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Abstract. We develop a technique to validate large-scale gene regulatory 
networks (GRN) by comparing with corresponding protein-protein interaction 
(PPI) networks. The GRN are obtained with Bayesian networks while PPI 
networks are obtained from database of known PPI interactions. We look for 
exact matches and then reduced networks by skipping one or more genes in 
GRN. We demonstrate our technique on expression profiles of differentially 
expressed genes in the S. cerevisiae cell cycle. We validate GRNs against a 
merged database of 53235 genes. The precisions of GRN obtained over all 
genes were from 0.82 to 0.95 in all the phases. In particular we realized that 
one-skip and two-skip model significantly improved accuracy of the GRN of 
different phases of cell cycle.   

Keywords: Dynamic Bayesian networks, gene regulatory networks, genetic 
algorithms, protein-protein interactions. 

1   Introduction 

A protein-protein interaction network (PPIN) has protein as nodes and the edges can 
be signaling, regulatory and biochemical interactions of the proteome. However, a 
Gene Regulatory Network (GRN) shows interaction of DNA segments of the genome 
with other substances of the cell, which results in regulating rates at which genes are 
transcribed to mRNA. This high throughput data has a large scope for organization in 
context of disease and biological function [1]. There is a need to explain the cellular 
machinery of a GRN in a systems biology perspective as seen by a  PPIN. A common 
representation of GRN is a ‘pathway model’ , a graph where vertices represent genes 
(or larger chromosomal regions) and arcs represent casual pathways. A vertex can 
either be off/normal or on/abnormal. Bayesian networks (BN) have recently become 
popular in deriving and deciphering GRN [2] and PPIN [3]. BN is a directed acyclic 
graph representing casual relations among interacting variables at the nodes. Pathway 
models have natural representations as BN.  

GRN is a model based on mRNA abundance, measured usually by microarrays, 
rendering an effective network of gene to gene interactions. DNA hybridization arrays 
simultaneously measure the expression levels of thousands of genes. Clustering-based 
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visual tools, such as hierarchical clustering [7] and SOM [8] assume that each gene 
belongs to only one cluster. Such algorithms attempt to locate groups of genes having 
similar expression patterns over a set of experiments and hence possibly co-regulated 
or having similar functions. This assumption fails where genes belong to two or more 
independent expression patterns. Traditional statistical methods for computing low-
dimensional or hidden representations of these data sets, such as principal component 
analysis (PCA)[9] and independent component analysis (ICA)[10], ignore the 
underlying interactions and provide a decomposition based purely on a priori 

statistical constraints on the computed component signals.  
Here our knowledge about a biological system is not directly expressed by a 

parameter vector of state variables, but instead is about the statistical dependencies (or 
independencies) called casual relationships among the variables. The casual 
dependencies among variables are represented by BN in terms of conditional 
probabilities, so they infer ‘cause and effect’ relationships. The nodes of BN 
mimicking GRN represent gene expressions, either by analog or discrete variables, 
and interactions by discrete and continuous multidimensional distributions [4]. 
Further, dynamic Bayesian networks (DBN) can model the stochastic evolution of a 
set of random genes over time and therefore temporal information of interactions 
efficiently [5]. DBN have advantages over hidden Markov models (HMM) whose 
parameterization grows exponentially with the number of state variables and over 
Kalman filters which is capable of handling only unimodal posterior distributions. BN 
and DBN are defined by a graphical structure and a set of parameters, which together 
specify a joint distribution over the variables it represents. The nodes in Bayesian 
network could represent either binary or continuous variables. One advantage of 
representing state variables as continuous Gaussian rather than discrete is that the 
posterior can be marginalized efficiently over time [6]. A special class of regulatory 
network models is one of linear time continuous models [11]. Analysis of gene 
expression reveals a considerable amount of time delayed interactions, suggesting that 
time delay is ubiquitous in gene regulation. State-space models with time delays of 
gene regulatory networks use Boolean variables to capture the existence of discrete 
time delays of the regulatory relationships among the internal variables [12].  

Various tools are now available to generate GRN from Microarray data using above 
models. Gene Networks [13] offers four models including the linear model, and 3 
genetic algorithm based models, S-system, Boolean networks, and Bayesian 
networks. BN uses a genetic algorithm adapted from REVEAL[14] to optimize the 
cost function which is a NP-hard problem. Linear differential model assumes that the 
change of each component over time is given by a weighted sum of all other 
components. In this model, the expression state at one time point determines the 
expression state observed at the next point However assumption of linear gene-
regulation relationship in unrealistic, complex systems, such as gene expression 
networks and metabolic pathways, are comprised of numerous richly interacting 
components. By representing states as binary variables and then connections by 
multinomial distributions, non-linear interactions among nodes can be represented in 
Bayesian networks. 

The GRN derived from gene expression data are often over-fitted. And some of the 
genes are masked by the activation of highly expressed similar genes. Here we try to 
enhance and validate GRN derived using Bayesian networks with corresponding 
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PPIN discovered from PPI databases. Validation of GRN is of vital importance for 
making inference on large scale pathways. Here we assume skipping of one or more 
genes in predicted gene interaction networks and, when mapping to a protein-protein 
interaction, allow for prodigies of genes. As seen later, this enhances the accuracy of 
GRN derived from gene expression data and increases true prediction of interactions 
without altering biological pathways. 

We demonstrate our technique with the yeast cell-cycle data, which contain 
differentially expressed genes in different phases of cell-cycle. Our results show that 
the sensitivity of BN in detecting genes of a common pathway can be improved with 
the validation using PPI. This paper is organized as follows: in Section 2, we explain 
how GRN are derived using BN Section 3 describes how GRN and PPIN are mapped. 
Experiments and results with yeast cell-cycle data are given in Section 4. Lastly, we 
draw conclusions from our findings.   

2   Gene Regulatory Networks 

2.1   Dynamic Bayesian Networks  

A BN is a graphical model representing joint multivariate probability distributions to 
capture the properties of conditional independencies among variables and consists of 
two components: a directed acyclic graph (DAG) structure, S , and a set of 
conditional distributions with parameters θ , of each variable, given its parents [15]. 
BN are unable to model stochastic systems evolving over time. Furthermore, they are 
unable to construct cyclic regulations (positive and negative feedback loop 
mechanisms) to regulate the activities of state variables at nodes typical of biological 
processes. Hence, we use dynamic Bayesian networks (DBN) to generate GRN. DBN 
makes the following assumptions: (1) the genetic regulation process is first-order 
Markovian, i.e., the expression state of one gene at one time point is dependent only 
on the expression state of other genes observed at the previous time point; (2) the 
dynamic casual relationships between genes are invariable over all the time slices, 
that is, the set of variables and probability definitions of a DBN are the same for each 
time points (i.e., stationarity). 

The dynamics of the DBN are hence defined in a transition network over two time 
slices, taken at time t  and time 1t +  as illustrated in Figure 1: The parameters are the 
probabilities of each variable, conditioned on the other variables at the previous one 
time point. Given the transition network over two time slices, the DBN is obtained by 
unrolling static transition BN over all time instances to determine the dynamics of 
stochastic variables over entire experiment. 

In a GRN, the nodes of the BN are represented by the expressions of genes and the 
edges by the causal effects. Let us consider a Bayesian network representing a set of 
gene expressions }X,....X,X{X n21= in a GRN consisting of n  genes. The joint 

probability of the expression of the genes is then be represented 

by )|X(P)X(P
i

n

1i
i ∏∏

=

=  where ∏i
 denotes the set of gene expressions of 

parent nodes of gene i  with expression X . We see that this metric is NP-hard but 
decomposable. 
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Fig. 1. Illustration of the transition network defining a dynamic Bayesian network consisting of 
n nodes. Fig. 2. Dotted line show the predicted interaction by a GRN (a) HTA1 interaction with 
HTB2 predicted by PPI which is same as by GRN (0-skip model) (b) HTA2 interaction with 
HHO1 predicted by PPI (1-skip model), GRN skips the gene YKU70 (c) HTB2 interaction with 
KIP1 predicted by PPI (2-skip model), GRN skipped 2 genes RPA135 and TUB2.   

Finding a Bayesian network that fits the gene expressions best requires a search over 
the model space of both structure S  and the interactions. Hence, a proper scoring 
function is needed to rank possible solutions and find the optimal solution. The posterior 
probability of a GRN, S , given gene expression data X , is given by, )X|S(P ∝  

)S(P)S|X(P where )S(P  gives the prior probability of the network structure and 

)S|X(P  the likelihood. We have taken 6 important assumptions. Firstly we assume a 

multinomial sample, given domain U and database X , let lX denote the first 1l − cases 

in the database. In addition, let ilx and ∏il
denote the variable ix and the parent set 

∏i
in the l th case, respectively. Then for all network structures sB in U , there exist 

positive parameters 
sBΘ such that, for n,...,1i = and for all 1i1 k,....,k,k − , 

s

h
il 1l 1 (i 1)l i 1 l B s ijkp(x k | x k ,...., x k ,X , , B , )− −= = = Θ ξ = θ . Where ξ  is the 

current state of information. Second assumption is of parameter independence, given 

network structure sB if 0)|B(p h
s >ξ then ∏

=

Θ=Θ
n

1i

h
si

h
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ξρξρ , 

for :n,....,1i = ∏
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Θ=Θ
iq
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sij

h
si ),B|(),B|( ξρξρ . Third assumption is that of 

parameter modularity which says that given two network structures 1sB and 2sB such 

that 0)|B(p h
1s >ξ  and 0)|B(p h

2s >ξ , and ix  has the same parameters in 1sB  

and 2sB , then ),B|(),B|( h
2sij

h
1sij ξρξρ Θ=Θ iq,....,1j = . Fourth is the 

assumption that the distribution is Dirichlet. Given the network structure sB such that  
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0)|B(p h
s >ξ . ),B|( h

sij ξΘρ is Dirichlet for all 
sBij Θ⊆Θ . That is, there exists 

exponents '
ijkN which depend on h

sB and ξ , that satisfy 

∏ −=Θ
k

1N
ijk

h
sij

'
ijk.c),B|( θξρ where c is a normalization constant. The fifth 

assumption is that the database is complete. That is there are no missing data. The 
final assumption is of likelihood equivalence that given two network structures  

1sB and 2sB  such that 0)|B(p h
1s >ξ and 0)|B(p h

2s >ξ , if 1sB and 2sB are 

equivalent, then ),B|(),B|( h
2sU

h
1sU ξρξρ Θ=Θ . The assumption of likelihood 

equivalence when combined with the previous assumptions introduces constraints on 

the Dirichlet exponents /
ijkN . The result is a likelihood-equivalent specialization of 

the BD metric , which we call the BDe metric. The marginal likelihood can be 
represented by the BDe metric [16].  

BDe = ∏∏∏
== = Γ

+Γ
+Γ

Γ ii r

1k
/
ijk

ijk
/
ijk

n

1i

q

1j ij
/
ij

/
ij

)N(

)NN(

)NN(

)N(
 

where  )x(Γ  is a Gamma function Dirichlet distribution. Each gene i can take a finite 

number of distinct states r such that }x,...x,x{X
ir21i =  and  is assumed to have a 

finite number of distinct state combinations of the parents, qi such that 

}a,...a,a{
iq21i

=∏ . /
ijkN  represents the Dirichlet prior parameters and ijkN the 

counts of interactions.  

2.2   Derivation of GRN Using a Genetic Algorithm  

A Genetic Algorithm (GA) is applied to effectively search the large solution space 
and to learn the network structure optimizing the BDe metric. We only consider 
binary interactions and therefore a solution individual is represented as a binary 
matrix which indicates the interaction states between genes and their parent genes (the 
genes that regulate them) where 1 denotes a regulation and 0 means no interaction. 

The solution nnj,i }c{C ×= , where ijc ∈ }1,0{ is the interaction between genes i  

and j . Using the solution C  we can calculate the terms /
ijkN , the parameters of prior  

[17], and ijkN , the number of observations (for the state defined by i , j  and k ) 

respectively where ki xX = , hence k  is state of gene i , also ji
a=∏ , j is the 

state combination of parents of i. Further,  ∑
=

=
jr

1k

/
ijk

/
ij NN  and ∑

=

=
ir

1k
ijkij NN . Then, 

using the equation above, we can get the BDe metric of the solution C .  



 Validation of Gene Regulatory Networks from Protein-Protein Interaction Data 305 

The inputs to the genetic algorithm is a time-series data of expression of all genes. 
Genes in consecutive time points having similar expression levels can be said to have 
an interaction. The algorithm is as follows: 

Procedure for DBN-GA 
Begin 

Initialize: Randomly create P initial individuals that can be represented as a 
binary interaction matrix. 

While(until G generations) 
Evaluate the fitness function of each individual using BDe metric 
Select the elite individual to be passed on to next generation 

      Generate new individuals by selection, crossover and mutation. With the      
exception of the elite individual, the design code of each child (new 
individual) is created based on the design codes of two parents (old 
individual). Two parents are selected from the P individuals according to the 
probability proportional to their order of fitness (ranking or roulette 
strategy).  

End of While 
Build the gene regulation matrix based on the individual that has the largest 

fitness.  
End 

2.3   Missing Data 

A key problem for all models is a shortage of data. The raw gene expression data, 
usually in the form of large matrix, may contain missing values. This is a result of 
insufficient resolution, image corruption, or simply due to dust or scratches on the 
slide. KNNimpute (K Nearest Neighbors) method [18] is used to predict missing 
Microarray expression levels.  

3   Mapping of GRN and PPI 

3.1   Protein-Protein Interaction Networks (PPIN) 

Proteins frequently bind together in pairs or larger complexes to take part in 
biological processes. Most biological phenomena is due to a protein-protein 
interaction. There are several experimental techniques for determining protein-protein 
interaction data. Synthetic lethality[19], Affinity Capture-MS[20], and Yeast-2-
Hybrid [21]being the top few in our biogrid dataset.  

3.2   Motivation 

The derivation of BN, using the GA, is very sensitive to the population set of 
structures. Since we are trying to achieve a final maximum fitness, it is at the 
expenses of finding the set of solutions that are together most likely to be correct, 
which means individual correct solutions are left out because of this evolutionary 
population model. The networks or the solutions on the other hand aim to connect 
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genes which have similar expression profiles. Since a child gene follow the 
expression pattern of a parent gene which is regulating it. This results in skipping or 
missing genes in GRN, especially those with highly expressed genes. Therefore, often 
the GRNs derived using BN are often underestimated in the number of genes. In order 
to overcome this, we propose a technique that incorporates the knowledge from 
corresponding PPIN to infer the missing interactions in GRN. 

3.3   K-Skip Validation 

In order to account for the missing genes and interactions in GRN, we employ k-skip 
models of GRN which assumes that k-genes are skipped in estimating GRN between 
two parent genes. The simplest is called the one-skip model where one gene is 
skipped in GRN due to an interaction between two genes. One reason for this could 
be that mRNA from gene1 might not be directly interacting with mRNA from gene2. 
Rather the protein product from gene1 may alter the level of mRNA from gene2. An 
example could be a transcription factor, which may not occur by making more of it, 
but just by phosphorylation (post-translational modification) [22]. Also we are 
interested in finding genes which lie in the same pathway. Hence these one-skip and 
two-skip predictions are also of high importance to us.  

These models are defined as follows: 

0-skip Model: Indicates a direct interaction between proteins A and B  
1-skip Model: There exists a protein C such that both A and B interact with C 

according to 0-skip Model 
2-skip Model: There exists a protein D such that D interacts with A by 0-skip 

model and B by 1-skip model or vice versa. 
3-skip Model: There exists a protein D such that D interacts with A by 0-skip 

model and B by 2-skip model or vice versa. 

We illustrate the above different models in the Figure 2. Figure 2 (a) shows a Gene 
Interaction predicted : HTA1-HTB2, which has a corresponding interaction in PPI db. 
This will lie in the 0-skip model. (b) Shows an interaction HHT1-HTB2 which is not 
found in the PPI db, however a missing gene HTA1, shows they lie in the same 
pathway. This is called the 1-skip model. Similarly, (d) is an example of 2-skip 
model. We run BN on each of the 4 sets of genes under different values of two 
parameters namely, the number of generations and number of individuals in each 
generation (i.e. population size) at the genetic algorithm step. It is possible that the 
interaction incorrectly bypassed a single or multiple genes. The Gene Network 
software provides us with the Regulatory Matrix of the final optimal solution C .  

4   Cell-Cycle Regulation 

4.1   Data 

We illustrate our method using an application to cell-cycle regulation in yeast. Yeast 
has 40% genes have orthologus to human. Also it is non-pathogenic and hence can be 
tested for different interactions safely. We model GRN of the genes involved in the 
cell-cycle from an extended Spellman yeast dataset, which consists of mRNA 
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measurement of 6,178 genes of yeast S. cerevisiae [24]. Here we use the cdc15 
experimental data where cdc15 yeast strain is given a cdc-15 arrest (to the cell-cycle) 
by moving into an incubator at 37סC. The arrest is then removed by moving back to 
 C. Cells are then monitored together at different time points for presence of newס23
buds. 24 such time points are available from 10 to 290 mins. Cell-cycle control of 
transcription seems to be a universal feature of proliferating cells. Three main 
transcriptional waves which roughly coincide with three main cell-cycle transitions: 
initiation of DNA replication, entry into mitosis, and exit from mitosis. Proliferation 
of all cells is mediated though cell-division cycle which consists of four main phases: 
genome duplication (S phase) and nuclear division (mitosis or M phase), separated by 
two gap phases (GI and G2). Transcription of a number of genes peaks at specific 
cell-cycle phases. At the end of G1 phase, cells decide whether to commit to cell 
division in a process called start in yeast or restriction point in mammalian cells [23]. 
In this paper, we attempt to demonstrate our method by modeling GRNs involved in 
different phases of yeast cell cycle and then validating with the use of PPI data.   

We downloaded the list of phase specific genes from [24]. Our dataset consists of 118 
genes in G1, 36 genes in S phase, 34 genes in G2 and 60 genes in M phase respectively. 
Figure 3 shows the expression patterns of the 4 sets. We can see that G1 genes peak in 
time points 10 to 70 mins, then the S phase genes peak from 30 to 90mins, next is the 
G2 phase peaking 70 to 100 mins and lastly the M phase genes from time points 90 to 
130 mins. Hence we can say that they are all differentially expressed.  

 

Fig. 3. Expression levels of genes in different phases of yeast cell-cycle measured at 24 time 
points in the cdc-15 experiment 
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4.2   Experiments and Results 

Sensitivity of the model is very low. One of the methodologies proposed by us to 
overcome this is the K-skip model. The GRN software allows us to choose the 
number of Generations and population size of each generation, allowing for choice of 
combinations for tuning the correct number of predictions. Bayesian nets on our 4 
gene sets of cell-cycle under five experimental settings is presented (Figure 4). These 
predictions were then validated against the PPI data for inferring the correct 
predictions under the k-skip model. As seen the accuracy of DBN first increase and 
then decreases with the increase in complexity of searches. 

The cumulative curves for the correct number of predictions for four datasets is 
shown in Figure 4, G1 phase, S phase, G2 phase and M phase.  We downloaded yeast 
data from BIOGRID [25] and got a non-redundant validations dataset of 53,235 
protein interactions. It is observed that in all the graphs, there is a steep increase in the 
number of predictions by the one-skip model. Further increase is seen with the two-
skip model. However the three-skip model shows 0 interactions in all datasets. Hence 
while reading Bayesian nets one must take into account that the predictions might be 
bypassing one or two genes in the pathways.  

 

Fig. 4. Cumulative number of correct predictions for correct, one-skip, two-skip and three-skip 
model under 5 parameter settings  (i) 300 Generations, 200 Individuals, (ii) 300 Generations, 
300 Individuals, (iii) 400 Generations, 300 Individuals, (iv) 400 Generations, 400 Individuals, 
(v) 500 Generations, 400 Individuals 
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Table 1. Precision of Bayesian Networks for different cell-cycle phases. Average Precision is 
calculated over 5 runs with different parameter settings. 

 Number of Genes Average Precision Maximum Precision 

G1 118 0.76 0.82 
S 36 0.89 0.93 

G2 34 0.89 0.95 
M 60 0.80 0.84 

Precision for each GRN for different phases of cell-cycle which is defined as True 
Positive / Total Linkages was calculated. (Table 1). We notice a very high precision 
of over 80% in most trials. Which indicates that the Bayesian network is indeed 
picking up most interactions, however the accuracy is constrained by the one-
skip/two-skip model.  

Thus the advantages of Dynamic Bayesian Network include the ability to model 
stochasticity, to incorporate prior knowledge, and to handle hidden variables and 
missing data in a principled way. However, the discretization of gene expression by 
Bayesian network can lead to information loss. Also determining optimal structure of 
Bayesian networks is an NP-hard problem. Domain experts like the readability of 
trees in Bayesian networks however this is at the cost of accuracy.  

5   Conclusion 

We see a similar trend in all the 4 phases, confirming that a one-skip or two-skip bias 
exists in the model. This seems like a limitation of the model, as it looks for the best 
possible pathway. The proposed method may have diverse applications in 
understanding pathways involved in diseases. 

However we must realize the constraints of the model. Some genes are redundant in 
different stages of the cell-cycle. This can alter the graph. Also we know that protein 
interactions can be stable or transient . Transient interactions are on/off and require a 
set of conditions that promote them.  Finally we are testing the accuracy of a GN 
against a PPI database which is mostly generated from scientific literature and is not 
completely experimentally verified. Future work would involve accuracy testing 
against previous methods and other databases. 
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