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Abstract. Predictive knowledge discovery is an important knowledge acquisi-
tion method. It is also used in the clustering process of data mining. Visualiza-
tion is very helpful for high dimensional data analysis, but not precise and this 
limits its usability in quantitative cluster analysis. In this paper, we adopt a  
visual technique called HOV3 to explore and verify clustering results with quan-
tified measurements. With the quantified contrast between grouped data distri-
butions produced by HOV3, users can detect clusters and verify their validity  
efficiently.  
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1   Introduction 

Predictive knowledge discovery utilizes the existing knowledge to deduce, reason and 
establish predictions, and verify the validity of the predictions. By the validation proc-
essing, the knowledge may be revised and enriched with new knowledge [20]. The 
methodology of predictive knowledge discovery is also used in the clustering process 
[3]. Clustering is regarded as an unsupervised learning process to find group patterns 
within datasets. It is a widely applied technique in data mining. To achieve different 
application purposes, a large number of clustering algorithms have been developed [3, 
9]. However, most existing clustering algorithms cannot handle arbitrarily shaped data 
distributions within extremely large and high-dimensional databases very well. The very 
high computational cost of statistics-based cluster validation methods in cluster analysis 
also prevents clustering algorithms from being used in practice. 

Visualization is very powerful and effective in revealing trends, highlighting out-
liers, showing clusters, and exposing gaps in high-dimensional data analysis [19]. 
Many studies have been proposed to visualize the cluster structure of databases [15, 
19]. However, most of them focus on information rendering, rather than investigating 
on how data behavior changes with the parameters variation of the algorithms. 
                                                           
*  The datasets used in this paper are available from http://www.ics.uci.edu/~mlearn/Machine-

Learning.html. 
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In this paper we adopt HOV3 (Hypothesis Oriented Verification and Validation by 
Visualization) to project high dimensional data onto a 2D complex space [22]. By 
applying predictive measures (quantified domain knowledge) to the studied data, 
users can detect grouping information precisely, and employ the clustered patterns as 
predictive classes to verify the consistency between the clustered subset and unclus-
tered subsets.  

The rest of this paper is organized as follows. Section 2 briefly introduces the current 
issues of cluster analysis, and the HOV3 technique as the background of this research. 
Section 3 presents our prediction-based visual cluster analysis approach with examples 
to demonstrate its effectiveness on cluster exploration and cluster validation. A short 
review of the related work in visual cluster analysis is provided in Section 4. Finally, 
Section 5 summarizes the contributions of this paper. 

2   Background  

The approach reported in this paper has been developed based on the projection of 
HOV3 [22], which was inspired from the Star Coordinates technique. For a better under-
standing of our work, we briefly describe Star Coordinates and HOV3. 

2.1   Visual Cluster Analysis  

Cluster analysis includes two major aspects: clustering and cluster validation. Cluster-
ing aims at identifying objects into groups, named clusters, where the similarity of 
objects is high within clusters and low between clusters. Hundreds of clustering algo-
rithms have been proposed [3, 9]. Since there are no general-purpose clustering algo-
rithms that fit all kinds of applications, the evaluation of the quality of clustering 
results becomes the critical issue of cluster analysis, i.e., cluster validation. Cluster 
validation aims to assess the quality of clustering results and find a fit cluster scheme 
for a given specific application.  

The user’s initial estimation of the cluster number is important for choosing the pa-
rameters of clustering algorithms for the pre-processing stage of clustering. Also, the 
user’s clear understanding on cluster distribution is helpful for assessing the quality of 
clustering results in the post-processing of clustering. The user’s visual perception of 
the data distribution plays a critical role in these processing stages. Using visualiza-
tion techniques to explore and understand high dimensional datasets is becoming an 
efficient way to combine human intelligence with the immense brute force computa-
tion power available nowadays [16]. 

Visual cluster analysis is a combination of visualization and cluster analysis. As an 
indispensable aid for human-participation, visualization is involved in almost every 
step of cluster analysis. Many studies have been performed on high dimensional data 
visualization [2, 15], but most of them do not visualize clusters well in high dimen-
sional and very large data. Section 4 discusses several studies that have focused on 
visual cluster analysis [1, 7, 8, 10, 13, 14, 17, 18] as the related work of this research. 
Star Coordinates is a good choice for visual cluster analysis with its interactive adjustment 
features [11].  
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2.2   Star Coordinates 

The idea of Star Coordinates technique is intuitive, which extends the perspective of 
traditional orthogonal X-Y 2D and X-Y-Z 3D coordinates technique to a higher dimen-
sional space [11]. Technically, Star Coordinates plots a 2D plane into n equal sectors 
with n coordinate axes, where each axis represents a dimension and all axes share the 
initials at the centre of a circle on the 2D space. First, data in each dimension are nor-
malized into [0, 1] or [-1, 1] interval. Then the values of all axes are mapped to orthogo-
nal X-Y coordinates which share the initial point with Star Coordinates on the 2D space. 
Thus, an n-dimensional data item is expressed as a point in the X-Y 2D plane. Fig.1 
illustrates the mapping from 8 Star Coordinates to X-Y coordinates. 

In practice, projecting high dimensional data onto 
2D space inevitably introduces overlapping and ambi-
guities, even bias. To mitigate the problem, Star Co-
ordinates and its extension iVIBRATE [4] provide 
several visual adjustment mechanisms, such as axis 
scaling, axis angle rotating, data point filtering, etc. to 
change the data distribution of a dataset interactively 
in order to detect cluster characteristics and render 
clustering results effectively. Below we briefly intro-
duce the two relevant adjustment features with this 
research. 

 

Fig. 1. Positioning a point by 
an 8-attribute vector in Star 
Coordinates [11] 

 Axis scaling 

The purpose of the axis scaling in Star Coordinates (called a-adjustment in iVI-
BRATE) is to interactively adjust the weight value of each axis so that users can ob-
serve the data distribution changes dynamically. For example, the diagram in Fig.2 
shows the original data distribution of Iris (Iris has 4 numeric attributes and 150 in-
stances) with the clustering indices produced by the K-means clustering algorithm in 
iVIBRATE, where clusters overlap (here k=3). 

A well-separated cluster 
distribution of Iris is illus-
trated in Fig. 3 by a series of 
random a-adjustments, where 
clusters are much easier to be 
recognized than those of the 
original distribution in Fig 2. 

For tracing data points 
changing in a certain period 
time, the footprint function is 
provided by Star Coordinates. 
It is discussed below. Fig. 2. The initial data 

distribution of clusters of 
Iris produced by k-means in 
iVIBRATE 

 

Fig. 3. The separated 
version of the Iris data 
distribution in iVIBRATE 
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 Footprint  

We use another data set auto-mpg to demonstrate 
the footprint feature. The data set auto-mpg has 8 
attributes and 398 items. Fig. 4 presents the foot-
prints of axis tuning of attributes “weight” and 
“mpg”, where we may find some points with 
longer traces, and some with shorter footprints.  

The most prominent feature of Star Coordi-
nates and its extensions such as iVIBRATE is 
that their computational complexity is only in 
linear time. This makes them very suitable to be 
employed as a visual tool for interactive interpre-
tation and exploration in cluster analysis. 

 

Fig. 4. Footprints of axis scaling of  
“weight” and “mpg” attributes in 
Star Coordinates [11] 

However, the cluster exploration and refinement based on the user’s intuition in-
evitably introduces randomness and subjectiveness into visual cluster analysis, and as 
a result, sometimes the adjustments of Star Coordinates and iVIBRATE could be 
arbitrary and time consuming. 

2.3   HOV3 

In fact, the Star Coordinates model can be mathematically depicted by the Euler for-
mula. According to the Eular formula: eix = cosx+isinx, where z = x + i.y, and i is the 
imaginary unit. Let z0=e2pi/n; such that z0

1, z0
2, z0

3,…, z0
n-1, z0

n  (with z0
n = 1) divide the 

unit circle on the complex 2D plane into n equal sectors. Thus, Star Coordinates can 
be simply written as:  
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where mindk and maxdk represent the minimal and maximal values of the kth coordinate 
respectively. In any case equation (1) can be viewed as mapping from Ñn ØÂ2.  

To overcome the arbitrary and random adjustments of Star Coordinates and iVI-
BRATE, Zhang et al proposed a hypothesis-oriented visual approach called HOV3 to 
detect clusters [22]. The idea of HOV3 is that, in analytical geometry, the difference of 
a data set (a matrix) Dj and a measure vector M with the same number of variables as 
Dj can be represented by their inner product, Dj·M. HOV3 uses a measure vector M to 
represent the corresponding axes’ weight values. Then given a non-zero measure 
vector M in Ñn

, and a family of vectors Pj, the projection of Pj against M, according to 
formula (1), the HOV3 model is presented as: 
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where mk is the kth attribute of measure M . 
The aim of interactive adjustments of Star Coordinates and iVIBRATE is to have 

some separated groups or full-separated clustering result of data by tuning the weight 
value of each axis, but their arbitrary and random adjustments limit their applicability. 
As shown in formula (2), HOV3 summarizes these adjustments as a coeffi-
cient/measure vector. Comparing the formulas (1) and (2), it can be observed that 
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HOV3 subsumes the Star Coordinates model [22]. Thus the HOV3 model provides 
users a mechanism to quantify a prediction about a data set as a measure vector of 
HOV3 for precisely exploring grouping information.  

Equation (2) is a standard form of linear transformation of n variables, where mk is the 
coefficient of kth variable of Pj. In principle, any measure vectors, even in complex num-
ber form, can be introduced into the linear transformation of HOV3 if it can distinguish a 
data set into groups or have well separated clusters visually. Thus the rich statistical meth-
ods of reflecting the characteristics of data set can be also introduced as predictions in the 
HOV3 projection, such that users may discover more clustering patterns. The detailed 
explanation of this approach is presented next.  

3   Predictive Visual Cluster Analysis by HOV3 

Predictive exploration is a mathematical description of future behavior based on his-
torical exploration of patterns. The goal of predictive visual exploration by HOV3 is 
that by applying a prediction (measure vector) to a dataset, the user may identify the 
groups from the result of visualization. Thus the key issue of applying HOV3 to detect 
grouping information is how to quantify historical patterns (or users’ domain knowl-
edge) as a measure vector to achieve this goal.  

3.1   Multiple HOV3 Projection (M-HOV3) 

In practice, it is not easy to synthesize historical knowledge about a data set into one 
vector; rather than using a single measure to implement a prediction test, it is more 
suitable to apply several predictions (measure vectors) together to the data set, we call 
this process multiple HOV3 projection, M-HOV3 in short. Now, we provide the de-
tailed description of M-HOV3 and its feature of enhanced group separation. For sim-
plifying the discussion of the M-HOV3 model, we give a definition first. 

Definition 1. (poly-multiply vectors to a matrix) The inner product of multiplying a series 
of non-zero measure vectors M1, M2,…,Ms to a matrix A is denoted as 

A·* i

s

i
M∏

=1
=A·*M1·*M2·*….·*Ms.  

Zhang et al [23] gave a simple notation of HOV3 projection as Dp=HC (P, M), where P is 

a data set; Dp is the data distribution of P by applying a measure vector M. Then the 

projection of M-HOV3 is denoted as Dp=HC (P, i

s

i
M∏

=1
). Based on equation (2), we 

formulate M-HOV3 as: 
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where mik is the kth attribute (dimension) of the ith measure vector Mi, and s¥1. When 
s=1, the formula (3) is transformed to formula (2).  

We may observe that instead of using a single multiplication of mk in formula (2), 

it is replaced by a poly-multiplication of ik

s

i
m∏

=1
in formula (3). Formula (3) is more 
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general and also closer to the real procedure of cluster detection, because it introduces 
several aspects of domain knowledge together into the cluster detection.  

In addition, the effect of applying M-HOV3 to datasets with the same measure vec-
tor can enhance the separation of grouped data points under certain conditions.  

3.2   The Enhanced Separation Feature of M-HOV3 

To explain the geometrical meaning of M-HOV3 projection, we use the real number sys-
tem. According to equation (2), the general form of the distance s (i.e., weighed 
Minkowski distance) between two points a and b in HOV3 plane can be represented as: 

q
qn

k
kkk |)ba(m|)m,b,a( ∑ −=

=1
σ   (q>0) (4)

If q = 1, s is Manhattan (city block) distance; and if q = 2, s is Euclidean distance. 
To simplify the discussion of our idea, we adopt the Manhattan metric for the expla-
nation. Note that there exists an equivalent mapping (bijection) of distance calculation 
between the Manhattan and Euclidean metrics [6]. For example, if the distance be-
tween points a and b is longer than the distance between points a’ and b’ in then Man-
hattan metric, it is also true in the Euclidean metric, and vice versa. 

Then the Manhattan distance between points a and b is calculated as in formula (5). 
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According to formulas (2), (3) and (5), we can present the distance of M-HOV3 in 
Manhattan distance as follows: 
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Definition 2. (the distance representation of M- HOV3) The distance between two data 

points a and b projected by M- HOV3 is denoted as abM
s

i
σ

1=
. In particular, if the measure 

vectors in an M-HOV3 are the same, abM
s

i
σ

1=
can be simply written as Mssab; if each 

attribute of M is 1 (no measure case), the distance between points a and b is denoted 
as sab.  

Thus, we have abM
s

i
σ

1= =HC ((a,b), i

s

i
M∏

=1

). For example, the distance between two points 

a and b projected by M-HOV3 with the same two measures can be represented as 
M2sab. Thus the projection of HOV3 of a and b can be written as Msab. 

We now give several important properties of M- HOV3 as follows. 

Lemma 1. In Star Coordinates space, if sab≠0 and M≠0 ($mkœM│0<|mk|<1), then sab > 
Msab.  

Proof 
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M≠0 ⇒{$mk∫0⁄ mkœM | 0<|mk|<1, k=1…n}⇒ |)m|( k−1 >0  

sab≠0⇒sab >(Msab)                                                                                              Ñ  

This result shows that the distance Msab between points a and b projected by HOV3 
with a non-zero M is less than the original distance sab between a and b.  

Lemma 2. In Star Coordinates space, if sab≠0 and M≠0 ("mkœM│0<|mk|<1), then  
Mnsab > Mn+1sab, nœΝ.  

Proof 

Let Mnsab=s’ab 

Definition 1 ⇒Mn+1sab= Ms’ab 

Lemma 1⇒s’ab >Ms’ab ⇒Mnsab > Mn+1sab                                                         Ñ 

In general, it can be proved that in Star Coordinates space, if sab≠0 and M≠0 
("mkœM│|mk|<1), then Mmsab > Mnsab, nœΝ, mœΝ and m<n. 

Theorem 1. If the measure vector is changed from M to M’, (|mk|§1,| |mt,+∆t|<1) and 
|Msab -Msac | <| M’sab - M’sac | then  
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⇒
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                                                                                                                                   Ñ 

Theorem 1 shows that if the user observes that the difference of the distance between a 
and b and the distance between a and c are increased relatively (it can be observed by 
the footprints of points a, b and c, as shown in Fig 4) by tuning weight values of axes 
from M to M’, then after applying M-HOV3 to a, b and c, the distance variation rate of 
the distances between pairs of points a, b and a, c is enhanced, as presented in Fig 5. 

 

Fig. 5. The contraction and separation effect of M-HOV3 

In other words, if it is observed that several data point groups can be roughly sepa-
rated visually  (there may exist ambiguous points between groups) by projecting a meas-
ure vector in HOV3 to a data set, then applying M-HOV3 with the same measure vector 
to the data set would lead to the groups being more condensed, i.e., have a good separa-
tion of the groups. 

3.3   Predictive Cluster Exploration by M-HOV3 

According to the notation of HOV3 projection of a dataset P as Dp=HC (P, M), the M- 

HOV3 is denoted as Dp=HC (P, Mn) where nœÍ.  
We use the auto-mpg dataset again as an example to demonstrate predictive cluster ex-

ploration by M-HOV3. Fig. 6a illustrates the original data distribution of auto-mpg pro-
duced by HOV3 in MATLAB, where it is not possible to recognize any group information. 
Then we tuned each axis manually and had roughly distinguished three groups, as shown 
in Fig 6b. The weight values of axes were recorded as a vector M=[0.10, 0, 0.25, 0.2, 0.8, 
0.85, 0.1, 0.95]. Fig. 6b shows that there exist several ambiguous data points between 
groups. Then we employed M2 (inner dot) as a predictive measure vector and applied it to 
data set auto-mpg. The projected distribution Dp2 of auto-mpg is presented in Fig 6c. It is 
much easier to identify 3 groups of auto-mpg in Fig 6c than in Fig 6b. To show the con-
trast between these two diagrams Dp1 and Dp2, we overlap them in Fig. 6d.  

By analyzing the data of these 3 groups, we have found that, group 1 contains 70 
items and with “original” value 2 (sourcing Europe); group 2 has 79 instances and 
with “original” 3 (Japanese product); and group 3 includes 249 records with “origi-
nal” 1 (from USA). Actually this “natural” grouping based on the user’s intuition 
serendipitously clustered the data set according to the “original” attribute of auto-
mpg. In the same way, the user may find more grouping information from the interac-
tive cluster exploration by applying predictive measurement. 
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Fig. 6a. The original data distribution of 
auto-mpg  

 

Fig. 6b. Dp1=HC (auto-mpg, M) 

 

Fig. 6c. Dp2=HC (auto-mpg, M2) 

 

Fig. 6d. The overlapping diagram of Dp1 and 

Dp2 

Fig. 6. Diagrams of data set auto-mpg projected by HOV3 in MATLAB 

3.4   Predictive Cluster Exploration by HOV3 with Statistical Measurements 

Many statistical measurements, such as mean, median, standard deviation and etc. can 
be directly introduced into HOV3 as predictions to explore data distributions. In fact, 
prediction based on statistical measurements is more purposefully cluster exploration, 
and give an easier geometrical interpretation of the data distribution. 

We use the Iris dataset as an example. As shown in Fig. 3, by random axis scaling, 
the user can divide the Iris data in 3 groups. This example exhibits that cluster explora-
tion based on random adjustment may expose data groping information, but sometimes, 
it is hard to interpret such groupings. 

We employ the standard deviation of Iris M = [0.2302, 0.1806, 0.2982, 0.3172, 
0.4089] as a prediction to project Iris by HOV3 in iVIBRATE. The result is shown in 
Fig. 7, where 3 groups clearly exist. It can be observed in Fig 7 that, there is a blue point 
in the pink-colored cluster and a pink point in the green-colored cluster, resulting from 
the K-means clustering algorithm with k=3. Intuitively, they have been wrongly clus-
tered. We re-clustered them by their distributions, as shown in Fig 8. 

The contrast of clusters (Ck) produced by the K-means clustering algorithm and new 
clustering result (CH) projected by HOV3 is summarized in Table 1. We can see that the 
 



 A Prediction-Based Visual Approach 345 

 

Fig. 7. Data distribution projected by HOV3 
in iVIBRATE of Iris with cluster indices 
maked by K-means 

 

Fig. 8. Data distribution projected by HOV3 in 
iVIBRATE of Iris with the new clustering 
indices by the user’s intuition 

quality of the new clustering result of Iris is better than that obtained by K-means ac-
cording to their “Variance” comparison. Each cluster projected by HOV3 has a higher 
similarity than that produced by K-means. By analyzing the new grouping data points of 
Iris, we have found that they are distinguished by the “class” attribute of Iris, i.e. Iris-
setosa, Iris-versicolor and Iris-virginica. The cluster 1 generated by K-means is an 
outlier.  

Table 1.  The statistics of the clusters in Iris’ produced by HOV3 with predictive measure  

Ck % Radius Variance MaxDis CH % Radius Variance MaxDis 

1 1.333 1.653 2.338 3.306      
2 32.667 5.754 0.153 6.115 1 33.333 5.753 0.152 6.113 
3 33.333 8.196   0.215 8.717 2 33.333 8.210 0.207 8.736 
4 33.333 7.092 0.198 7.582 3 33.333 7.112 0.180 7.517 

With the statistical predictions in HOV3 the user may even expose the cluster clues 
that are not easy to be found by random adjustments. For example, we adopted the 8th 
row of auto-mpg’s covariance matrix as a predictive measure (0.04698, -0.07657, -
0.06580, 0.00187, -0.05598, 0.01343, 0.02202, 0.16102) to project auto-mpg by HOV3 in 
MATLAB. The result is shown in Fig 9. We grouped them by their distribution as in 
Fig 10. Table 2 (right part) reports the statistics of the clusters generated by the pro-
jection of HOV3, and reveals that the points in each cluster have very high similarity.  

As we chose the 8th row of auto-mpg’s covariance matrix as the prediction, the result 
mainly depends on the 8th column of auto-mpg data, i.e., “origin” (country). Fig. 10 
shows that C1, C2 and C3 are closer because they have the same “origin” value 1. The 
more detailed formation of clusters is given in the right part of Table 2.We believe that a 
domain expert could give a better and intuitive explanation about this clustering.  

Then we chose number 5 to cluster auto-mpg by the K-means. Its clustering result is 
presented in the left part of Table 2. Comparing their corresponding statistics, we can 
see that according to the Variance of clusters, the quality of the clustering result by 
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Fig. 9. Data distribution projected by HOV3 in 
MATLAB of auto-mpg with 8th row of auto-
map’s covariance matrix as prediction 

 

Fig. 10. Clustered distribution of data in Fig. 
8 by the user’s intuition 

Table 2.  The statistical contrast of clusters in auto-mpg produced by K-means and HOV3 

 Clusters produced by K-means (k=5) Clusters generated by the user intuition on the data distribution 
C % Radius Variance MaxDis Origin Cylinders % Radius Variance MaxDis 
1 0.503 681.231 963.406 1362.462 1 8 25.879 4129.492 0.130 4129.768 
2 18.090 2649.108 0.206 2649.414 1 6 18.583 3222.493 0.098 3222.720 
3 16.080 2492.388 0.139 2492.595 1 4 18.090 2441.881 0.090 2442.061 
4 21.608 3048.532 0.207 3048.897 2 4 17.588 2427.449 0.142 2427.632 
5 25.377 3873.052 0.220 3873.670 3 3 19.849 2225.465 0.093 2225.658 
6 18.593 2417.804 0.148 2417.990  

HOV3 with covariance prediction of auto-mpg is better than that one produced by K-
means (k=5, cluster 1 produced by K-means is an outlier). 

3.5   Predictive Cluster Validation by HOV3 

In practice, with extremely large sized datasets, it is infeasible to cluster an entire data 
set within an acceptable time scale. A common solution used in data mining is that, 
clustering algorithms are first applied to the training (a sampling) subset of data from 
a database to extract cluster patterns, and then the cluster scheme is assessed to see 
whether it is suitable for other subsets in the database. This procedure is regarded as 
external cluster validation [21]. Due to the high computational cost of statistical 
methods on assessing the consistency of cluster structures between large sized sub-
sets, to achieve this goal by statistical methods is still a challenge in data mining. 

Based on the assumption that if two same-sized data sets have a similar cluster 
structure, by applying a linear transformation to the data sets, the similarity of the 
newly produced distributions of the two sets would still be high, Zhang et al proposed 
a visual external validation approach by HOV3 [23]. Technically, their approach uses 
a clustered subset and a same-sized unclustered subset from a database as the observa-
tion by applying the measure vectors that can separate clusters in the clustered subset 
by HOV3. Thus each cluster and its geometrically covered data points (called quasi-
Cluster in their approach) are selected. Finally, the overlapping rate of each  
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cluster-quasicluster pair is calculated; and if the overlapping rate approaches 1, this 
means that the two subsets have a similar cluster distribution. 

Compared with the statistics-based vali-
dation methods, their method is not only 
visually intuitive, but also more effective in 
real applications [23]. As mentioned above, 
sometimes, it is time consuming to separate 
clusters manually in Star Coordinates or 
iVIBRATE. Thus, separation of clusters 
from lots of overlapping points is an aim of 
this research. As we described above, the 
approaches such as M-HOV3 and HOV3 
with statistical measurement can be intro-
duced into external cluster validation by 
HOV3. In principle, any linear transforma-
tion can be employed into HOV3 if it can 
separate clusters well.  

 

Fig. 11. The data distribution of auto-mpg 
projected by HOV3 with cos(M*10i ) as the 
prediction 

We therefore introduce the complex linear transformation to this process. We again use 
auto-mpg data set as an example. As shown in Fig. 6b, three roughly separated clusters ap-
pear there, where the vector M=[0.10, 0, 0.25, 0.2, 0.8, 0.85, 0.1, 0.95] was obtained from the 
axes values. Then we adopt cos(M·10i ) as a prediction, where i is the imaginary unit. The 
projection of HOV3 with cos(M·10i ) is illustrated in Fig. 11, where three clusters are sepa-
rated very well. In the same way, many other linear transformations can be applied to differ-
ent datasets to obtain well-separated clusters. With the fully separated clusters, there will be 
marked improvement of the efficiency of visual cluster validation. 

4   Related Work 

Visualization is typically employed as an observational mechanism to assist users with 
intuitive comparisons and better understanding of the studied data. Instead of quantita-
tively contrasting clustering results, most of the visualization techniques employed in 
cluster analysis focus on providing users with an easy and intuitive understanding of the 
cluster structure, or explore clusters randomly.  

For instance, Multidimensional Scaling, MDS [14] and Principal Component Analy-
sis, PCA [10] are two commonly used multivariate analysis techniques. However, the 
relative high computational cost of MDS (polynomial time O(N2)) limits its usability in 
very large datasets, and PCA first has to find the correlated variables for reducing the 
dimensionality, which makes it not suitable for unknown data exploration.  

OPTICS [1] uses a density-based technique to detect cluster structure and visualizes 
clusters in “Gaussian bumps”, but its non-linear time complexity makes it neither suitable 
for dealing with very large data sets, nor for providing the contrast between clustering 
results. H-BLOB visualizes clusters into blob manners in a 3D hierarchical structure [17]. 
It is an intuitive cluster rendering technique, but its 3D and two stages expression restricts 
it from interactively investigating cluster structures apart from existing clusters.  

Kaski el. al [13] uses Self-organizing maps (SOM) to project high-dimensional data 
sets to 2D space for matching visual models [12]. However, the SOM technique is based 
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on a single projection strategy and it is not powerful enough to discover all the interesting 
features from the original data set. 

Huang et. al [7, 8] proposed the approaches based on FastMap [5] to assist users in 
identifying and verifying the validity of clusters in visual form. Their techniques work 
well in cluster identification, but are unable to evaluate the cluster quality very well. On 
the other hand, these techniques are not well suited to the interactive investigation of data 
distributions of high-dimensional data sets. A recent survey of visualization techniques in 
cluster analysis can be found in the literature [18].  

5   Conclusions 

In this paper, we have proposed a prediction-based visual approach to explore and 
verify clusters. This approach uses the HOV3 projection technique and quantifies the 
previously obtained knowledge and statistical measurements about a high dimensional 
data set as predictions, so that users can utilize the predictions to project the data on 
2D plane in order to investigate grouping clues or verify the validity of clusters based 
on the distribution of the data. This approach not only inherits the intuitive and easy 
understanding features of visualization, but also avoids the weaknesses of randomness 
and arbitrary exploration of the existing visual methods employed in data mining. 

As a consequence, with the advantage of the quantified predictive measurement of 
this approach, users can identify the cluster number in the pre-processing stage of 
clustering efficiently, and also can intuitively verify the validity of clusters in the 
post-processing stage of clustering.  
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