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Abstract. Rating players in sports competitions based on game results is
one example of paired comparison data analysis. Since an exact Bayesian
treatment is intractable, several techniques for approximate inference have
been proposed in the literature. In this paper we compare several variants
of expectation propagation (EP). EP generalizes assumed density filtering
(ADF) by iteratively improving the approximations that are made in the
filtering step of ADF. Furthermore, we distinguish between two variants of
EP: EP-Correlated, which takes into account the correlations between the
strengths of the players and EP-Independent, which ignores those correla-
tions. We evaluate the different approaches on a large tennis dataset to find
that EP does significantly better than ADF (iterative improvement indeed
helps) and EP-Correlated does significantly better than EP-Independent
(correlations do matter).

1 Introduction

Our goal is to develop and evaluate methods for the analysis of paired comparison
data. In this paper we illustrate such methods by rating players in sports, in
particular in tennis.

We consider the player’s strength as a probabilistic variable in a Bayesian
framework. Before taking into account the match outcomes, information avail-
able about the players can be incorporated in a prior distribution. Using Bayes’
rule we compute the posterior distribution over the players’ strengths. We take
the mean of the posterior distribution as our best estimate of the players’
strengths and the covariance matrix as the uncertainty about our estimation.

An exact Bayesian treatment is intractable, even for a small number of play-
ers; the posterior distribution cannot be evaluated analytically, and therefore we
need approximations for it. Expectation propagation [I] is a popular approxi-
mation technique. We will use it in this paper for approximating the posterior
distribution over the players’ strengths. The question that we want to answer
here is: how do different variants of expectation propagation perform for this
setting? In particular, does it make sense to perform backward and forward iter-
ations for the approximations and does it help to have a more complicated (full)
covariance structure?
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The paper is structured as follows: in the next section we introduce the prob-
abilistic framework used to estimate players’ strengths; in Section 3 we present
algorithms for approximate inference and the way they apply to our setting;
in Section 4 we show experimental results for real data, which we use to com-
pare the performance of the algorithms; and in the last section we draw the
conclusions.

2 Probabilistic Framework to Estimate Players’ Strengths

Let 8 be an npjayers-dimensional probabilistic variable whose components rep-
resent the players’ strengths. We define r;; = 1 if player ¢ beats player j, and
r;j = —1 otherwise. For the probability of 7;; as a function of the strengths 6¢;
and 6;, we take the Bradley-Terry model [2]:

1

ij10i,05) = '
p(ri;10s,05) 1+ exp[—ri;(0; — 6;)]

(1)

A straightforward method to approximate the players’ strengths is to build the
likelihood of @ given R; where R stands for the outcomes of all played matches.
We take the maximum of the likelihood as the estimate for the strengths of the
players.

The maximum likelihood approach gives a point estimate, the Bayesian ap-
proach, on the other hand, yields a whole distribution over the players’ strengths.
Furthermore, useful sources of information, like results in previous competitions
and additional information about the players, can be incorporated in a prior
distribution over the strengths. Using Bayes’ rule we compute the posterior dis-
tribution over the players’ strengths:

p(O|R) = (RIG) 0) [T p(ri;10:.6;) (2)
i#£]

where p(0) is the prior, p(ri;|60;,0;) from (), and d is a normalization constant.

We take the mean or the mode of the posterior as the best estimate for
the players’ strengths. While computing the mean of the posterior distribution
is computationally intractable, its mode (MAP) can be determined using opti-
mization algorithms. For the MAP estimate the computation time is linear in the
number of matches, and the number of iterations needed to obtain convergence.
Typically, the number of iterations needed scales linearly with the number of
players with a state-of-the-art optimization method such as conjugate gradient.

For making predictions and estimating the confidence of these predictions, we
need the whole posterior distribution over the players’ strengths. The posterior
obtained using Bayes’ rule in equation (2]) cannot be evaluated analytically, hence
we need to make approximations for it. For this task, sampling methods are very
costly because of the high-dimensionality of the sampling space: the dimension
is equal to the number of players. Therefore, for rating players, we here focus on
deterministic approximation techniques, in particular expectation propagation
and variants of it.
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3 Expectation Propagation

Expectation propagation (EP) [I] is an approximation technique which tunes the
parameter of a simpler approximate distribution, to match the exact posterior
distribution of the model parameters given the data.

Assumed Density Filtering. ADF is an approximation technique in which
the terms of the posterior distribution are added one at a time, and in each step
the result of the inclusion is projected back into the assumed density. As the
assumed density we take the Gaussian, to which we will refer below as gq.

The first term which is included is the prior, ¢(6) = p(0); then we add terms
one at a time f)(@) = !I/ij(ﬁi,&j)q(B), where Wij(ﬁi,ﬁj) = p(rij|9i,9j); and at
each step we approximate the resulting distribution as closely as possible by a
Gaussian ¢"*V(0) = Project{p(0)}. Using the Kullback-Leibler (KL) divergence
as the measure between the non-Gaussian p and the Gaussian approximation,
projection becomes moment matching: the result ¢V of the projection is the
Gaussian that has the first two moments, mean and covariance, the same as p.

After we add a term and project, the Gaussian approximation changes. We
call the quotient between the new and old Gaussian approximation a term ap-
proximation.

Iterative Improvement. EP generalizes ADF by performing backward-forward
iterations to refine the term approximations until convergence. The final approxi-
mation will be independent of the order of incorporating the terms. The algorithm
performs the following steps.

1. Initialize the term approximations @j (0:,0;), e.g., by performing ADF; and
compute the initial approximation
q(8) = p(0) [ [ (6:,65)-
1#]

2. Repeat until all @j converge: ~
a) Remove a term approximation ¥;; from the approximation, yielding
R t imation W;; f th imati ieldi

q(0)

\ij (@) —
() = - :
Wi (0:,05)

b) Combine ¢\ (@) with the exact factor ¥;; = p(r;;|6;,6;) to obtain
J J J
P(0) = Wi;(0:,0;)q\7 (6) . (3)
(¢) Project p(@) into the approximation family
q"°"(0) = argmin K L[p||q] .
q€Q

(d) Recompute the term approximation through the division

qnew (0)

eV (g, 0. =" .
1] ( ’ J) q\U(B)



Expectation Propagation for Rating Players in Sports Competitions 377

Computational Complexity. When minimizing the KL divergence in step
(c) we can take advantage of the locality property of EP [3]. From equation (),
because the term ¥;; does not depend on 0\ we can rewrite p as:

B(0) = B(6\i;10:,0,)5(0:,05) = 5(0:,0;)g\ (615163, 0;) -
Furthermore we obtain:
KL[p(8)|[q(0)] = KLI[p(0:,0;)q(6:,0;)]
+Ej0,.00) K L[\ (0\:510:,05)]|a(6\:;10:, 6;)]] - (4)

The two terms on the right-hand side can be minimized independently. Mini-
mization of the second term gives:

4" (0\i10:,0;) = q\"7 (85163, ) - (5)

Minimizing the KL divergence for the first term in the right-hand side in (@) re-
duces to matching the moments, mean and covariance, between the 2-dimensional
distributions p(0;, 6;) and ¢(6;, ;).

Exploiting this locality property, we managed to go from npjayers-dimensional
integrals to 2-dimensional integrals, which can be further reduced to 1 dimension,
by rewriting them in the following way (see e.g., the appendix of [4]):

(T(0;,0,)) N (m.c) = (F(aB;))n(m.c) = (F(OVaTCa+ a"m)) o1

where a is the vector [—1, 1] if player ¢ is the winner, or @ = [1, —1] if player
Jj is the winner, 8;; = [0;, 0;], F is defined through equation (), and N (m,C)
stands for a Gaussian with mean m and covariance matrix C. Substituting the
solution (), we see that the term approximation, in step (d) of the algorithm,
indeed only depends on ¢; and 0;.

We can simplify the computations by using the canonical form of the Gaussian
distribution. Because, when projecting, we need the moment form of the distri-
bution, we go back and forth between distributions in terms of moments and in
terms of canonical parameters. For a Gaussian, this requires computing the in-
verse of the covariance matrix, which is of the order nglayers. Since the covariance
matrix, when refining the term corresponding to the game between players ¢ and
j, changes only for the elements corresponding to players ¢ and j, we can use the
Woodbury formula [5] to reduce the cubic complexity of the matrix inversion to
a quadratic one. Thus, the complexity of EP is:

C(EP) = O(niterations X nglayers X nmatches)

where Niterations 18 the number of iterations back and forth in refining the term
approximations. In practice, the number of iterations to converge seems largely
independent of the number of players or matches. In our experiments, we needed
Niterations ~ O tO converge.

We will refer to this version of EP as EP-Correlated: by projecting into a non-
factorized Gaussian, it takes into account the correlations between the players’
strengths.
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EP-Independent. The complexity of the EP algorithm can be reduced further
if we keep track only of the diagonal elements of the covariance matrix, ignoring
the correlations. The matrix inversion has in this case linear complexity. The
algorithm is faster and requires less memory.

4 Experiments

We applied the approximation algorithms, presented in the previous section, to
the analysis of a real dataset. The dataset consists of results of 38538 tennis
matches played on ATP events among 1139 players between 1995 and 2006.
The goal was to compute ratings for the players based on the match outcomes.
The methods described yield a Gaussian distribution of the players’ strengths;
the mean of the distribution represents our estimate of the players’ strengths,
the rating, and the variance relates to the uncertainty. Furthermore, we predict
results of future games, and estimate the confidence of our predictions. We take
as the prior a Gaussian distribution with mean zero and covariance equal to the
identity matrix.

Figure 1 shows the empirical distribution of the players’ strengths (means of
the posterior distribution) in comparison with the average width of the posterior
for an individual player. It can be seen that the uncertainty for individual players
is comparable to the diversity between players.
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Fig. 1. A histogram of the players’ strengths (means of the posterior distribution) for
all years. The bar indicates the average width of the posterior distribution for each of
the individual players. The results shown are for EP-Correlated.

4.1 Accuracy

We computed the ratings for the players at the end of each year, based on the
matches from that year. Furthermore, based on these ratings we made predictions
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for matches in the next year: in a match we predicted the player with the highest
rating to win.

EP-Correlated Versus ADF. We compared the accuracy of the predictions
based on EP-Correlated ratings with the ones based on ADF ratings. We divided
all joint predictions into 4 categories as shown in Table[Il We applied a binomial
test on the matches for which the two algorithms gave different predictions to
check the significance of the difference in performance [6]. The p-value obtained
for this one-sided binomial test is 3 x 10~ which indicates that the difference
is highly significant: EP-Correlated performs significantly better than ADF.

EP-Correlated Versus EP-Independent. The same type of comparison was
performed between EP-Correlated and EP-Independent, the results are shown in
Table[Dl As for the previous comparison, the p-value is very small, 3 x 10~7: the
binomial test suggests that the difference between the two algorithms is again
highly significant.

Table 1. Comparison between EP-Correlated, ADF and EP-Independent based on the
number of matches correctly /incorrectly predicted

ADF EP-Independent
correct incorrect correct incorrect
EP-Correlated
correct 16636 (54.48%) 2395 (7.81%) 17857 (58.46%) 1174 (3.83%)
incorrect 1902 (6.21%) 9620 (31.50%) 945 (3.09%) 10577 (34.62%)

EP-Correlated Versus Laplace and ATP Rating. We compared Laplace
and EP-Correlated to find out that EP-Correlated does slightly, but not signifi-
cantly better (p-value is 0.3). They disagree on only 0.2% of all matches.

We also compared the accuracy of the predictions based on the EP ratings
with the accuracy of the predictions obtained using the ATP ratings at the end
of the year. The ATP rating system gives points to players according to the type
of the tournament and how far in the tournament they reached. Averaged over
all the years, both EP and ATP ratings, give similar accuracy of predictions for
the next, about 62%.

4.2 Confidence

With a posterior probability over the players’ strengths we can compute the
confidence of the predictions.

The algorithms presented perform about the same in estimating the confi-
dence. However, they all tend to be overconfident, in the sense that the actual
fraction of correctly predicted matches is smaller than the predicted confidence,
as indicated by the solid line in the left plot of Figure 2l We can correct this
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by adding noise to the players’ strengths, to account for the fact that a player’s
strength changes over time:
9t+1 = et +e€

where € has mean zero and variance o2. To evaluate the confidence estimation,
we plot on the right side of Figure 2] the Brier score [7] for different values of o.
The optimum is obtained for ¢ = 1.4, which then yields the dashed line in the
left plot of Figure
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Fig. 2. Left: the actual fraction of correctly predicted matches as a function of the
predicted confidence; without added noise (solid line) and with noise of standard de-
viation 1.4 added (dashed line); the dotted line represents the ideal case and is drawn
for reference. Right: the Brier score for the confidence of the predictions as a function
of the standard deviation of the noise added to each player’s strength.

5 Conclusions

Based on the experimental results reported in this study we draw the conclu-
sion that EP-Correlated performs better in doing predictions for this type of
dataset than its modified versions, ADF and EP-Independent. Further experi-
ments should reveal whether this also applies to other types of data.

Our results are generalizable to more complex models, e.g. including dynamics
over time, which means that a players rating in the present is related to his
performance in the past [§]; and team effects: a player’s rating is inferred from
team performance [I10]. Specifically for tennis, the more complex models should
also incorporate the effect of surface because the performance of tennis players in
a match is influenced by the type of surface they play on (grass, clay, hard court,
indoor). In this paper we considered the most basic probabilistic rating model;
this model performs as good as the ATP ranking system. We would expect that
the more complex models could outperform ATP.

Acknowledgments. The statistical information contained in the tennis dataset
has been provided by and is being reproduced with the permission of ATP Tour,
Inc., who is the sole copyright owner of such information. We would like to thank



Expectation Propagation for Rating Players in Sports Competitions 381

Franc Klaassen for pointing us in the right direction. This research is supported
by the Dutch Technology Foundation STW, applied science division of NWO
and the Technology Program of the Ministry of Economic Affairs.

References

10.

. Minka, T.P.: A Family of Algorithms for Approximate Bayesian Inference. PhD

thesis, M.I.T (2001)

. Bradley, R.A, Terry, M.E.: Rank analysis of incomplete block designs: I, the method

of paired comparisons. Biometrika (1952)

. Seeger, M.: Notes on Minka’s expectation propagation for Gaussian process classi-

fication. Technical report, University of Edinburgh (2002)

. Barber, D., Bishop, C.: Ensemble learning in Bayesian neural networks. Neural

Networks and Machine Learning (1998)

. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes

in C: The Art of Scientific Computing. Cambridge University Press, Cambridge
(1992)

. Salzberg, S.L.: On comparing classifiers: Pitfalls to avoid and a recommended ap-

proach. Data Mining and Knowledge Discovery 1(3), 317-328 (1997)

Brier, G.W.: Verification of forecasts expressed in terms of probability. Monthly
Weather Review (1950)

Glickman, M.: Paired Comparison Models with Time Varying Parameters. PhD
thesis, Harvard University (1993)

Herbrich, R., Minka, T., Graepel, T.: TrueSkill: A Bayesian skill rating system.
In: Scholkopf, B., Platt, J., Hoffman, T. (eds.) Advances in Neural Information
Processing Systems 19, pp. 569-576. MIT Press, Cambridge (2007)

Huang, T.K., Lin, C.J., Weng, R.C.: A generalized Bradley-Terry model: From
group competition to individual skill. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.)
Advances in Neural Information Processing Systems 17, pp. 601-608. MIT Press,
Cambridge (2005)



	Expectation Propagation for Rating Players in Sports Competitions
	Introduction
	Probabilistic Framework to Estimate Players' Strengths
	Expectation Propagation
	Experiments
	Accuracy
	Confidence

	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




