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Abstract. We demonstrate a binary classification problem in which
standard supervised learning algorithms such as linear and kernel SVM,
naive Bayes, ridge regression, k-nearest neighbors, shrunken centroid,
multilayer perceptron and decision trees perform in an unusual way. On
certain data sets they classify a randomly sampled training subset nearly
perfectly, but systematically perform worse than random guessing on
cases unseen in training. We demonstrate this phenomenon in classifica-
tion of a natural data set of cancer genomics microarrays using cross-
validation test. Additionally, we generate a range of synthetic datasets,
the outcomes of 0-sum games, for which we analyse this phenomenon in
the i.i.d. setting.

Furthermore, we propose and evaluate a remedy that yields promis-
ing results for classifying such data as well as normal datasets. We sim-
ply transform the classifier scores by an additional 1-dimensional linear
transformation developed, for instance, to maximize classification accu-
racy of the outputs of an internal cross-validation on the training set.
We also discuss the relevance to other fields such as learning theory,
boosting, regularization, sample bias and application of kernels.

1 Introduction

Anti-learning is a non-standard phenomenon involving both dataset and clas-
sification algorithms, which has been encountered in some important biological
classification tasks. In specific binary classification tasks, a range of standard
supervised learning algorithms, such as linear and kernel SVM, naive Bayes,
ridge regression, k-nearest neighbors, shrunken centroid, multilayer perceptron
and decision trees behave in an unusual way. While they easily learn to classify
a randomly sampled training subset nearly perfectly, they systematically and
significantly perform worse than random guessing if tested on cases unseen in
training. Thus reversing the classifier scores can deliver an accurate predictor,
far more accurate than the original machine. In such a case we say that the
dataset is anti-learnable by our classifier.

In this paper we shall demonstrate this phenomenon on a natural data set,
a cancer genomics microarray dataset generated for classification of response
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to treatment in esophageal cancer [1,2] and a synthetic dataset introduced in
this paper. For the esophageal dataset, the previous analysis points towards a
biological origin of a specific anti-learnable signal in the data [3], although the
exact nature of such a mechanism is unclear at this stage.

We start with analysis of synthetic anti-learnable datasets, which are the out-
comes of specific 0-sum games (Section 2). For such data we can use analytical
methods and prove that anti-learning is the logical consequence of a specific con-
figuration of dataset (Section 2.3). Further, for such datasets we can generate
samples of arbitrary size, hence we can use the standard independently iden-
tically distributed (i.i.d.) setting rather than cross-validation for experimental
evaluation. This leads to generation of non-conventional learning curves (Sec-
tion 2.1) showing a continuum of behavior modes, starting with anti-learning for
small size samples to classical, consistent generalization (asymptotic) bounds in
the large size training samples limit.

In order to build a bridge to the esophageal data, we have used our synthetic
model to generate a dataset of similar size (50 samples, split evenly between
two labels and each represented by 10000 features). Then we classified the orig-
inal and synthetic datasets using a range of classifiers combined with aggressive
feature selection (t-test filter). We observe a strong similarity between learning
curves for both datasets, which indirectly supports the hypothesis of determin-
istic origins of an “anti-learnable signal” in the esophageal dataset.

Independently, we demonstrate and evaluate some algorithms, which can suc-
cessfully classify such non-standard data as well as standard datasets seamlessly.
The idea here is to combine the classifiers scores with a module trained to “in-
terpret” them accordingly. In our case, this is exclusively a simple 1-dimensional
linear transformation developed to maximize a chosen objective function of the
scores from internal cross-validation on the training set (Section 2.2). We show
analytically and empirically, that such modified algorithms can perform well in
Sections 2.1, 2.3 and 3.

Links to related research. There is a direct link to previous papers on
perfect anti-learning [4,5] as follows. A specific cases of WL-game introduced
in Section 2 (the magnitude μ ≡ const and single case per mode) generate the
“class symmetric” kernel data studied in those papers. As mentioned before,
the paper [3] studied significance of anti-learning in esophageal cancer dataset.
A form of anti-learning is in KDD’02, Task 2 data: the anti-learning occurrs
for standard SVM and persists for the aggressive feature selection [6,7]. Finally,
the existence of anti-learning is compatible with predictions of “No Free Lunch
Theorems” [8].

2 Anti-learnable Signature of a 0-Sum Game

An individual outcome of the game is represented by a d0-dimensional state
vector s = (s1, ..., sd0) ∈ R

d0 , with each dimension corresponding to a “player”.
The players split into three groups: potential winners, indexed 1 to d+

0 ; potential
losers, index d+

0 +1 to d+
0 +d−0 ; and remaining d0 −d+

0 −d−0 ≥ 0 neutral players.
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The outcome is uniquely determined by two parameters, the magnitude μs > 0
and mode, Ms ∈ {1, ..., d+

0 +d−0 }, which here is the index of the player, as follows:

si =

⎧
⎨

⎩

ysμs, for i = Ms;
−ysμs/(d0 − 1), for Ms �= i ≤ d+

0 + d−0 ;
0, otherwise,

(1)

for i = 1, 2, ..., d0, where the label ys is defined as 1 if 1 ≤ Ms ≤ d+
0 and -1,

otherwise. Thus if ys = +1, the Msth player is a big-time winner, while the
reaming, non-neutral players are uniformly worse-off. The opposite holds for
ys = −1, hence the name Win-Loss game or shortly WL-game. Note that s as
above satisfies the 0-sum constraint:

d0∑

i=1

si = 0. (2)

The subspace S ⊂ R
d0 of all such possible state vectors is called the state

space. In general the state vector s is observed indirectly, via the measurement
vector x = (x1, ..., xd) ∈ R

d which is a linear mixture of state variables

x = As, (3)

where A is a d × d0 matrix. If rank(A) = d0, then the label classes in both
S ⊂ R

d0 and its image

X := AS = {As ; s ∈ S} ⊂ R
d

are linearly separable. Indeed, any hyperplane defined by the equation si = 0 for
i > d+

0 + d−0 always separates these datasets in R
d0 , hence its image separates

the data in span(X) ⊂ R
d and could be easily extended to the whole R

d.
In general we shall consider d ≥ d0. In the particular case of d = d0 and

A = I being the identity matrix, we say the game is directly observable. Another
special case of interest, due to ease of analytical analysis, is orthogonal mixing
with columns of A are composed of orthogonal vectors of equal length, i.e.

AT A = CI, (4)

where C > 0. We shall refer to this game as orthogonal WL-game. The above
condition ensures that the following relations hold for dot-products:

C−1x · x′ = s · s′ =

⎧
⎨

⎩

μsμs′d0/(d0 − 1), if Ms = Ms′ ;
−μsμs′d0/(d0 − 1)2 < 0, if ys = ys′ but Ms �= Ms′ ;
μsμs′d0/(d0 − 1)2 > 0, otherwise, i.e. if ys �= ys′ ,

(5)

for any two state vectors s, s′ ∈ S, x = As and x′ = As′.
The equation (5) is the crucial relation for the theoretical understanding of

anti-learning in this dataset. It states for instances of different modes: any two
of the opposite label are more correlated than any two of the same label.
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2.1 Empirical Learning Curves for Orthonormal WL-Game

Dataset. We have used WL-game to generate finite dataset (xj , yj) ∈ R
d ×

{±1}, j = 1, ..., n as follows. First, we selected a random sample of states
(sj) ∈ Sn and generated a mixing d × do matrix A by Gramm-Schmidt or-
thonormalisation of columns of a random matrix; then we defined yj := ysj and
xj := Asj .

Performance metrics. We use the Area under Receiver Operating Character-
istics (AROC or AUC) [9,10], the plot of the True Positive versus False Negative
error rates, as our main performance metric. Additionally, we also use Accuracy
(ACC) defined as the average of the True Positive and the True Negative rates.
Both metrics are insensitive to the class distribution in the test set. For both the
value of 0.5 represents performance of trivial classifiers, be it random guessing
or allocation of all example to one class; value 1 will be allocated to the perfect
classifier and value 0 to the perfectly wrong one.

2.2 The i.i.d. Learning Curves

This experiment has been designed to demonstrate that anti-learning is a phe-
nomenon of learning from a low size sample that disappears in the large size
sample limit. We have used a synthetic orthogonal WL-game (d+

0 = d−0 = 100,
d0 = 250 and d = 300) to generate 2000 sample data set for re-sampling of a
training set from, and then for testing classifiers (on the whole dataset). The
results are plotted in Figure 1. We discuss the selected classifiers first.

Centroid. The centroid (Cntr), our basic (linear) classifier, is defined as follows:

f(x) :=
2

‖w‖2 w · x − ‖w+‖2 − ‖w−‖2

‖w‖2

where x ∈ R
d, wy :=

∑
i,yi=y xi/ny, y = ±1, and w = (wj) := w+ − w−. It

is a very simple machine, does not depend on tuning parameters, is the “high
regularisation” limit of SVMs and ridge regression [11], and performs well on
microarray classification tasks [11]. (The scaling and the bias b are such that the
scores of “class” centers are equal to class labels, i.e. f(wy) = y for y = ±1.)

Cross-Validation Learners. In Figure 1 we observe that for small size training
samples, both AROC and ACC for primary classifiers such as SVM can reach
values close to those for a classifier perfectly misclassifying the data. In such a
case, the classifier −f will classify data nearly perfectly. Obviously, for larger
training samples, the reverse is true and f is preferred. Can such a decision
to reverse the classifier or not be made in a principled way? The obvious way
to address this issue is to perform additional cross validation on the training
data in order to detect the “mode” of the classifier. A short reflection leads to
the conclusion that there are a few possible strategies which can be used to
insure that the proper detection of the mode actually happen. Perhaps the most
straightforward one is as follows.
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Fig. 1. Area under Reciver Operating Characteristic (AROC) and accuracy (ACC) as
functions of increasing random training subset size for synthetic orthogonal WL-game
data. We plot the averages of 100 tests on the whole dataset of 2000 instances with
standard deviation marked by bars. We have used the following classifiers: Centroid
(Cntr), hard margin support vector machine (SVM), Rosenblatt’s perceptron [12] and
xvCntr generated by Algorithm 1.

Algorithm 1 (xvL1). Given: a training set Tr = (xi, yi) ∈ (Rd×{±1})n,
an algorithm f = A(Tr);

1. Calculate cross-validation results, e.g. for LOO: fvx(i) := f\i(xi)
for f\i := A(Tr\(xi, yi)), i = 1, ..., n;

2. Calculate arocvx := AROC((fvx(i), yi)n
i=1);

Output classifier: f = φ ◦ f ′ := sgn(arocxv − 0.5) × f ′, where f ′ = A(Tr).

Obviously one can use cross-validation schemes other than the leave-one-out
(LOO) and can optimize other measures than AROC in designing moderation
of the output scores or just train an additional classifier. An example follows.

Algorithm 2 (xvL2). Use cross validation scores to train an addi-
tional 1-dimensional classifier φ := A2((fxv(i), yi)n

i=1) and then use
the superposition φ ◦ f instead of f = A(Tr).

The function φ as in the above two Algorithms will be called a reverser.

Discussion of Figure 1. We clearly see disappearance of anti-learning phe-
nomena in the large size sample limit. Note the poor performance of Cntr in
Figure 1.B. This is due to the poor selection of the bias and is compatible with
results of Theorem 2 and Corollary 1. The large variance for xvCntr is caused by
a few cases of small size training samples which had the duplicate examples from
the same mode, causing the miss-detection of the anti-learnable mode. Note that
such single occurrence in 100 trails could result in std ≈

√
1/100 = 0.1.

2.3 IID Anti-learning Theorem

In this section we generalise the analysis of the WL-game in Section 2 to more
general kernel machines and prove a formal result on anti-learning for small
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size samples in the i.i.d. setting observed in Figure 1. We consider a kernel
function k : X × X → R, on the measurements space X = AS ⊂ R

d, although
we do not need to assume that it is symmetric or positive definite, which are
typical assumptions in the machine learning field [12,13,14]. Further, we assume
probability distribution Pr on the state space S and consider an i.i.d. training
n-sample (si) ∈ Sn, with associated n-tuple of measurement-label pairs:

Tr :=
(
(xi, yi)

)n

i=1 :=
(
(Asi, ysi)

)n

i=1 ⊂
(
R

d × {±1}
)n

and modes Mi := Msi
, for i = 1, ..., n. We assume we are given an algorithm

that produces a kernel machine f = KM(k, T r) : X → R of the form

f(x) =
n∑

i=1

yiαik(xi, x) + b �≡ const, (6)

αi ≥ 0 &
n∑

i=1

yiαi = 0. (7)

for every x ∈ X . Many algorithms, including popular flavors of SVM [13,12], the
centroid (see Section 2.2) and Rosenblatt’s perceptron [12], generate solutions
satisfying the above conditions. If b = 0, we say that f is a homogenous machine.

We recall here a re-formulation of our metrics in terms of a probability dis-
tribution Pr on S and the order statistic U [10], for convenience:

AROC(f, S) = Pr
[
f(xs) < f(xs′) | ys = −1 & ys′ = +1

]

−1
2
Pr

[
f(xs) = f(xs′) | ys �= ys′

]
, (8)

ACC(f, S) =
1
2
Pr

[
f(xs) < 0 | ys = −1

]
+

1
2
Pr

[
f(xs) > 0 | ys = −1

]
. (9)

Let Pmax := maxM Pr[Ms = M ] denote the maximum probability of a mode
and by πy := Pr[ys = y] be the prior probability of label y for y = ±1.

Theorem 1. Assume that the kernel function k satisfies the condition

ysys′k(xs, xs′) < ysys′b0, (10)

for every s, s′ ∈ S such that Ms′ �= Ms, where b0 ∈ R is a constant. Let function
ψ : R → R be monotonically increasing on the range of k, i.e. for ξ ∈ k(X ×X).

Then for any kernel machine f trained for kernel ψ ◦ k on the n-sample Tr:

ys

n∑

i=1

yiαi ψ ◦ k(xi, xs) < 0, (11)

for every s ∈ S such that Ms �∈ {M1, .., Mn}. Moreover, there exists B such that

AROC(f, S) ≤ nPmax/ min
y

πy, (12)

ACC(f + B, S) ≤ n

2
Pmax/ min

y
πy . (13)
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Thus the homogenous kernel machine s �→
∑n

i=1 yiαi ψ ◦ k(xi, xs) misclassifies
every instance with mode unseen in training (see Eqn. 11).

Remark 1. The significance of the monotonic function ψ is that it allows exten-
sion of results automatically to many classes of practical kernels which can be
represented as a monotonic function of the dot-product kernel. These include
the polynomial kernels and, under the additional assumption of fixed magnitude
of measurement vectors, the radial basis kernels.

Proof. First, let us note that if assumption (10) holds, then it also holds for the
kernel k ← ψ ◦ k and constant b0 ← ψ(b0). This reduces the proof to the special
case of ψ(ξ) = ξ for every ξ ∈ R, assumed from now on.

For a proof of (11) let us assume that (10) holds. Then

ysf(xs) = ys

n∑

i=1

yiαik(xi, x) < ysb0

n∑

i=1

yiαi = 0.

Now we proceed to the proof of (12). Denote by P := Pr[s, Ms ∈ {M1, ..., Mn}]
the probability of an instance s having its mode present in the training set; by Py

the probability of such an instance s with label y. By (11) any two instances with
modes not in the training sets are miss-ordered by f , hence

AROC(f, S) ≤ 1 −
(

1 − P−
π−

) (

1 − P+

π+

)

≤ 1 −
(

1 − P−
min(π−, π+)

) (

1 − P+

min(π−, π+)

)

≤ max
0≤x≤P

1 −
(

1 − x

min(π−, π+)

) (

1 − P − x

min(π−, π+)

)

=
P

min(π−, π+)
≤ nPmax

min(π−, π+)
.

This completes the proof of (12). The proof of (13) follows

ACC(f + B, S)≤ 1
2

�
P+

π+
+

P−

π−

�
≤ P+ + P−

2min(π−, π+)
=

P

2min(π−, π+)
≤ nPmax

2min(π−, π+)
.

�

Corollary 1. Let φ : R → R be a reverser generated by either Algorithm 1 or 2
for the homogeneous kernel machines. Then there exists a bias B ∈ R such that

AROC(φ ◦ f, S) ≥ 1 − n
Pmax

miny Pr[ys = y]
, (14)

ACC(φ ◦ f + B, S) ≥ 1 − n
Pmax

2 miny Pr[ys = y]
, (15)

with confidence >
∏n−1

i=1 (1 − iPmax) > 1 − (n−1)n
2 Pmax.
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Note the “paradoxical” meaning of this result, compatible with experiments in
Figure 1. The smaller the sample, the more accurate generalisation, provided
the anti-learnable mode is detected and dealt with accordingly.

A simple proof (omitted) uses two observations: (i) that
∏n−1

i=1 (1 − iPmax) is
the lower bound on the probability of drawing n-different modes in that many
samples, and (ii) that the assumptions insure that the inequality (11) holds
for every kernel machine, hence also for fxv, the pooled results of the cross-
validation.

Note that for the orthogonal WL-game the dot product kernel k(x, x′) := x·x′

satisfies the assumption (10) of Theorem 1, see Eqn. 5. Thus we have

Corollary 2. Corollary 1 holds for the linear kernel and orthogonal WL-game.

3 Examples of Anti-learning in Natural Data

The esophageal adenocarcinoma dataset (AC) consists of 25 expressions of 9857
genes measured by cDNA microarrays in cancer biopsies collected from
esophageal adenocarcinoma patients [1,2], prior to chemo-radio-therapy (CRT)
treatment1. The binary labels were allocated according to whether the patient
responded to the subsequent treatment (11 cases) or not (14 cases). The aim
of the experiment was to assess the feasibility of developing a predictor of the
response to treatment for clinical usage ( an open problem, critical for clinical
treatment).

We have also generated another synthetic data set, the output of the WL-
game, but with 10, 000 ∗ 1000 mixing matrix A drawn from the standard normal
distribution (we have used d+

0 = d−0 = 75 and d = 1000). The data set con-
sisted of 25 instances of each of the two labels. Back-to-back comparison of the
classification of these two datasets in Figure 2 shows very similar trends indi-
rectly linking the non-standard properties of AC-data to the anti-learning as
understood in Section 2. Here we plot AROC as a function of number of fea-
tures selected by t-test applied to the training set data only. In Figures 2.A &
B we have used the following classifiers: Centroid (Cntr), hard margin support
vector machine (SVM), shrunken centroid (PAM) [15] and 5-nearest neighbours
(5-NN). In Figures C & D we have used various versions of xv-learner generated
by the Algorithm 2 with and A2 generating the 1-dimensional linear reverser
ψ(ξ) := Aξ + B maximizing accuracy of the internal 2-fold cross-validation.

In Figure 3 we plot results for the additional test of 8 supervised learning
algorithms on the natural AC-data. We observe that all averages are clearly
below random guessing level of 0.5. These results show that the anti-learning
persists for a number of standard classifiers, including multilayer algorithms
such as decision trees or multilayer neural networks.

1 Raw array data and protocols used are available at http://www.ebi.ac.uk/
arrayexpress/Exp. The processed data used in this paper is available from
http://nicta.com.au/people/kowalczyka
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Fig. 2. Comparison of classification of natural adenocarcinoma (AC-data) and syn-
thetic WL-game dataset for selected classifiers. We plot average of 20 repeats of 5-fold
cross-validation. For all classifiers but PAM, the genes were selected using t-test applied
to the training subset only. Note that PAM has built-in feature selection routine.

4 Discussion

The crux of anti-learning in our synthetic model is the inequality (5) stating that
two examples of the opposite label are more “similar” to each other than two
of the same label. This is a direct consequence of the 0-sum game constraints
(2) combined with the “winner take all” paradigm. Such a simple “Darwinian”
mechanism makes it plausible to argue that anti-learning signatures can arise in
the biological datasets. However, there are also many other models generating
anti-learnable signature, for instance a model of mimicry, which we shall cover
elsewhere.

Anti-learning and esophageal adenocarcinoma. There are at least two
reasons why research into anti-learning is currently critical for the project on
prediction of CRT response in esophageal adenocarcinoma. Firstly, we need to
prove that the measurements of gene expressions contain signal suitable for the
prediction, so continuation of this expensive line of research is warranted. Sec-
ondly, apart from direct utility of CRT response prediction, there is a secondary,
perhaps ultimate goal of this research, which is the determination of biology (say
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Fig. 3. Anti-learning performance of 8 selected classifiers on the natural AC-dataset
(Figures A & C) and synthetic WL-game datasets (Figures B & D). The setting is
similar to that in Figure 2, except that in Figure A we have tested for a smaller
number of (preselected) features only, ≤ 256, as some of the implementations used
did not run for the high dimensional input. For the following three algorithms: BP -
Back-Propagation neural network, 5 hidden notes and 1 output, DT - Decision Trees
and DTR - Regression Trees, we have used standard Matlab toolbox implementations,
newff.m and treefit.m, respectively. For the remaining five algorithms, i.e. NB - Naive
Bayes, Pe - Perceptron, RR - Ridge Regression [13], SVM2 - SVM with the second order
polynomial kernel and Wi - Winnow [16], we have used local custom implementations.

pathways) governing the CRT response, which could lead to a new treatment. As
supervised learning signature of those precesses is most likely “anti-learnable”
in view of our research, its proper interpretation and analysis is possible only
from the position of anti-learning, since otherwise the data makes no sense and
cannot lead to satisfactory conclusions.

Regularization. High regularization [12,13] is not an answer to the anti-learning
challenge. In particular, the centroid, which is a “high regularization” limit of
SVM and ridge regression [11], is systematically anti-learning on AC- and WL-
datasets. Moreover, according to Theorem 2, for some datasets such as WL-game
outcomes, SVM will anti-learn independently of how much regularization is used
in its generation.

Kernels. Now let us consider the case of non-linear transformation of data via
application of a kernel k [12,14,13]. Our Theorem 2, Remark 2 and Figure 3 argue
that for some datasets the anti-learning extends to the popular kernels including
the polynomial the radial basis kernels. This is compatible with a common sense
observation that the anti-learning is not an issue of the too-poor hypothesis class,
which is the main intuitive justification for kernel application.

Boosting. Now we turn to boosting, another heuristic for improving general-
ization of hard to learn data. The observation is that (ada)boosting [17] weak
learners satisfying conditions (6), (7) and (11) outputs a convex combination of
them, which again satisfies these conditions, hence the conclusion of Theorem 2
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(see [5] for the similar argument line). Thus here the boosting does not change
much at all. Intuitively, this is what one should expect: the boosting is effective
in some cases where training data is difficult to classify. However, in the case in
question, the training data is deceptively easy to deal with, but gives no clues
of the performance on an independent test set.

Anti-learning and Overfitting. Overfitting is a deficiency of an algorithm
with excessive capacity [12] which fits a model to idiosyncracies and noise of
the training data. However, the anti-learning we are concerned with here is
essentially different issue. Firstly, we prove that it is possible for a predictor
to operate well below the accuracy of random guessing and still be a reliable
forecaster. Secondly, we have shown that the anti-learning can be a signature of
a deterministic phenomena (see the WL-game definition in Section 2).

The large sample limit and VC bounds. It follows clearly from Figure 1 that
there is no contradiction between anti-learning and predictions of the learning
theory such as VC-bounds [12,13]. Anti-learning occurs for a small size training
set, where the asymptotic predictions of VC-theory are vacuous, and disappear
in the large size sample limit, where VC-bounds hold.

5 Conclusions

We have demonstrated the existence of strong anti-learning behavior by a num-
ber of supervised learning algorithms on natural and synthetic data. Moreover,
we have shown that a simple addition of an extra decision step, a reverser, can ex-
ploit this systematic tendency and lead to accurate predictor. Thus anti-learning
is not a manifestation of over-fitting classifiers to the noise, but a systematic
though usual, mode of operation of a range of supervised learning algorithms
exposed to a non-standard dataset. Such a phenomenon, whenever encountered,
should be systematically investigated rather than labelled as failure and forgot-
ten. On a level of datamining we can offer a rough explanation of anti-learning
by a specific geometry in the dataset, though this surely does not account for
all of the phenomena encountered in nature. More research is needed into han-
dling such datasets in practice as well as into the natural processes capable of
generating such signatures.
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