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Abstract. We introduce the problem of finding the most reliable sub-
graph: given a probabilistic graph G subject to random edge failures,
a set of terminal vertices, and an integer K, find a subgraph H ⊂ G
having K fewer edges than G, such that the probability of connecting
the terminals in H is maximized. The solution has applications in link
analysis and visualization. We begin by formally defining the problem
in a general form, after which we focus on a two-terminal, undirected
case. Although the problem is most likely computationally intractable,
we give a polynomial-time algorithm for a special case where G is series-
parallel. For the general case, we propose a computationally efficient
greedy heuristic. Our experiments on simulated graphs illustrate the use-
fulness of the concept of most reliable subgraph, and suggest that the
heuristic for the general case is quite competitive.

1 Introduction

Many contemporary domains in data mining have heterogeneous objects linked
together by various relations. Graphs are natural models for data arising from
such domains; for example, social networks and the World Wide Web can be
naturally described as graphs. In this article we consider probabilistic graphs,
whose edges are unreliable and can fail with specified probabilities. Telecommu-
nications and electrical networks are classical examples of real-world structures
often modeled as probabilistic graphs.

Informally, given a probabilistic graph and a set of terminal vertices, the reli-
ability of the graph is the probability that there exists at least one path between
all pairs of terminals at the time of inspection. It is easy to see that some edges
can be more important for the existence of a connection than others. For ex-
ample, edges forming a cut between two terminals cannot fail simultaneously
without breaking connections between those terminals. A natural question to
ask is which edges contribute most to the reliability, or equivalently, which edges
are safest to remove without a significant loss of reliability? We formulate this
question as the problem of finding the most reliable subgraph: given a probabilis-
tic graph, a set of terminal vertices, and an integer K, what is the optimal way
to remove K edges from the graph, such that the remaining graph has maximum
reliability?

A solution to this problem can be readily applied to a variety of network
problems. Consider, for example, a telecommunications network, where edges
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represent links between communicating parties, and are subject to random mal-
functions. The most reliable subgraph between two communicating terminals
describes the most reliable channels for exchanging messages. In social networks,
where relative mutual acquaintances could be represented as edge probabilities,
one can discover most important relationships between specified individuals by
finding a reliable subgraph connecting them. Reliable subgraphs are also useful
when visualizing large graphs: they can be highlighted in a picture, or extracted
altogether for visual inspection.

A closely related concept of connection subgraph was recently introduced by
Faloutsos and others [1]. They formalized the connection subgraph problem: given
a weighted graph, two vertices s and t, and an integer k, find a k-vertex subgraph
containing s and t which maximizes a given goodness function. Our framework
has a similar goal, but is based on probabilistic reasoning and is defined for
multiple terminal vertices.

Overall, little has been published on the extraction and analysis of general
connection subgraphs. Lin and Chalupsky use rarity of simple paths and cycles
for evaluating the novelty and interestingness of links [2]. Following Faloutsos
et al., Ramakrishnan and others propose a method for extracting informative
connection subgraphs from RDF graphs [3]. There are a couple of methods uti-
lizing network reliability. One is described by Asthana et al., who predict protein
complex memberships in a network of protein interactions [4]. Sevon et al. use
network reliability for evaluating the connection strength between entities in bi-
ological graphs [5]. Finally, De Raedt et al. consider compression of probabilistic
first-order theories and their uses for link discovery in biological networks [6].

Network reliability, on the other hand, has been under extensive research.
A canonical summary is given by Colbourn [7]. However, we have been unable
to find any references to our problem from the vast literature on reliability
theory. Closest effort into this direction seems to be Birnbaum’s classical text
on reliability importance, which measures the importance of a single edge for the
reliability of a graph [8]. It has been extended for pairs of edges by Hong and
Lie [9]. Finally, Page and Perry consider the reliability importance for ranking
the edges of a given graph [10].

2 Problem Definition and Complexity

We use a standard probabilistic graph model. Let G = (V, E) be a graph with
a vertex set V and an edge set E. Edges are unreliable: each edge e ∈ E has
an associated probability pe for functioning; conversely, each edge can fail with
probability 1 − pe. Edge failures are assumed to be independent. On the other
hand, vertices are expected to be fully reliable, that is, they do not fail.

Let G be an undirected probabilistic graph, and let U ⊂ V be a set of k
terminal vertices or nodes. We review the six classical reliability measures, fol-
lowing Colbourn [7]. First, k-terminal reliability Relk is defined as the probabil-
ity that each of the k terminal nodes in U can communicate in G; equivalently,
it is the probability that there exists a path between any pair of terminals.
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When k = 2, this measure is referred to as two-terminal network reliability,
while the case k = |V | is known as all-terminal network reliability. We denote
these measures by Rel2 and RelA, respectively. (We omit explicit references to G
and U whenever they are clear from the context.)

These measures have natural counterparts for directed probabilistic graphs.
One vertex s ∈ U is chosen as the source node, and the rest of the vertices of U
are target nodes. The directed version of Relk, known as s,T -connectedness or
Connk, is the probability that there exists a (directed) path from s to all target
nodes. When k = 2, this measure is called s,t-connectedness or Conn2. Finally,
the directed analogue of RelA is known as reachability or ConnA.

The objective in the most reliable subgraph problem (MRSP) is to find the
most reliable subgraph obtained from G by removing exactly K edges:

Definition 1 (The Most Reliable Subgraph Problem). Let G = (V, E) be
a probabilistic graph, and let U ⊂ V be a set of k terminal vertices, where 2 ≤
k ≤ |V |. Let f ∈ {Rel2, Relk, RelA, Conn2, Connk, ConnA} be the corresponding
reliability measure with respect to U , and let K ∈ IN with 0 ≤ K ≤ |E|. The
objective is to find a subgraph H ⊂ G with |E|−K edges, such that f(H) ≥ f(H ′)
for all subgraphs H ′ ⊂ G having |E| − K edges.

Given the fact that exact calculations of Rel{2,k,A} and Conn{2,k,A} are #P-
complete problems [11], it is not surprising that the MRSP is likely to be com-
putationally hard as well. The problem does not ask for the value of f(H) for
the chosen f and an optimal subgraph H , so the MRSP could be in that sense
easier than computing the reliability. Despite this relaxation, it is easy to see
that the k-terminal undirected MRSP is NP-hard:

Theorem 1. MRSP with f = Relk is NP-hard.

Proof. We give a polynomial time reduction from the NP-complete Steiner

Tree problem [12] to the MRSP. Let (G, U, B) be an instance of Steiner

Tree, where G = (V, E) is a graph with positive edge weights, U ⊂ V is a set
of terminals, and B ∈ IN is a bound for the size of the tree.

Without a loss of generality we assume that all edge weights are equal to 1.
We transform G into a probabilistic graph H = (V, E) by setting pe = 1/2
for each e ∈ E. Next, we find the smallest (that is, having the least number
of vertices and edges) optimal subgraph H∗ ⊂ H connecting the terminals,
by solving the MRSP for K = 0, . . . , |E| − |U | + 1 and checking the results in
polynomial time. Obviously H∗ is a tree; it is also a minimal Steiner tree. Assume
to the contrary that there exists a minimal Steiner tree T such that ‖T ‖ < ‖H∗‖,
where ‖ · ‖ denotes the number of edges. By construction, we have Relk(T ) =
1/2‖T‖ > 1/2‖H∗‖ = Relk(H∗), which contradicts the optimality of H∗, since T
is also a subgraph of H connecting the vertices in U .

To complete the reduction, we simply check if ‖H∗‖ ≤ B holds. ��

The complexity of cases where f ∈ {Rel2, RelA} remains open, but we conjecture
that they are also NP-hard. The directed variants of the problem are probably
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hard too, considering the fact that the directed reliability problems are as hard
as the corresponding undirected problems [13].

3 Algorithms

It is most likely that there is no efficient algorithm for solving the MRSP in a
general case. However, we next describe a polynomial-time algorithm for solving
the two-terminal undirected MRSP in an important special case, where the graph
is series-parallel. We then give a computationally efficient greedy heuristic for
the MRSP in a general case.

3.1 Series-Parallel Graphs

The class of (edge) series-parallel graphs is usually defined using series and paral-
lel composition rules [14]. For our purposes, the following equivalent definition is
better: a probabilistic graph G with specified terminals s and t is series-parallel,
if it can be reduced into a single edge (s, t) by repeatedly applying the following
reductions:

– Series reduction: If G has a vertex v 	∈ {s, t} of degree two, v and its adjacent
edges e = (u, v) and f = (v, w) can be replaced with a single edge g = (u, w)
with pg = pepf .

– Parallel reduction: If G has two parallel edges e = (u, v) and f = (u, v), they
can be replaced with a single edge g = (u, v) with pg = 1 − (1 − pe)(1 − pf).

The specific sequence of reductions is irrelevant, that is, if reductions are applied
in any order until no reduction is possible, the result is the single edge (s, t) [14].

Before we describe the algorithm, let us introduce some terminology and no-
tation. For an arbitrary edge set F ⊂ E, let G[F ] be the subgraph edge-induced
by F . We denote the set of edges reduced into an edge e by S(e); i.e. f ∈ S(e), if
f occurs in the sequence of series-parallel reductions that produced e. Initially,
we let S(e) = {e} for each e ∈ E.

Let e = (u, v) ∈ E. An i-edge subset S(e, i) ⊂ S(e) is said to be an optimal
solution for G[S(e)], if G[S(e) − S(e, i)] is the most reliable subgraph of G[S(e)]
with |S(e)|− i edges and terminals u and v. In other words, G[S(e)−S(e, i)] is a
solution to the MRSP for G[S(e)] with K = i and U = {u, v}. Let SR(e, i) be the
reliability of an optimal solution S(e, i), i.e. SR(e, i) = Rel2

(
G[S(e) − S(e, i)]

)
.

The iterative definition of series-parallel graphs suggests an iterative, dynamic
programming algorithm for solving the MRSP, given that an optimal solution
can be constructed from optimal solutions to smaller subgraphs. The following
lemma states that this is indeed the case.

Lemma 1. Let e and f be two edges in series or parallel, and let S(e, i), S(f, i)
be optimal solutions for G[S(e)] and G[S(f)], where 0 ≤ i ≤ K. Optimal solu-
tions S(g, i), for all i, can be formed in O(K2) time, where g is the edge produced
by the reduction of e and f .
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Proof. Let i be fixed. Since S(g) = S(e)∪ S(f) and S(e)∩S(f) = ∅, an optimal
solution S(g, i) has exactly j edges in S(e) and i−j edges in S(f), where 0 ≤ j ≤
i. If e and f are in series, we have SR(g, i) = SR(e, j) · SR(f, i − j). Otherwise e
and f are parallel, and we have SR(g, i) = 1−

(
1−SR(e, j)

)
·
(
1−SR(f, i−j)

)
. An

optimal solution can be found by simply enumerating all i possible combinations
of edge assignments and choosing one which maximizes SR(g, i):

k = arg max
0≤j≤i

{
SR(e, j) · SR(f, i − j) if e and f are in series
1 −

(
1 − SR(e, j)

)
·
(
1 − SR(f, i − j)

)
if e and f are parallel

S(g, i) = S(e, k) ∪ S(f, i − k) .

The solution can be found in O(i) time. By repeating the procedure for all i,
0 ≤ i ≤ K, we obtain the solutions S(g, i) in O(K2) time. ��

To solve the MRSP for a series-parallel graph G, we repeatedly apply series and
parallel reductions until the graph is reduced into a single edge. As initialization,
let S(e, 0) = ∅, SR(e, 0) = pe, S(e, 1) = {e}, and SR(e, 1) = 0 for each e ∈ E.
This establishes an invariant: each e has optimal solutions S(e, i) for G[S(e)],
where i = 0, . . . , min{|S(e)|, K}. We maintain the invariant by keeping track of
optimal solutions S(e, i) and their reliabilities, for each remaining edge e. The
invariant, with the definition of series-parallel graphs, guarantees that in the end
we have an optimal solution to the MRSP for G.

At the beginning of each iteration, we identify a pair {e, f} of reducible edges.
This can be done in constant time by suitably augmenting the graph data struc-
ture. These edges are replaced with a new edge g; by Lemma 1 it is straight-
forward to form optimal solutions S(g, i), thus maintaining the invariant. (Note
that some combinations stated in Lemma 1 are undefined when S(e, i) or S(f, i)
are available only for small i, however, these special cases can be easily detected.)
Since each reduction effectively removes one edge from G, after |E|−1 iterations
only a single edge e remains, and S(e, K) contains an optimal solution for G.
Putting the pieces together, we have established the following theorem.

Theorem 2. Let G = (V, E) be a series-parallel probabilistic graph. The MRSP
for G can be solved in O(K2|E|) time, where 1 ≤ K ≤ |E|.

3.2 General Graphs

The set of series-parallel graphs is a very restricted class of graphs; in general,
graphs are lot more complex. Unfortunately, as suggested in Sect. 2, the com-
putational effort required for an exact solution quickly becomes excessive. It is
most likely that one must content with approximate or heuristic solutions.

We next describe a simple, greedy heuristic for solving the MRSP on general
graphs. The heuristic is based on a well-known Monte-Carlo (MC) simulation
procedure, which is in many cases sufficient for approximating the reliability
of a probabilistic graph G: one just simulates random edge failures in G by
flipping a suitably biased coin for each edge, and checks if the terminals are
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connected in the resulting graph. By counting the number of positive outcomes
(i.e. there is a connection between the terminals in that particular outcome)
over many repetitions, the reliability estimate is then the fraction of positive
outcomes out of the total number of simulations. If the reliability is not very
low, then with a reasonable number of simulations we have a good estimate with
high probability [15].

The MC procedure is not directly suitable for the MRSP, due to the large
number of possible solutions (subgraphs) to consider. However, we use it to esti-
mate Rel2(G−e) for each e ∈ E, where G−e denotes G with an edge e removed.
Intuitively, edges with large values of Rel2(G − e) are less critical, so we itera-
tively remove K edges with the highest Rel2(G − e) values. If, at the beginning
of an iteration, there are edges with an endpoint of degree one, we remove those
edges first. Such edges are irrelevant from the reliability’s standpoint, since they
do not occur on any acyclic path between terminals. This heuristic can be imple-
mented in a straightforward manner to run in O

(
N |E|2 +K(|E|+log |E|)

)
time.

We emphasize the computational efficiency of the heuristic, suggesting that it is
suitable for interactive use such as visualization.

4 Experiments

Series-parallel graphs are practicable for evaluating the usefulness of the concept
of most reliable subgraph and the relative performance of the proposed heuristic,
since they are easy to generate with controlled parameters (size and reliability).
Furthermore, we can efficiently calculate optimal solutions with the algorithm
described in Sect. 3.1.

We generated nine datasets of random series-parallel multigraphs by repeat-
edly applying the series-parallel composition rules. Each set consists of 50 graphs
with the same number of edges and the same reliability. The sizes are 50, 100 and
200 edges, and the reliabilities are 0.25, 0.5 and 0.75. These parameter choices
give nine possible combinations, one for each dataset. The given sizes are av-
erages: there is a slight random variation in the number of edges, because we
reduced the parallel edges from the generated multigraphs in order to obtain
proper probabilistic graphs.

To evaluate the approximation quality of the heuristic, we used it to solve the
MRSP on the generated graphs, with different values of K. After this, the reli-
abilities of the results were estimated. Optimal solutions were calculated using
the algorithm of Sect. 3.1. In order to assess the effect of using Rel2(G − e) val-
ues to control the heuristic, we implemented a baseline heuristic. This heuristic
is identical to the proposed heuristic with the exception that instead of us-
ing Rel2(G− e) values to decide which edges to remove, it simply considers edge
probabilities in ascending order. All estimates were done with 1,000,000 MC
simulations. To control random variation, we report the average performance of
each method over the 50 graphs in each dataset.

The results for two datasets are depicted in Fig. 1; in the remaining cases the
results were comparable. From Fig. 1, we see that the relative performance (the
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estimated reliability of the subgraph produced by the heuristic divided by the
reliability of the optimal subgraph) is fairly stable over different values of K. This
is in contrast to the baseline heuristic, whose performance gets significantly worse
as K grows. The results suggest that the proposed heuristic is quite competitive;
in most cases, the mean relative performance over the different values of K is
close to 85%.

The usefulness of most reliable subgraph is also observable in Fig. 1. In both
cases, over half of the edges could be removed without a significant loss of re-
liability. The resulting small, reliable subgraphs contain the most critical edges
for the connection, and could be used as a starting point for further analysis
or visualization. Our preliminary experiments with real biological graphs show
similar or even more accentuated effect (results not shown).
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Fig. 1. Results for two generated datasets

5 Conclusions

As more and more domains of interest are best described as interlinked het-
erogeneous objects, we can expect graphs to become the data models of choice
in many situations [16]. Applications may demonstrate a degree of randomness
on links, e.g. technical unreliability, subjective uncertainty, or relevance with
respect to a specific task. Probabilistic graphs are useful models in such cases.

In the light of these observations, novel graph mining concepts and methods
are essential for coping with the increasing number of graph mining problems. The
concept of most reliable subgraph, the associated most reliable subgraph problem,
and the analysis of the problem are novel additions to this setting. We believe that
the concept is useful in many data mining challenges on probabilistic graphs.

We described efficient methods for solving the MRSP, and demonstrated their
usefulness with experimental results on synthetic probabilistic graphs. Future
work will include improving the methods and assessing their performance with
more varied and extensive experiments. There are also open questions on the
complexity, and on the other variants of the MRSP.

Despite the apparent usefulness of the concept of most reliable subgraph,
we were surprised to found out that (to the best of our knowledge) there is
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practically no previous research on the subject. Therefore, our proposed methods
for solving the MRSP could be seen as the first steps toward more efficient and
robust algorithms.
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