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Abstract. The paper investigates a generic method of time series classi-
fication that is invariant to transformations of time axis. The state-of-art
methods widely use Dynamic Time Warping (DTW) with One-Nearest-
Neighbor (INN). We use DTW to transform time axis of each signal in
order to decrease the Euclidean distance between signals from the same
class. The predictive accuracy of an algorithm that learns from a het-
erogeneous set of features extracted from signals is analyzed. Feature
selection is used to filter out irrelevant predictors and a serial ensemble
of decision trees is used for classification. We simulate a dataset for pro-
viding a better insight into the algorithm. We also compare our method
to DTW-+1NN on several publicly available datasets.

1 Introduction

The problem of time series classification (TSC) has attracted a lot of attention
from the machine learning society in the past decade. Many domains such as
computer vision, medicine, biology, manufacturing, and others possess time de-
pendencies as natural problem descriptions, as opposed to individual features
extracted from signals. A challenge in working with signals as class predictors
is large amount of features and complex dependence of the signal class on these
features. Advances in supervised learning methods that allow to work with ultra
high dimensional feature space make TSC a very appealing problem. However
the Euclidean metric together with One-Nearest-Neighbor (INN) classifier has
proven to be one of the most robust TSC methods. A generalization of this
approach that takes into account transformations of time axis has been intro-
duced about a decade ago. [I] suggested a similarity measure called Dynamic
Time Warping (DTW) that is based on matching two signals with dynamic pro-
gramming. Later [2] showed that the complexity O(n?) of DTW for matching
two signals of length n can be reduced to O(n) by constraining the search path
without sacrificing accuracy. DTW was proved to be the best state-of-the art
technique in multiple domains, “INN with DTW is exceptionally hard to beat”
[3]. We will not provide a full review of TSC methods due to limited space, an ex-
tensive survey is available in [4]. A large group of papers is devoted to extracting
generic features from signals and transforming a TSC problem into a classical
machine learning problem of predicting signal class from a given feature set. A
list of features includes Singular Value Decomposition features, Discrete Fourier
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Transform, coefficients of the decomposition into Chebyshev Polynomials, Dis-
crete Wavelet Transform, Piecewise Linear Approximation, ARMA (AutoRe-
gression Moving Average) coefficients, various symbolic representations. Each of
the methods has its own faults. Euclidean/DTW based methods suffer from the
curse of dimensionality — INN is known to perform poorly on high-dimensional
problems (i.e. long signals) [5]. [6] shows superior performance of a boosted tree
ensemble learned on a set of generic features compared to 1NN with Euclidean
distance on datasets where time warping is not needed. This paper is devoted to
a generalization of this method for the case when time warping is essential for
classifying signals.

The essense of the method is to transform time axis of both train and test
signals so that the same salient points appear at the same time moments. Then
we can apply a generic feature extraction method described in [6]. We sample
one signal from each class that we call a base signal. Then we use DTW to
warp time axis of every time series to each of base signals, resulting in several
time series, one per class. A generic set of features — wavelets, coefficients of the
decomposition into Chebyshev polynomials, statistical moments — and several
DTW-specific features are extracted from each warped signal. A joint set of
features is used as predictors. The number of features could be very high — from
hundreds to tens of thousands. Such high dimensional representations are hard
to learn from. However if we reduce the feature set we run into a risk of loosing
information about the signal and increasing classification error. Recent advances
in feature selection methods [7I8] allow us to learn a boosted ensemble of trees
with a built-in feature weighting method directly in the original high-dimensional
feature space. We show that this method is comparable or superior to DTW on
several UCR datasets [9]. We also analyze the performance of the method on
simulated data to better understand its pros and cons.

The outline of the paper is as follows: Section 2] is devoted to the warped
feature extraction algorithm, Section [3 describes our time series generator and
Section M discusses experimental results on UCR and simulated data.

2 Warping Time for Feature Extraction

Generic features described in [6] such as wavelets and Chebyshev coefficients are
not invariant to time warping that changes position and scale of signal features
differently for each signal. Statistical moments do not change much with warping
as they take into account only the distribution of signal values but in many cases
they are weak predictors. We want to build a generic set of features that would
work on signals with arbitrarily (with reasonably low loss of information) warped
time.

The general idea of the method that we discuss here is to select a base signal
and transform time axis of each signal to minimize DTW distance. Then (when
all salient features are aligned) we can extract generic features and learn a clas-
sifier. But we cannot select a single base signal because transforming all signals
to it could cause deformation of class-dependent signal profiles that are crucial
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Fig.1. Example of warped signals from
two patterns [J] dataset: (a) test signal, (b) Fig.2. Distribution of test er-
the DTW-closest training sample, (c) base signal rors for Face(all) dataset for ran-
bz from class 2, (d) warped test signal wrt b2, (¢) domly chosen (left boxplot) and
base signal by from class 4, (f) warped test signal fixed (right boxplot) base signals
wrt by

for classification. So we choose one base signal from each response class. For each
signal s and base signal b we find a point-to-point correspondence with DTW
and calculate a warped version of s by averaging all values of s corresponding to
each point of b. We use DTW algorithm described in [2]. An example of warp-
ing is given in Figure [l We have taken a test signal (a) from the UCR dataset
Two patterns, class 4, and warped it to base signals of classes 2 (base signal
(¢) and warped test signal (d)) and 4 ((e) and (f) correspondingly). The pair of
signals (e) and (f) illustrates the alignment of warped signal from the same class.
This allows us to extract meaningful features from warped signals characterizing
class-dependent signal profiles.

We extract a set of generic features to be used as class predictors from each
warped signal. Also, we keep the features from the original unwarped signal
in case no time warping is necessary. The essense of the approach is to use as
many features that could be important as possible, if they are irrelevant, feature
selection algorithm will filter them out. The exact description of feature selection
method is given in Algorithm 2 We do not use any warping window when
transforming signals. We do use a Sakoe-Chiba band [I0] when calculating the
DTW+1INN (see 2ef of Algorithm ), the band width is obtained by optimizing
DTW+1NN leave-one-out error on the training part of data. Signal warping is
described in Algorithm [2] Note that we use the class predicted by DTW+1NN
as a feature so the test error can hardly be larger than that of DTW+1NN. We
also use DTW distances to base signals as predictors to supply GBT with an
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additional information about the features from different base signals. The total
number of features that we extract is equal to C'- (W +L+Ch+1)4+W +Ch—+6,
where C is the number of classes, L is the signal length and W is minimum power
of 2 greater than L. In order to extract wavelets we add W — L zeros to each signal
making Discrete Wavelet Transform applicable. C'h is the number of Chebyshev
coeflicients — we filter out higher coefficients that proved to be too noisy, we use
the value Ch = 20 throughout the paper.

Algorithm 1. Warped time feature selection

1. For each class ¢ randomly choose a base signal b. endfor.
2. For each signal s
a. feature set Fs = {}
b. for each class ¢
warp the signal wrt base signal st = Warp(s,be)
add wavelet D8, Chebyshev coefficients and
raw features (signal values) of s to F
calculate DTW distance from 55 to b, and add to Fi
c. endfor
d. calculate statistical moments (mean, variance, skewness, curtosis,
and maximum value) and add to Fs

e. find a signal s, from the training set Dr such that s, = argmin DTW (s, sm)
sm€D7\{s}
f. add the class of s,, as a feature to F

g. add wavelet D8 and Chebyshev coefficients of s to F
3. endfor

Algorithm 2. Signal warping Warp(b, s)

1. Run DTW for a base signal b and an input signal s.
Let L; be the list of elements from s corresponding to the element ¢ from b
2. For each 1
set the i-th value of the warped signal to the average of values in L;
3. endfor

3 Time Series Dataset Generator Description

We used a data generator designed specifically to mimic most of the challenges we
face in the real environment (semiconductor manufactuirng signals classification)
and to better investigate TSC methods by having insight into signal class nature.
Each time series is a trapezoid-like parameterized function (a sample signal is
shown in Figure []). 9 parameters (left node position, horizontal and vertical
shifts, right node position, horizontal and vertical shifts, oscillation amplitude,
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frequency and phase, left and right slope curvatures) are sampled from predefined
distributions for each signal. Curvatures and oscillation amplitude are used to
generate a numeric response that is a sum of linear and quadratic functions of
parameters:

yn = AV +VIBV +¢. (1)

Here A is a vector 1 x N, B is a matrix N x N, V is a vector of N = 3 parameters
and ¢ is Gaussian noise. The values of A and B are taken from a uniform distri-
bution U(0, 1) before we start generating any time series. Categorical response
is

y = L(yn — median(yy,)), where

1(m):{1,x20 (2)

0,2 <0

Note that some parameters (such as the phase of oscillation sampled from
the U(0,27)) do not participate in the response but have considerable influence
on signals. It is a challenge for any predictive engine to recover this functional
relationship due to the complex dependence of time series on V' and the problem
dimensionality.

In order to make things more complex, we add a random (from 0 to 16)
amount of zeros to the beginning of each signal. We will refer to the dataset
without such random shifts as to Quad1, and to the dataset with random shifts
as to Quad1S16.

4 Experimental Results

We test our TSC method on several UCR datasets and on the simulated datasets
in order to better understand how warping works. We have selected a subset
of UCR datasets that have more than 30 samples per class on average. Smaller
amount of training samples would produce higher noise and would require a
more accurate approach to feature selection. Our implementation of GBT is
very close to [I1] with feature weighting [7] on top of it. All parameters of GBT
learning algorithm were fixed: the number of trees N = 2000, shrinkage v = 0.02,
subsampling parameters and probability thresholds. Each tree was trained on a
randomly chosen 60% portion of the training dataset, the probability threshold
was equal to 0.5.

Figure 2 shows the distributions of test errors on one of UCR datasets when
we randomly choose base signals (left boxplot) and when we keep base signals
fixed (right boxplot), so the variation of test errors is mostly due to GBT, and
one can see that the particular choice of base signals is not crucial.

We run the algorithm on each dataset 10 times with randomly chosen base
signals and GBT random seed. The results are summarized in Table [l One
can see that we are almost always superior to DTW+1NN or comparable in
the case when the problem is easy enough for DTW+1NN and the absolute
number of misclassified samples is very low. In order to check how important
our warping features are, we run a set of experiments with zero warping window
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Table 1. Test errors

DTW+INN  Average  Standard Deviation p-value for

Dataset test error  Test Error of Test Error warped features
Quadl 0.108 0.0572 0.0018 1
Quadl1S16 0.148 0.0855 0.0027 4.1-1078
Wafer 0.005 0.00259 0.000453 2.2.107?
Yoga 0.155 0.150 0.00219 0.93
Swedish Leaf 0.157 0.118 0.00394 1
Face(all) 0.192 0.103 0.0122 1.3-1071°
Synthetic Control 0.017 0.00233 0.00260 52-107°
ECG 0.12 0 0 1
OSU Leaf 0.384 0.379 0.0130 241077
Two patterns 0.0015 0.00055 0.000384 1.9-107°
Yoga Face(all)
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Fig. 3. Distribution of test errors for Yoga and Face(all) with and without warped
features used as predictors

size (keeping the predicted class by DTW-+1NN the same) which means that we
do not transform signals at all. A one-sided t-test was used to check if test error
with warped features is less than test error without warping. The corresponding
p-values are given in the last column of Table[[l The improvement in test error
is visible for 6 datasets out of 10. There are datasets such as Quadl where
we did not get any improvement since warping is not important there. Figure
illustrates the distributions of test errors with and without warped features
for Yoga and Face(all). One can see that we get a significant decrease in test
error on Face(all) when we use warped features. Yoga, however, shows a slight
increase in test error, most probably due to failure of feature selection to filter
out all irrelevant features.

Figure @ presents the dependence of test error on the width of Sakoe-Chiba
band for warping signals (it is important that the feature corresponding to the
class predicted by DTW+1NN is kept constant for this experiment corresponding
to the optimal width of the band). Note that the dependence of our algorithm
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Fig. 5. Example of warped signal from
Quad1S16. The signals are shifted
along the vertical axis 10% from each
other due to strong overlapping.

test error on the band width is different from the dependence of DTW+1NN
test error. Our interpretation of this effect is that DTW+1NN considers every
signal in the training dataset for matching while our approach matches only
base signals. So DTW+1NN has higher chances of a correct match with smaller
window. This is why we did signal warping without any band restriction. Note
that this does not pose computational problems as with DTW+1NN since the
latter has to match a test signal with all training time series while we match
it with only base signals. The diminishing trend in Figure H also shows that
the features obtained from warping signals are important for classification. The
class predicted by DTW+1NN is also very important — by removing just this one
feature from the predictors list of the Face(all) dataset we increase the average
test error from 0.118 up to 0.179 — a 50% difference!

Quadl and QuadlS16 allow us to get an insight of the algorithm weak
spots. Going back to Section [3 curvatures of the signal front and back are
used to generate response for these datasets. Curvature is not invariant to the
transformation that we apply to signals as illustrated by Figure Bl Note the
difference in curvatures of test and warped signals in the right part, around time
value 120. This means that the information about curvature will be lost in the
warped signal and hence will not be reflected in extracted features. Features
from the original signal do not help much either since there is a random shift
and curvature features are scattered in time corresponding to different wavelet
features. The resulting dependence is hard to learn, this is the major reason for
50% difference in test errors for Quadl and Quad1S16.

5 Conclusion

This work deals with TS classification problems where input signals need to
be aligned in time (warped). The proposed approach creates a massive num-
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ber of features including original signals, by-class warped signals, wavelet and
chebychev decomposition coefficients of warped signals, summary statistical mo-
ments of warped signals, and even labels predicted by DTW-1-NN used as input
features. Gradient boosting of trees with imbedded dynamic feature selection ca-
pable of handling hundreds of thousands predictors is then used for classification.
A set of experiments on UCR and artificial datasets show that this combination
provides a superior learner relative to the well know state of the art approach. No
single subset of features by itself carries enough information to achieve the best
performance on different classification tasks. The future work will concentrate
on refining this approach for important industrial applications with influential
curvature-like features not easily detected currently by any method, and porting
the methodolgy to time series regression problems.
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