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Abstract. Grid-based clustering is particularly appropriate to deal with
massive datasets. The principle is to first summarize the dataset with
a grid representation, and then to merge grid cells in order to obtain
clusters. All previous methods use grids with hyper-rectangular cells. In
this paper we propose a flexible grid built from arbitrary shaped poly-
hedra for the data summary. For the clustering step, a graph is then
extracted from this representation. Its edges are weighted by combining
density and spatial informations. The clusters are identified as the main
connected components of this graph. We present experiments indicating
that our grid often leads to better results than an adaptive rectangular
grid method.

1 Introduction

With the ever-increasing amount of storage and processing capacities, huge
datasets are now common in many areas : earth science, astronomy, or computer
networks, just to name a few. The mining of such datasets, and especially the
clustering task, calls for robust and efficient techniques. Grid-based clustering
methods have been the subject of many recent studies [1,2,3].

Fig. 1. Summaries of datasets. Left a regular rectangular grid. Right an adaptive hy-
percubic grid.

Grid-based clustering consists in clustering the space surrounding the data-
points instead of the datapoints themselves [4]. The basic idea is to cover the data
space with a grid in order to construct a spatial summary of the data. Each non-
empty cell of the grid is weighted by the number of original datapoints it contains
(see Figure 1). The clustering is performed by aggregating adjacent dense cells
to form clusters. Grid-based methods are similar to density-based clustering, but
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with local densities and neighborhood relations taking place between cells, and
no longer between individual points.

In this paper, we propose a new type of grid to build the dataset summary. The
cells of the grid are general polyhedra, and are not axis-aligned hypercubes or
hyper-rectangles like in all existing methods. The neighborhood relation between
cells is richer; hence the aggregation process (which is the base operation for
clustering) is more efficient. The clustering step is performed by extracting a
graph from the spatial summary, and identifying clusters as its main connected
components. The edges of the graph are weighted by a similarity metric which
uses both spatial and density information from the summary.

The remainder of the paper is structured as follows : Section 2 presents re-
lated work and motivations. Section 3 describes the construction of the flexible
grid. Section 4 describes the clustering step and the similarity metric. Section 5
discusses complexity and sensitivity to dimensionality. Section 6 contains results
of experiments and a comparison with a hypercubic adaptive grid method.

2 Related Work and Motivation

Many grid-based clustering approaches [1,3] rely on the traditional regular, hyper-
cubic grid (Figure 1, left). The main drawback of these approaches is that the grid
construction requires to cover all the data space with the same precision indepen-
dently of the data density. Thus a very high resolution could be needed to obtain
a satisfying spatial summary. Another class of methods [5,2] uses multi-resolution
grids with size-varying hypercubic or hyper-rectangular cells (Figure 1, right). The
basic idea is to cover with more precision regions with many points. Usually the
clustering step follows the hierarchy of the data structure. Both sets of methods
are parametrized by the resolution of the grid. The clustering step usually relies on
a density threshold discarding low-density cells. The complexity of these methods
is linear in the number of data points O(N). The complexity of the clustering step
depends only on the number of (non-empty) cells M .

The aggregation of neighbor cells is the basis for the clustering process. Since
the ultimate goal is to find patterns in the original data, one wants to minimize
the impact of the particular geometry of the grid on the efficiency of the aggre-
gation process. Classical grids (be they regular or multi-resolution) have their
cell borders aligned with the axes of the space; this directional bias has a strong
influence on the resulting data summaries.

In this work, we propose a multi-resolution grid whose cells have randomly
oriented borders. It is close to the Crack STIT tessellation model of stochastic
geometry [6]. The resulting spatial summary has no particular orientation and
does not suffer from the rigid geometry of hyper-rectangular tilings. The cells
are general polyhedra, allowing a spatially more flexible aggregation process. For
the clustering step, we extract a weighted graph from the spatial summary. We
propose a similarity metric to weight edges; it takes into account both spatial
and density similarities of cells. The clusters are identified as the main connected
components of the graph. The complexity of the clustering step is O(M). The
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parameters of the whole method are the size of the summary M , the number of
clusters K and the minimum number of points MinPts per cluster.

3 Flexible Grid

3.1 Hyperplanes and Polyhedra

We recall here simple facts about hyperplanes and polyhedra. A hyperplane
in a d dimensional space H = {z | 〈u · z〉 = t} is defined by its orientation
vector u ∈ S

d−1 and its offset t ∈ R (〈·〉 denotes scalar product). For a given
u, a hyperplane with offset t = 〈z0 · u〉 passes through the point z0. A uniform
random hyperplane can be obtained by taking a random d-dimensional gaussian
random vector, and normalizing its norm to 1. A polyhedra P ⊂ R

d admits
two representations : the H-representation (set of delimiting hyperplanes) and
the V-representation (convex hull of vertices). The H-representation describes P
as the intersection of halfspaces defined by a set of hyperplanes (∩Hσi

i ), where
σ = (σ1 . . . σm) is a binary codeword locating the point in halfspaces defined by
the hyperplanes.

3.2 Construction

The principle of the construction of the multi-resolution flexible grid is simple
(see Algorithm 1). It begins with the hypercube containing the data. At each
step, the cell containing the largest number of points is splitted into two sub-
cells by a random hyperplane. This process is iterated until a given number of
non-empty cells M (fixed by the user) is reached. The hyperplanes are chosen
with a uniform random orientation. The splitting process has a natural binary
tree structure, as depicted in Figure 2. The algorithm iteratively encodes the
data points into binary codewords. These binary codewords correspond to the
H-representation of the cells. At the end of the algorithm, the dataset has been
summarized to a set of weighted polyhedra. Each datapoint belongs to a partic-
ular cell.

The flexible grid is a particular realization of a stochastic process. It is built
iteratively during the cell refinement process and automatically adapts its reso-
lution to the local data density. Finer parts of the gird are revealed in regions
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Fig. 2. Data domain, cell tree and hyperplane tree
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Algorithm 1. Construction of flexible grid
Inputs
X = {x1, . . . , xN} dataset of N points in R

d

D : hyper-rectangle containing X
M : desired size (number of occupied cells) of the summary

Outputs
S = {(S1, p1), . . . , (SM , pM )} set of M polyhedra along with the proportion of points
they contain
NR =neighborhood relation between the cells

Begin
S0 ← {(D, 1, [])} initial region containing all the points
T ← empty hyperplane binary tree
NR ←empty list

While | S0 |< M
(C, p, w) ← cell of S0 with the maximum p and with codeword w
Hsplit ← random hyperplane passing through the center of C
T ← Add hyperplane Hsplit to hyperplane tree at node of binary index w
{(C1, p1, w1), (C2, p2, w2)} ← subcells created by splitting C with hyperplane Hsplit

Replace (C, p,w) in S0 by non-empty elements of {(C1, p1, w1), (C2, p2, w2)}
NR ← Update neighborhood relations of the new cells replacing C

End

Extract S from S0

End

where there are many datapoints. The resulting summary has small, high-density
cells in dense regions and big, low-density cells in sparsely populated regions.

4 Clustering

4.1 Graph Clustering

Graph clustering has been the subject of numerous studies (see [7]). The idea is
to modelize the clustering problem by a weighted graph; the original clustering
problem reduces to find clusters of vertices of the graph. In this paper, we extract
the graph from the spatial summary (Figure 3). The graph representation is well
suited to our problem since it allows to describe in a compact form the polyhedra
(the vertices), their neighborood relation (the edges) and their similarities (edge
weights). An edge links two vertices if they correspond to neighbor cells. Two
cells are neighbors if they have a (d − 1)-dimensional intersection. Edges are
weighted with a similarity metric described below. We iteratively remove edges
of the graph until we have K connected components, of at least MinPts points
each. At each step the edge with the minimum weight is chosen for removal.
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Fig. 3. (a) Flexible data summary (b) Structure of extracted graph

4.2 Similarity Metric

In the majority of previous works, the grouping of two cells is determined (im-
plicitly or explicitly) by the closeness of the densities of the two cells. This stems
from the intuitive assumption that cells at the frontier of a cluster will see a
large density variation. This is not robust since even in dense regions, important
density variations may appear. We propose a more robust cell grouping criterion
incorporating spatial closeness between cells. Because of the multi-resolution,
the distance between cell centers already conveys much information about the
density of the data. The spatial information allows a smoothing of the density
variations, thereby allowing better clustering results.

Given two cells with centers ci, cj ∈ R
d, and cell density values Di and

Dj ∈ R, we set the similarity between cells i and j to be fsim = fdens ·fspat, with

fdens(i, j) = exp
(
− ‖Di−Dj‖2

2·σ2
dens

)
and fspat(i, j) = exp

(
− ‖ci−cj‖2

2·σ2
spat

)
with σdens be-

ing the mean euclidean difference between their densities, and σspat the average
euclidean distance between centers of two neighbors cells of the grid. The expo-
nentiation is the most natural way to express the similarities. The density Di is
the ratio (pi/Vi) where pi and Vi are respectively the proportion of points and
the volume of the cell.

5 Dimensionality and Complexity

5.1 Dimensionality

Grid-based methods are well suited for small dimensional spaces. For high dimen-
sional data, the number of grid cells and of neighbor cells increases exponentially
and the methods cannot be used as such when the number of dimensions iq too
high [8]. the exponential number of grid cells, and the high number of neighbor
cells are highlighted as the main issues. Compared to regular rectangular grids,
the multi-resolution grid and our graph clustering technique partly circumvents
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this phenomenon. In our case the main limitation comes from the complex struc-
ture of polyhedra : computing the volume of the polyhedra and testing which
polyhedra are in its neighborhood rapidly becomes prohibitive. We propose here
to approximate these two steps: instead of computing the whole neighborhood
of cell, we compute the distance between all cell centers. The neighborhood of a
specific cell is then defined as the set of cells whose center is among the closest
centers according to the distance matrix. The volume of a cell of the grid is then
approximated by the volume of a ball, the diameter of which is set to the dis-
tance to the nearest cell center. These approximations are reasonable with regard
to the multi-resolution nature of the summaries and to our edge-removal graph
clustering technique. This approximation does not degrade the performance of
the method as will be seen in Section 6.

5.2 Complexity

The construction step has linear complexity in the input data size O(N) (with
an analysis similar to [2]). All the other steps depend only on M . Neighborhood
check has complexity O(m · LP (m, d)), LP (m, d) being the complexity of a lin-
ear program with m constraints in a d-dimensional space, m depending on the
polyhedra. For the clustering step, each search for connected components has a
complexity linear in the size of the graph: O(V +E), V and E being respectively
the number of vertices and edges of the graph. It is O(M) for our problem since
the number of edges can be bounded by (nmax · M)/2 with nmax the maximum
number of neighbors of a node.

6 Experiments

6.1 Experimental Setting

We implemented in C++ the construction of our flexible grid, flexible grid ap-
proximation. We also implemented the AMR-like (Adaptive Mesh Refinement)
grid (Figure 1 right), which is an adaptive, axis-aligned, hypercubic grid de-
scribed in [9,2]. Experiments were performed with four datasets : a first complex
2D dataset of 3000 points from [10], a 3D dataset of 8000 points with five non-
convex “banana” shapes, the Pageblocks database of 5400 points (d = 10), and
a subset of 7800 points Letter Recognition database (d = 16) from the UCI
Machine Learning Repository. For the 2D and 3D datasets, we compared the
axis-aligned case (’AMR-like’), the flexible case (’flexible’) and the approxima-
tion of the flexible case described in Section 5 (’flexible-approx’). For the higher
dimensional datasets we compared the flexible approximation and the AMR-
like summaries. For flexible approximations, we took respectively 3,4,11 and 17
neighbors per cell for the 2D, 3D, 10D and 16D datasets (following the simple
idea that a polyhedron in d dimensions has at least (d + 1) faces). We measured
the raw performance with respect to the full original dataset with the Normal-
ized Mutual Information criterion ([11]). Error bars show standard deviation of
experiments for the flexible and flexible-approximation cases. Clustering para-
meters are indicated in the lower right corner of the figures.
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(a) 2D dataset
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(b) 3D dataset
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Fig. 4. Clustering quality for growing summary sizes

6.2 Discussion

The results show that the axis-aligned summary type has a rather unpredictable
behavior. The clustering performance does not always grow with the summary
size : it may remain approximately constant (16D dataset) or even degrade (2D
and 10D datasets). The flexible grid yields better results most of the time. The
clustering performance globally grows with the resolution. Note that the flex-
ible approximation has practically the same performance than the full flexible
summary. With this approximation, the complexity of the algorithm is greatly
reduced so that it could be used reasonably for dimensions up to 50.

7 Conclusion and Future Work

We have proposed a new type of grid for data summaries in the context of
grid-based clustering methods. The grid is locally-adaptive and has a flexible
geometry. We also proposed an approximation of this method adapted to high
dimensional spaces. We have presented results indicating that the proposed grid
often yields more accurate clustering results than its axis-aligned counterpart.
In future work, we will incorporate the flexible grid into classical variations and
improvements for grid-based methods (e.g subspace clustering [12]).
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