

Abstract. Safety issues of cooperating embedded systems are very important
since they are closely related to our living. In this research, modeling
techniques and safety analysis techniques for cooperating embedded systems
are provided. Behaviors of embedded systems and safety properties are
described by Labeled Transition Systems (LTS). For convenient and effective
analysis, we provide a slicing method of the state space of a system according
to a property. Based on the slice models, we provided an equivalence algorithm
of LTS models and a compositional analysis technique of safety properties.

Keywords: safety property analysis, embedded system, LTS, slice model.

1 Introduction

Recently, cooperating embedded systems via internets have been widely used in our
lives. The main task of embedded software is to engage the physical world,
interacting directly with sensors and actuators in distributed processing nodes. Since
even a simple failure of software may lead to severe consequences, safety properties
of embedded software should be checked before delivery.

Various static analysis techniques have been proposed for verifying properties of
distributed systems, which include model checking [1], inequality-necessary
conditions analysis [2], data flow analysis [3,4], explicit state enumeration [5,6,7,8],
and compositional reachability analysis[9, 10]. Among these analysis techniques, our
approach focuses on compositional reachability analysis techniques, especially based
on property automata [10] due to its scalability.

In this paper, we propose an efficient approach to verifying safety properties of
cooperating embedded systems using Labeled Transition Systems (LTS). We
introduce a slice model concept for easily checking behavioral equivalence between a
system model and safety properties. After LTS models and safety properties are
transformed into slice models, respectively, safety analysis for each property is
performed in the incremental and iterative manner.

The remainder of the paper is organized as follows. Related works for LTS
modeling and compositional analysis techniques are described in Section 2. Section 3

 Safety Property Analysis Techniques 115

provides a description technique of system behaviors and safety properties by LTS.
Section 4 presents a slice model concept and an algorithm for checking equivalence
between two LTS models using slice models. In Section 5, a compositional safety
analysis technique and its procedure are described. Section 6 evaluates the generated
state space in the compositional safety analysis. Conclusion and future work appear in
Section 7.

2 Related Works

LTS computation model has been widely used for specifying and analyzing
distributed systems. To perform analysis based on LTS, it is necessary to construct the
whole behavior model from the specification of the primitive processes. The whole
behavior of the system can be described by the composite LTS which is constructed
by composing the LTS1, LTS2, …, and LTSn of its constituent processes. This
approach is generally known as reachability analysis. A major problem with
reachability analysis is that the search space involved can grow exponentially with the
increase in the number of concurrent processes.

To cope with this problem reduction techniques have been proposed by reducing
the search space. These reduction techniques can be categorized into two classes;
reduction by partial ordering and reduction by compositional minimization. In the
reduction techniques by partial ordering, the search space is reduced by excluding the
paths formed by the interleaving of the same set of transitions [6]. In techniques by
compositional minimization, also known as compositional reachability analysis, the
search space is reduced by compositionally constructing the composite LTS where
globally observable actions are abstracted out [9,11,12,13].

We will adopt and extend the compositional reachability analysis since it is
amenable to automation and can reflect the architecture of distributed software. In the
compositional safety analysis method [10], safety properties are described by state
machines, called a property automata, which is augmented with a special undefined
state (π). A property automata is automatically transformed to its corresponding
image property automata by adding the π state for capturing potential violation of
safety properties. For example, we want to check a safety property which an event
‘on’ should be followed by event ‘off’ in all cases. Fig. 1 (b) and (c) show examples
of a property automata and its image property automata, respectively.

1 2

on

d

(a) A System Model 1

1 2

on

off

(b) A Property Automata

1 2

on

off

(c) An Image Property Automata

π

onoff

3

c

4

off

e

Fig. 1. Examples of compositional safety analysis

116 W.J. Lee, H.-J. Kim, and H.S. Chae

Fig. 1 (a) shows a simplified system model, whose main behaviors include on c
 d*. In the example system, behaviors of the system do not have the safety property.

However, the violations of the safety property in the model are not detected by the
image property automata. For rigorously checking safety properties, the equivalence
checking between safety properties and the system model should be enforced.

3 Modeling System Behaviors and Properties

Suppose that we have a gas oven that can be remote-controlled at home or outside
using mobile devices. This remote control system may be useful for turning off the gas
oven when we forgot to turn it off at going outside or when we want to control the
oven remotely at home. However, it is unsafe to control a gas oven remotely since we
can not check its status such as gas leakage and inflammable materials on it.
Therefore, for safety, we need some complementary devices such as a flame detection
sensor, which can be monitoring the status of the gas oven. Fig. 2 shows the overall
structure of the gas oven that can be remote-controlled. Now, is the gas oven system
safe ?

Mobile Device

Home Gateway

Flame Detection Sensor

Gas Oven

Intranet

Internet / Wireless

Fig. 2. An example of remote-controlled gas oven system

Fig. 3 represents a block diagram of the remote-controlled gas oven system. For
simplicity, we abstractly describe only core components. The gas oven system is
composed of a gas oven controller, a valve controller, a flame sensor, a
communication media, and mobile devices.

Valve

Controller

Flame

Sensor

Gas Oven

Controller

Communication

Media

Mobile

Device

vCon = { von, voff }, fCon = { fd, not_fd }, gCon = { gon, goff }, cCon = { con, coff }

vCon

fCon

gCon cCon

Fig. 3. A block diagram of the remote-controlled gas oven system

 Safety Property Analysis Techniques 117

Each component of the block diagram is described by LTS. Fig. 4 shows the LTS
models of the remote-controlled gas oven system. Communicating channels
between components such as vCon and cCon are described by shared labels. In a
LTS, all the states are considered as accepting states. The parallel composition of
two LTS models, denoted by P || Q, models the synchronized behavior of shared
labels. Local events behave independently while the shared labels should be
synchronized.

Flame Sensor

Valve Controller

Gas Oven Controller

I
0

fd not_fd

von

voff

gon

goff

von

not_fd

goff

voff

voff

fd

Communication Media

con

gon

Mobile Device

con

coff

coff

goff

goff

V
0 V

1

C
1

C
2

C
0 M

0 M
1

O
0

O
1

O
2

O
3

O
4

Fig. 4. The LTS models of the gas oven system

Safety properties can be represented by a sequence of events or be related with
system states. And they can be described in positive form or negative form. In this
paper, we support a state-based property and an event-based property in both the
descriptions by extending property automata description technique [10]. Safety
properties are also represented by LTS. But, a safety property model has several
accepting states not all accepting ones. Followings are two types of safety properties:
a state-based one and an event-based one.

- State-based safety property: safety properties are described based on state
variables.
Safety Property 1 (SP1): When the valve controller component is in the
“V1” state, the event “con” must not be occurred (!(State(V1) con))

- Event-based safety property: safety properties are described as a sequence of
events.
Safety Property 2 (SP2): After a gas valve is opened, it should be closed
(von voff).

Fig. 5 represents the safety property models of SP1 and SP2. In the figure, double
circled states means the accepting states.

118 W.J. Lee, H.-J. Kim, and H.S. Chae

(b) SP2 : von voff

von voff

(a) Counter example of SP1
!(State(V1) con)

con

V1

Fig. 5. Examples of describing the safety properties

Analysis of safety properties is performed in two ways. Negative safety properties
can be checked whether the corresponding positive behaviors of the negative safety
property can be occurred in the system model or not. In the case of positive safety
properties, the behavior of a safety property should be always satisfied in the system
model. Therefore, the satisfaction of the safety property can be checked whether its
abstracted system behaviors are equivalent to behaviors of the property.

4 Slicing System Model Based on State Variables

It is not easy to compare two large LTS models. In order to simply compare the
structures of LTS models, we slice the LTS models by restructuring them in the
perspective of each state variable for effectively checking safety properties.

Definition 1. Slice models of LTS
A slice model of LTS is an LTS model that has only two boolean system states related
and their related transitions, which has only four types of transitions (00, 01, 10, 11).

Fig. 6 shows an example of representing a slice model in a graphical and a tabular
form, which represents the valve controller component shown in Fig. 4.

0

1

von voff

-11

voff10

von01

-00

state variable (Valve Controller)

Fig. 6. Graphical and tabular representations of the slice models

For transforming an LTS model into the slice models, the states in the LTS model
are represented by state variables. For each state variable, one or more slice models
can be generated. If a state variable has several enumerated values, it is represented by
several slice models. Followings show the steps for transforming a LTS model into
the slice models.

 Safety Property Analysis Techniques 119

Step 1: If there are the same labels in a LTS model, rename all the same transitions
for differentiating all the transitions. For example, the ‘voff’ transition that
appears severally in the gas oven controller component is renamed into voff1,
voff2, and voff3.

Step 2: For each transition in the LTS model, record the transition label in the each
pattern of changes for each state variable in the slice models. As shown in
Fig. 7, the ‘con’ transition from the state O0 to the state O1 is transformed
into the ‘10’ transition of S0, the ‘01’ transitions of S1, respectively.

Fig. 8 shows the slice models of the communication media component. There are
two state variables: GON(command on) and GOFF(command off). The
equivalence of an original LTS model and the composition of the slice models can
be easily checked. Since we assume that all the transitions in the LTS model are
different, there is one-to-one and onto mapping between two transition sets. The
transition information between the corresponding transitions is equivalent since
the transition rules preserve the transition information. The memory space for
representing slice models in the tabular form is equivalent to the original LTS
representation.

1 0

s
0
s

1

0 1

gon

-11

con10

gon01

-00

state variable (s
0
)

(a) (b)

-11

gon10

con01

-00

state variable (s
1
)

con

O
0

O1

Fig. 7. An example for transformation rules

con, gon

coff

goff

(b) slice model 1

coff, goff

con

gon

(c) slice model 2

con

gon

coff

goff

01 00 10

(a) The LTS model of communication media

Fig. 8. Two slice models of the communication media component

120 W.J. Lee, H.-J. Kim, and H.S. Chae

Fig. 9 shows simple reduction rules for slice models. The event which is always
occurred at any state can be reducible since it has no effects in enabling the other
events.

x

y

x

x

||

x

y

x

y

||

x

y

x

x

(a) reduction rule 1 of slice m odels (b) reduction rule 2 of slice m odels

Fig. 9. Reduction rules for the slice models

Checking equivalence of two finite state machines is generally not easy since it is
difficult to find the corresponding parts between different models. As shown in Fig.
10 (a) and (b), two finite state machines have the same equivalent behavior. But, their
structures are different. In the observation equivalence [15], the behavioral
equivalence of two systems is checked by composing the corresponding states. But,
this approach needs an additional space for recording the corresponding states
information. In the slice models, behavior equivalence is checked by comparing each
slice model in pair-wise manner. Fig. 10 (c) and (d) show the slice models of LTS2
model and its reduced model by sequentially applying reduction rules. We can easily
find out that the transformed slice models are the same.

a b

s0

s1

q0

q1 q2

q3

(a) LTS1 (b) LTS2

a

b

a

b

a
1
,

a
2

b
1
,

b
2

(c) Slice m odels of LTS2

b
1

b
2

a
1

a
2

(d) Reduced m odel

a b

Fig. 10. Checking equivalence of two LTS models

5 Compositional Verification of Safety Properties

For effective analysis, it is important to minimize the state space of a system model
by localizing and reducing features unrelated to the safety property. During making an
reduced model by the compositional approach, local transitions are abstracted by the
λ elimination rules of transformations from the λ−acceptor to the λ−free machine
[14]. Fig. 11 shows the overall procedure of our algorithm. In the start of analysis

 Safety Property Analysis Techniques 121

procedure, the system model and the safety property are composed since we need the
same reference points between two models for easily finding corresponding ones.
During reduction procedure, the state variables and transitions of the property model
are preserved.

Safety properties are categorized into a positive form and a negative form. Safety
analysis is differently performed according to its form. Followings are overall
explanation of two safety analysis approaches.

- Negative safety property: A safety property in the negative form describes
that a situation should not be occurred. For checking these properties, we
check whether the reversed positive situation is occurred in the system model
or not. If the situation occurs, the property is not satisfied.

- Positive safety property: A safety property in the positive form means that the
property should be always satisfied in the system model. In this case, we
check the equivalence of the property model and the abstracted system model
against the property model.

Main analysis procedure is performed on the slice models. Therefore, the reduced
system model and the property model are transformed to the slice models. Inclusion
of two models is decided by checking whether each slice model of the property model
is equivalent to the corresponding slice model of the system model. Equivalence of
two models is checked by the equivalence of all the corresponding slice models.

LTS

Components

LTS

Components

LTS

Components

Basic

Module

Slice

Models
Basic

Module

Basic

Module

Slice

Models

Safety

Property

Transformation

Inclusion or
Equivalence

Check

Reduced

Model
Transformation

Composition &

Reduction

Fig. 11. Safety analysis procedure of LTS models

Fig. 12 shows the analysis steps of the safety property (SP2) using the
compositional analysis technique. Fig. 12 (a) shows the abstract model of
(communication media || mobile device), called C1. Fig. 12 (b) represents the
composed model of C1 and the gas oven controller component. In Fig. 12 (b), local
transitions such as gon and goff are transformed into the λ transition and eliminated
by the λ−elimination rules [14] such as the λ−loop elimination and the λ−transition
reduction (q0 =λ=> qt –s->q1 q0 –s-> q1) to become the model shown in Fig. 12
(c). Through several composition and reduction steps, the final composed model C4 is

122 W.J. Lee, H.-J. Kim, and H.S. Chae

(b) C1 || GasOvenController

gon goff

(c) C2 = Abstraction of (b) (d) C4 = Abstraction of (C2 ||
ValveController || FlameDetectionSensor)

gon=>λ

goff=>λ

von

not_fd

voff

voff

fd

(a) C1 = Abstraction of
(CommMedia || MobileDevice)

von

not_fd

voff

fd

voff

λ

von voff λ von voff

(e) Safety Property 2 (SP2)

s
0

s
1

goff=>λ

goff=>λ

λ−loop

Fig. 12. Analysis steps of the safety property SP2

generated as shown in Fig. 12 (d). Finally, we compare the final model and the safety
property model after transforming into the slice models. In this example, we can
easily find their differences of two models. In the consequence of analysis, we
conclude that the safety property 2 is not satisfied in the system behavior due to the
modeling error in the gas oven controller.

6 State Space Evaluation of Slice Model Approach

In this section, we evaluate the state space for the slice models and the compositional
safety analysis. At first, we calculate the state space of the slice models. Let n and m
be the number of the states and transitions of a system, respectively. Since the number
of the slice models is dependent on the number of system states, it is calculated by
log2(n). For each slice model, there can be m transitions in 00, 01, 10, and 11 slots at
worst cases. Therefore, the slice model approach needs the state space of log2(n) * m
* 2 (bits for identifying 4 transition slots). This number is the same to that of the FSM
approach in which, for each transition, the source and destination states information
(log2(n)) should be recorded.

Next, we consider the state space for performing equivalence checking based on
the slice models. In the observational equivalence approach, additional state space
(the same or more size of the original model) is needed since the mapping information
between corresponding states in two models should be recorded, while the slice model
approach needs no additional space due to pair-wise comparison of each slice model.

Table 1 shows the generated state spaces for checking the safety property SP2. As
shown in Table 1, the compositional approach is more efficient than the FSM

 Safety Property Analysis Techniques 123

approach. Our compositional safety analysis method can fully utilize these merits of
the compositional approach.

Table 1. The generated analysis spaces for checking the safety property SP2

Compositional approach Approaches
Composed
models

State diagrams
(number of states and tr
ansitions)

Original
Models

Reduced Mo
dels

Reduction Rate
s (%)

C1 = S1 || S2 4 (4) 3 (4) 3 (2) 0.0 (50.0)
C2 = C1 || S3 10 (19) 5 (8) 3 (6) 40.0 (25.0)
C3 = C2 || S4 10 (19) 3 (6) 2 (3) 33.3 (50.0)
C4 = C3 || S5 14 (23) 2 (3) 2 (3) 0.0 (0.0)

Total 38 (65) 13 (21) 10 (14) 23.1 (33.3)

Legends: S1: Communication Media, S2: Mobile Device, S3: Gas Oven Controller, S4: Flame
Detection Sensor, S5: Valve Controller.

7 Conclusion and Future Work

Safety issues are very important in the embedded system literature. In this paper,
cooperating embedded systems such as the remote-controlled embedded system are
described and analyzed by LTS. For convenient and effective compositional analysis
of safety properties, we provide a slicing method of the system state space based on
the system property, which is obtained by restructuring the LTS model. Based on the
slice models, we provided an equivalence algorithm of LTS models and a
compositional analysis technique of safety properties.

Currently, we are developing a modeling and analysis tool that helps to describe
LTS models and to automatically partition a LTS model into the slice models. In
future work, we will add timing concepts in our analysis approach.

Acknowledgments. This research was supported by the MIC (Ministry of
Information and Communication), Korea, under the ITRC (Information Technology
Research Center) support program supervised by IITA (Institute of Information
Technology assessment).

References

1. McMillan, K.L.: Symbolic model checking. Kluwer Academic Publishers, Dordrecht
(1993)

2. Avrunin, G.S., et al.: Automated analysis of concurrent systems with the constrained
expression toolset. IEEE trans. software engineering 17(11), 1204–1222 (1991)

3. Cheung, S.C., Kramer, J.: Tractable dataflow analysis for distributed systems. IEEE trans.
software engineering 20(8), 579–593

124 W.J. Lee, H.-J. Kim, and H.S. Chae

4. Dwyer, M.B., Clarker, L.A.: Data flow analysis for verifying properties of concurrent
programs. In: Proc. of the 2nd ACM SIGSOFT Symposium on the foundation of software
engineering, pp. 62–75. ACM Press, New York (1994)

5. Cheung, S.C., Kramer, J.: Context constraints for compositional reachability analysis.
ACM trans. software engineering and methodology 5(4), 334–377 (1996)

6. Godefroid, P., Wolper, P.: Using partial orders for the efficient verification of deadlock
freedom and safety properties. In: Proc. of the 3rd international conference on computer
aided verification (1991)

7. Long, D., Clarke, L.: Task interaction graphs for concurrency analysis. In: Proc. of the
11th ICSE, pp. 44–52 (1989)

8. Valmari, A., et al.: Putting advanced reachability analysis techniques together: The ‘ARA’
tool. In: Larsen, P.G., Woodcock, J.C.P. (eds.) FME 1993. LNCS, vol. 670, pp. 597–616.
Springer, Heidelberg (1993)

9. Yeh, W.J., Young, M.: Compositional reachability analysis using process algebra. In: Proc.
of ACM SIGSOFT, pp. 49–59 (1991)

10. Cheung, S.C., Kramer, J.: Checking Safety Properties using Compositional Reachability
Analysis. In: ACM TOSEM, pp. 49–78 (1999)

11. Malhotra, J., et al.: A tool for hierarchical design and simulation of concurrent systems. In:
Proc. of the BCS-FACS workshop on specification and verification of concurrent systems,
pp. 140–152 (1988)

12. Sabnani, K.K., et al.: An algorithmic procedure for checking safety properties of protocols.
IEEE trans. communication 37(9), 940–948 (1989)

13. Tai, K.C., Koppol, P.V.: An incremental approach to reachability analysis of distributed
programs. In: Proc. of the 7th international workshop on software specification and design,
pp. 141–150 (1993)

14. Denning, P.J., et al.: Machines, Languages, and Computation. Prentice-Hall, Englewood
Cliffs (1978)

15. Milber, R.: Communication and Concurrency. Prentice Hall, Englewood Cliffs (1989)

	Safety Property Analysis Techniques for Cooperating Embedded Systems Using LTS
	Introduction
	Related Works
	Modeling System Behaviors and Properties
	Slicing System Model Based on State Variables
	Compositional Verification of Safety Properties
	State Space Evaluation of Slice Model Approach
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

