
Stochastic Modeling of Composite Web Services
for Closed-Form Analysis of Their Performance and

Reliability Bottlenecks

N. Sato1 and K.S. Trivedi2

1 IBM Research
2 Duke University

Abstract. Web services providers often commit service-level agreements
(SLAs) with their customers for guaranteeing the quality of the services. These
SLAs are related not just to functional attributes of the services but to performance
and reliability attributes as well. When combining several services into a compos-
ite service, it is non-trivial to determine, prior to service deployment, performance
and reliability values of the composite service appropriately. Moreover, once the
service is deployed, it is often the case that during operation it fails to meet its SLA
and needs to detect what has gone wrong (i.e., performance/reliabilty bottlenecks).

To resolve these, we develop a continuous-time Markov chain (CTMC) for-
mulation of composite services with failures. By explicitly including failure states
into the CTMC representation of a service, we can compute accurately both its
performance and reliability using the single CTMC. We can also detect its per-
formance and reliability bottlenecks by applying the formal sensitivity analysis
technique. We demonstrate our approach by choosing a representative example
of composite Web services and providing a set of closed-form formulas for its
bottleneck detection.

1 Introduction

Composition of multiple Web services is growing in popularity as a convenient way of
defining new services within a business process. By combining existing services using
a high-level language such as BPEL [13], service providers can quickly develop new
services. When deploying these services, service providers often commit service-level
agreements (SLAs) with their customers, which include performance and dependability-
related metrics. For example, the mean response time and the service reliability for each
incoming request are guaranteed. Since a composite Web service may have complex
application logic, it is non-trivial to check whether or not the composed service will
meet its SLA. In this paper, we develop an analytical approach to determining the overall
performance and reliability of composed Web services.

As an example of such a Web service, we consider a business process, called TravelA-
gent (Figure 1). Figure 2 shows a concrete implementation of this process in BPEL. An
interesting part of this process is that it tries to make the airline reservation in a unique
manner: First, it looks up two different airlines for vacancy in parallel. When they re-
spond, it chooses one of the airlines based on some criterion such as fare, schedule, etc.

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 107–118, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

108 N. Sato and K.S. Trivedi

Customer
operation check

operation check

operation check

 Airline1

 Airline2

Hotel

operation reserve

operation reserve

operation reserve

Hotel reservation

Airline reservation

Travel Agent

Checking of Airline1 Checking of Airline2

 Airline Selection

1. Airline selection
 Check the airlines in parallel
 - Choose one if both replies
 - Proceed if either replies
 - Abort if none replies
2. Airline reservation
3. Hotel reservation

Airline1 offers
a better deal

Airline1 reserved

Airline1 reserved

Fig. 1. TravelAgent process

Otherwise, when either of the two airlines fails to respond, it chooses the other airline.
In case both fail to respond, then it gives up and aborts. Any other Web service may fail
to respond, from which we attempt to recover by means of a restart.

initialize

check Airline1 check Airline2

reserve Airline

reserve Hotel

notify customer

Airline reservation
Note one of the two airlines is
selected according to
he customer preference

AND

Hotel reservation

 scope

result1 ← success result2 ← success
 assign

 invoke invoke

 assign
result1 ← failure

 catch
result2 ← failure

 scope

 flow

 catch

join condition

 receive

 invoke

 invoke

 reply

Check the airlines in parallel

throw fault

abort
 throw

[result1 = success OR result2 = success]

 switch

Fig. 2. TravelAgent process (BPEL)

Issues we observe here are summarized as follows: (1) Before starting the service, the
provider needs to estimate what can be guaranteed to its customers. (2) During operation,
it needs to keep its SLA, and in case something goes wrong and the system suffers from
degradation, it needs to detect the bottleneck and resolve the problem.

To resolve these issues, we develop a set of Markov models, for computing the per-
formance and the reliability of Web services and detecting bottlenecks. In so doing, we
address the following specific challenges: (1) Web services are defined using a rich set
of control constructs. These include switch, while, flow, and scope. Our model will

Stochastic Modeling of Composite Web Services 109

include all the control constructs allowed in BPEL. (2) Restarts in failed activity is al-
lowed in BPEL via fault handlers. We will include restarts in our model. (3) We will
discuss parameterization based on experiments and monitoring. (4) We will primarily
be concerned with bottleneck detection, based on sensitivity functions and optimization.

Our contributions are four fold: First, we provide a continuous-time Markov chain
(CTMC) formulation of composite Web services with failures. Then, closed form ex-
pressions of the mean response time and the reliability of TravelAgent are derived.
Thirdly, bottleneck detection using the formal sensitivity analysis is carried out. Lastly,
outline of a solution in the general case is also given.

There are several research efforts related to ours. The IBM BPM engine [4] supports
performance simulation of BPEL processes. In contrast, we take an analytic approach
and we introduce failures and recoveries from failures. In addition, we also consider
sensitivity analysis. Our reliability model is related to a paper by Laprie [7]. But ours
is cast in the BPEL context and sensitivity analysis that we carry out is new. The paper
by Sharma and Trivedi [14] is the closest to current effort. But we find closed form
results and carry out formal sensitivity analysis. The computation method for the mean
response and reliability we use is described in the paper by Wang [21] and in the book
by Trivedi [18]. The computation of sensitivity functions is discussed in [1,8].

2 CTMC Formulation of Composite WS

We assume throughout that times to complete all individual Web services are exponen-
tially distributed. Similarly we assume that the the overhead time to conduct a restart is
also exponentially distributed. If desired, these restrictions can be removed, as presented
in [19].

2.1 CTMC for a Process with Concurrency

We start with a simple case where we never encounter failures. In such a case, the BPEL
process in Figure 1 can be encoded to the CTMC in Figure 3(a). The parallel invocation
in Figure 1 gets translated into 3 states [9]. In the state labeled Airline selection (1,2),
both activities are ongoing. After one of them finishes, only the other one is active.
Finally, when both finish, we proceed to make the reservation.

We note here that the model here assumes no contention for hardware or software
resources. In future, we will introduce contention for resources using a product-form
queueing network [18] or a non-product-form network [2,22].

2.2 CTMC with Failures

Each execution of a BPEL process may fail. Thus, for example, we suppose that the
invocations of the airlines may result in failures. To take account of these possibilities,
we add a single failure state to the CTMC. When failure states are added to a CTMC, we
need to modify the transition rates of the CTMC in the following manner. Suppose an
operation q1 takes λ−1 on average and it has a probability of R for successful completion
(i.e., (1−R) for failure). Then, the successful transition now has a rate λ ·R, while the

110 N. Sato and K.S. Trivedi

initialization

Airline
selection (2)

complete

Airline
selection (1)

1/mrspi

Airline selection (1|2)

Customer notification

Airline reservation

Hotel reservation

1/mrspa21/mrspa1

1/mrspa2 1/mrspa1

1/mrspai

1/mrspht

1/mrsprep

Airline Selection
 and Reservation

(1-Ra2)/mrspa2

 +(1-Ra1)/mrspa1

initialization

Airline
selection (2)

complete

Airline
selection (1)

Ri/mrspi

Airline selection (1|2)

Customer notification

Airline reservation

Hotel reservation

Ra2/mrspa2Ra1/mrspa1

Ra2/mrspa2

Rai/mrspai

Rht/mrspht

Rrep/mrsprep

(1-Ri)/mrspi

Ra1/mrspa1 (1-Ra2)/mrspa2

(1-Ra1)/mrspa1

failed

(1-Rai)/mrspai

(1-Rht)/mrspht

(1-Rrep)/mrsprep

(a) With no failure (b) With a single failure state

Fig. 3. CTMCs for the TravelAgent process

other transition (to the failure state) has a rate λ · (1 − R). Figure 3(b) is the revised
CTMC with failures introduced in the CTMC of Figure 3(a). Note that only if both
airline invocations return successfully then we continue, otherwise we abort.

2.3 CTMC with Restarts

For high reliability, BPEL processes often specify recovery procedures, called fault-
handlers, which are invoked for restarting failed invocations [13]. Figure 4 shows the
CTMC with failures and restarts. We have assumed that restart may be successful with
probability C while it fails with probability 1 − C. We also allow for an overhead time
for restart. Thus, for instance, upon the failure of the hotel invocation, a restart attempt
is made with the mean overhead time of mrspht and probability of success as Cht. We
assume that there is no restart for the airline invocation. Further that if either one or both
airlines invocation is successful, we proceed further in the flow. Upon the failure of both
invocations, we abort.

2.4 Response Time and Service Reliability

Now, we are ready to compute the mean response time and the service reliability based
on the CTMCs we have developed in the preceding sections. We derive closed form
expressions for the mean response time and service reliability based on the CTMCs we
have developed in Figure 3(a), 3(b), and 4.

Response Time. We start with the simple CTMC in Figure 3(a). In this case, the mean
response time can easily be computed as follows.

Stochastic Modeling of Composite Web Services 111

Reply to customerfailed

Initialization

A1 | A2

A 2 (A 1 done)A 1 (A 2 done)A 2 (A 1 failed)A 1 (A 2 failed)

A resv

1/ mrspa21/ mrspa1

Ra1

mrspa1

HT resv

complete

1 - R A1
mrspA1

Airline selection / reservation

1 - Rht

mrspht

1 - Ra2

mrspa2

1 - Rai

mrspai

Ra2

mrspa2

1 - Ra2

mrspa2

1 - Ra1

mrspa1

Ra2

mrspa2

Rai

mrspai

Rht

mrspht

Hotel reservation

RIni

RAinv

RHt

RRep

Ri

mrspi

1 - Ri

mrspi

Ci

mri

1 - Ci

mri

1 - Cainv

mrainv

1 - Cht

mrht

1 - Crep

mrrep

Rrep

mrsprep

Crep

mrrep

Cht

mrht

1 - Rrep

mrsprep

Ra1

mrspa1

Cainv

mrainv

Fig. 4. CTMC with restarts

mrspsys = mrspi +

�
���mrspa1 + mrspa2 −

1
1

mrspa1

+
1

mrspa2

�
���+ mrspai + mrspht + mrsprep

(1)
The expression in the parentheses above is a well-known one for the parallel con-
struct [16].

For the second case (CTMC of Figure 3(b)), the system mean response time can be
shown to be:

mrspsys = mrspi

+Ri ·

�
��� 1�

1

mrspa1

+
1

mrspa2

� ·
�

1 + Ra2 · mrspa1

mrspa2

+ Ra1 · mrspa2

mrspa1

�

+ Ra1 · Ra2 ·
	
mrspai + Rai · (mrspht + Rht · mrsprep)

��
(2)

Note that the mean response time will reduce due to failures since some fraction of
requests will not traverse the graph to completion. Also, notice that the above expression
(2) reduces to the expression (1) when all reliability values are set to 1.

112 N. Sato and K.S. Trivedi

For the third case (CTMC of Figure 4), the system mean response time can be shown
to be:

mrspsys = vi · mrspi + v1|2 · 1
1

mrspa1

+
1

mrspa2
+va2 · mrspa2 + vf1 · mrspa2 + va1 · mrspa1 + vf2 · mrspa1

+vainv · mrspai + vht · mrspht + vrep · mrsprep

+vrinit · mri + vrainv · mrai + vrht · mrht + vrrep · mrrep

(3)

where the average number of visits to the states are:

vi =
1

1 − Ci(1 − Ri)

vRinit = (1 − Ri) · vi

v1|2 = Ri · vi

va1 =
Ra2 · v1|2

mrspa2 · (1
mrspa1

+ 1
mrspa2

)

va2 =
Ra1 · v1|2

mrspa1 · (1
mrspa1

+ 1
mrspa2

)

vF1 =
(1 − Ra1) · v1|2

mrspa1 ·
�

1
mrspa1

+ 1
mrspa2

�
vF2 =

(1 − Ra2) · v1|2

mrspa2 ·
�

1
mrspa1

+ 1
mrspa2

�

vainv =
va1 + Ra2 · vF1 + va2 + Ra1 · vF2

1 − Cai · (1 − Rai)

vRainv = (1 − Rai) · vainv

vht =
Rai · vainv

1 − Cht · (1 − Rht)

vRht = (1 − Rht) · vht

vrep =
Rht · vht

1 − Crep · (1 − Rrep)

vRrep = (1 − Rrep) · vrep

Check again that when all Rk’s are set equal to 1, the above expression reduces to
Expression 1. Note also that the mean response time in this case will tend to be larger
due to: (1) multiple executions of the same activity and (2) overheads of restarts.

For the general case, it will be impossible to find closed-form answers. After first
generating CTMC, we can numerically solve for the overall mean response time using
a package such as SHARPE [10]. Alternatively, we can first construct a stochastic Petri
net from the BPEL description and then automatically generate and solve the underlying
CTMC using a software package such as SPNP [17] or SHARPE. Equations to compute
the mean time to absorption in a CTMC can be found in [18,21].

Service Reliability. The service reliability is computed in closed form using the equations
provided in [21,18]. Refer also to [11] for the reliability computation. In the case without
failures (CTMC of Figure 3(a)), overall service reliability is 1.

In the case with failures (CTMC of Figure 3), the overall service reliability can be easily
written down as:

Rsys = Ri · Ra1 · Ra2 · Rai · Rht · Rrep (4)

Finally, in the case with failures and restarts (CTMC of Figure 4), the overall service
reliability in closed-form can be shown to be:

Rsys =
Ri

(1 − Ci · (1 − Ri))
· (Ra1 + Ra2 − Ra1 · Ra2) · Rai

(1 − Cai · (1 − Rai))

· Rht

(1 − Cht · (1 − Rht))
· Rrep

(1 − Crep · (1 − Rrep))

(5)

Stochastic Modeling of Composite Web Services 113

We note that Expression (5) above does not reduce to Expression (4) if we set each of
the coverage probability to 0. In fact, in that case we obtain the lower bound of Rsys as
follows:

Rsys = (Ra1 + Ra2 − Ra1 · Ra2) · Rai · Rht · Rrep (Ck = 0 for all k) (6)

The reason is that our fault handling procedure says that if either airline succeeds
we proceed. Also note that if all Cj are set equal to 1, the upper bound turns out as
follows:

Rsys = Ra1 + Ra2 − Ra1 · Ra2 (Ck = 1 for all k) (7)

This is the best case reliability we can obtain.

2.5 Parameterization

To compute performance/reliability metrics of TravelAgent, we need to specify the
rate parameters of the CTMC for TravelAgent. Specifically, these rate parameters are
computed from the following types of primitive values:

1. Execution time of each activity (i.e., mean response time of each activity)
2. Reliability (i.e., success probability) of each activity
3. Overhead time for restart of each activity
4. Success probabilities for each restart
5. Branching probabilities in the original BPEL graph (if any)

Note that in our particular example, there are no branches in the original BPEL graph.

Execution time of an activity. From a collected sample of n values, the sample mean
and sample variance can be computed. We can then use the Student t distribution to
compute the interval estimate of the mean response time of each activity. We can either
use the expression for this together with critical values of the t-distribution from a text
such as [12,15,18], or use a statistical analysis package such as R [5].

Reliability. Since we are concerned only with software failures, the service reliability
can also be measured through execution. Actual measurements give us counts of the
number of successful tries ns out of a total of given number of trials n. The ratio ns/n
is the sample mean. We can also determine confidence intervals, using formulas based
on the Bernoulli sampling [18] or using a statistical analysis package.

Overhead time for restarts. The same method as in execution time of each activity.

Success probabilities for restarts. Same method as in the reliability above.

Branching Probabilities. Since BPEL process definitions often include conditional
branches (switch) and loops (while), it turns out that we need to transform these
parts of the definitions into probabilistic forms. Same method as in the execution time
above.

114 N. Sato and K.S. Trivedi

3 Bottleneck Detection

In order to detect bottlenecks to pinpoint the particular activity or parameter that is the
cause of bad behavior, we carry out a formal sensitivity analysis. This can be used at
design time to point out the activity/parameter that needs to be improved. We can also
use this in a realtime setting during the operational phase.

The basic idea is to compute the derivatives of the measure of interest with respect to
all the input parameters. These derivatives can then be used to pinpoint the bottleneck [1].

For the Overall Response Time mrspsys. We can argue that scaled sensitivities are the
relevant quantities in this case so that bottleneck device I is obtained, using the sensitivity
Sk (k ranges over the activities), as follows.

Bottleneck I = argmaxk |Sk| (i.e. |SI | = max
k

{|Sk|})

Sensitivity Sk =
mrspk

mrspsys
· ∂mrspsys

∂mrspk

For the first case (CTMC of Figure 3(a)), the scaled sensitivity values are derived as
follows:

Sa1 =
mrspa1

mrspsys
· ∂mrspsys

∂mrspa1
=

mrspa1

mrspsys
·
(

1 −
(

mrspa2

mrspa1 + mrspa2

)2
)

Sht =
mrspht

mrspsys

For the second case (CTMC of Figure 3(b)), the scaled sensitivity values are derived as
follows:

Sa1 =
mrspa1

mrspsys

· Ri ·
�

mrspa2
2

(mrspa1 + mrspa2)
2

+Ra2 · mrspa1
2 · mrspa2 + 2 · mrspa1 · mrspa2

2

(mrspa1 + mrspa2)
2 − Ra1 · mrspa2

(mrspa1 + mrspa2)
2

�

Sht =
mrspht

mrspsys

· (Ri · Ra1 · Ra2 · Rai)

For the third case (CTMC of Figure 4), the scaled sensitivity values are derived as
follows:

Sa1 =
mrspa1

mrspsys

·

v1|2 ·
�

mrspa2

mrspa1 + mrspa2

�2

+

�
∂va2

∂mrspa1

+
∂vf1

∂mrspa1

�
· mrspa2

+

�
∂va1

∂mrspa1

· mrspa1 + va1

�
+

�
∂vf2

∂mrspa1

· mrspa1 + vf2

�

+
∂vainv

∂mrspa1

· mrspai +
∂vht

∂mrspa1

· mrspht +
∂vrep

∂mrspa1

· mrsprep

+
∂vRainv

∂mrspa1

· mrai +
∂vRht

∂mrspa1

· mrht +
∂vRrep

∂mrspa1

· mrrep

�

Sht =
mrspht

mrspsys

· vht

Stochastic Modeling of Composite Web Services 115

where

∂va1

∂mrspa1

= Ra2 · v1|2 · mrspa2

(mrspa1 + mrspa2)
2

∂va2

∂mrspa1

= Ra1 · v1|2 · −mrspa2

(mrspa1 + mrspa2)
2

∂vf1

∂mrspa1

= (1 − Ra1) · v1|2 · −mrspa2

(mrspa1 + mrspa2)
2

∂vf2

∂mrspa1

= (1 − Ra2) · v1|2 · mrspa2

(mrspa1 + mrspa2)
2

∂vainv

∂mrspa1

=
1

1 − Cai · (1 − Rai)
·
�

∂va1

∂mrspa1

+ Ra1 · ∂vf1

∂mrspa1

+
∂va2

∂mrspa1

+ Ra2 · ∂vf2

∂mrspa1

�

∂vrainv

∂mrspa1

= (1 − Rai) ·
∂vainv

∂mrspa1

∂vht

∂mrspa1

=
Rai

1 − Cht · (1 − Rht)
· ∂vainv

∂mrspa1
∂vRht

∂mrspa1

= (1 − Rht) · ∂vht

∂mrspa1

∂vrep

∂mrspa1

=
Rht

1 − Crep · (1 − Rrep)
· ∂vht

∂mrspa1
∂vRrep

∂mrspa1

= (1 − Rrep) · ∂vrep

∂mrspa1

For the Overall Reliability Rsys. For this case, we can argue that unscaled derivatives can
be used to pinpoint the bottleneck: The bottleneck J should be determined as follows.

Bottleneck J = argmaxk |Sk|
Sensitivity Sk =

∂Rsys

∂Rk

Applying this to the second case (CTMC of Figure 3), we obtain the following formula:

∂Rsys

∂Rk
=

Rsys

Rk

For the third case (CTMC of Figure 4), we show some of its sensitivity values as
follows.

∂Rsys

∂Ra1
= α · (1 − Ra2) · Rai

(1 − Cai · (1 − Rai))

∂Rsys

∂Rht
= β · 1 − Cht

(Cht · Rht + (1 − Cht))
2

where

α =
Ri

(1 − Ci · (1 − Ri))
· Rht

(1 − Cht · (1 − Rht))
· Rrep

(1 − Crep · (1 − Rrep))

β =
Ri

(1 − Ci · (1 − Ri))
· (Ra1 + Ra2 − Ra1 · Ra2) · Rai

(1 − Cai · (1 − Rai))
· Rrep

(1 − Crep · (1 − Rrep))

By definition, the sensitivity metric for an activity tells us about the potential contri-
bution of its improvement to the overall improvement. Thus, it is natural to identify the
activity with the highest sensitivity as the bottleneck.

4 Evaluation

We have evaluated the effectiveness of our approach, using the example in Figure 1: We
have defined a BPEL process for the example and run it on IBM WebSphere Process

116 N. Sato and K.S. Trivedi

Table 1. MRSP Results

1a 1b 1c 2a 2b 2c 3a 3b 3c

Computed, using the closed-form expressions
(mrspi = mrsprep = 1, Ri = Rrep = 1, Cai = 1, Cht = 0, mrai = 0.15)

MRSP
mrspa1 2.000 1.000 2.000 2.000 1.000 2.000 2.000 1.000 2.000
mrspa2 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000
mrspai 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
mrspht 2.000 2.000 1.000 2.000 2.000 1.000 2.000 2.000 1.000

Reliability
Ra1/a2/ai/ht 0.9/0.9/0.9/0.9 0.1/0.9/0.9/0.9 0.1/0.1/0.9/0.9

mrspsys 8.002 7.336 7.012 7.679 7.012 6.769 4.768 4.101 4.578

Sa1 0.187 − − 0.196 − − 0.315 − −
Sht 0.247 − − 0.237 − − 0.080 − −

Measured on WPS
MRSP

mrspi 1.000 1.066 0.976 0.975 0.938 0.932 0.930 1.075 1.054
mrspa1 1.855 0.954 1.886 2.061 1.159 1.936 1.866 0.959 1.826
mrspa2 2.072 1.964 2.177 1.947 1.857 1.999 2.028 1.890 1.960
mrspai 1.028 1.029 1.032 1.031 1.029 1.028 1.029 1.030 1.028
mrspht 2.045 2.044 1.053 2.043 2.042 1.043 2.047 2.046 1.044

mrsprep 1.029 1.028 1.032 1.029 1.027 1.026 1.035 1.033 1.030

mrspsys 8.081 7.425 7.171 7.751 6.991 6.825 4.670 4.083 4.530

† Between (a) and (b) / (c), only the colored parameters have
intentionally been changed

Table 2. Reliability Results

1a 1b 1c 2a 2b 2c 3a 3b 3c

Computed, using the closed-form expressions (Ri = Rrep = 1, Cai = Cht = 1)

Ra1 0.800 0.900 0.800 0.100 0.200 0.100 0.100 0.200 0.100
Ra2 0.800 0.800 0.800 0.800 0.800 0.800 0.100 0.100 0.100
Rai 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900
Rht 0.800 0.800 0.900 0.800 0.800 0.900 0.800 0.800 0.900

Rsys 0.768 0.784 0.864 0.656 0.672 0.738 0.152 0.224 0.171
Sa1 0.160 − − 0.160 − − 0.720 − −
Sht 0.960 − − 0.820 − − 0.190 − −

Measured on WPS
Ra1 0.804 0.903 0.807 0.103 0.199 0.102 0.099 0.200 0.101
Ra2 0.803 0.801 0.797 0.804 0.801 0.797 0.099 0.101 0.101
Rai 0.805 0.800 0.804 0.800 0.805 0.809 0.809 0.803 0.812
Rht 0.800 0.802 0.905 0.800 0.806 0.901 0.796 0.799 0.895

Rsys 0.768 0.786 0.868 0.660 0.679 0.736 0.150 0.224 0.171

Server (v6.0). As for the reliability parameters, we have artificially caused failures in the
4 service invocations, namely Airline1/2 (for selection), Airline (for reservation), and
Hotel. We have assumed perfect reliability for the other activities (Ri = Rrep = 1), and

Stochastic Modeling of Composite Web Services 117

chosen Cai = Cht = 1 for the coverage parameters. Our evaluation is divided into two
parts, and the results are summarized in Table 1 and 2.

First, we focused on performance bottlenecks / improvement in 3 different cases, in
each of which we changed either mrspa1 or mrspht and evaluated its effect on mrspsys
(Table 1). For example, in Case 1a, mrsps are set to mrspa1 = mrspa2 = mrspht =
2.0, mrspai = 1.0, and Ri, Ra1, Rht are all set to 0.9. Then, in Case 1b (1c), mrspa1
(mrspht) are improved to 1.0. As its result, mrspsys is improved from 8.002 to 7.336
(7.012). Notice that the higher contribution of the improvement of mrspht parallels the
fact that Sht is larger than Sa1 (0.247 > 0.187). This applies to the other two cases as
well.

Subsequently, we evaluated effects of improvements of reliability values. Since the
service reliability does not depend of the mrsp values, we do not mention their values.
Again, as shown in Table 2, the sensitivity values Sa1 and Sht successfully suggest
which service should be chosen for improving the overall service reliability.

5 Conclusion

We have developed an approach to computing the overall mean response time and the
overall reliability of composite Web services. We find closed-form expressions in a
typical example. We show how sensitivity functions can be used to detect bottlenecks.
Experimental results are used to validate our theoretical expressions. We have also devel-
oped an availability model (not shown in this paper) of the system under consideration.
We plan to extend our work by providing a tool to carry out such an analysis in the
general case. We plan to remove several assumptions made here such as: no contention
for resources. We could also remove several distributional assumptions. We plan to use
the sensitivity function in a formal optimization setting. We will consider our scheme in
a realtime control theoretic setting. We propose to also extend the availability model to
include hardware redundancy and software replication as in [6] and consider interactions
between the availability model and performance model as in [14],[20], or [3].

References

1. Blake, J., Reibman, A., Trivedi, K.: Sensitivity analysis of reliability and performability
measures for multiprocessor systems. In: ACM SIGMETRICS, pp. 177–186. ACM Press,
New York (1988)

2. Bolch, G., Greiner, S., de Meer, H., Trivedi, K.: Queueing networks and Markov chains:
modeling and performance evaluation with computer science applications, 2nd edn. Wiley-
Interscience, New York, NY, USA (2006)

3. Chimento, P., Trivedi, K.: The completion time of programs on processors subject to failure
and repair. IEEE Trans. Comput. 42(10), 1184–1194 (1993)

4. Chowdhary, P., Bhaskaran, K., Caswell, N.S., Chang, H., Chao, T., Chen, S., Dikun, M.,
Lei, H., Jeng, J., Kapoor, S., Lang, C.A., Mihaila, G., Stanoi, I., Zeng, L.: Model driven
development for business performance management. IBM Systems Journal 45(3) (2006)

5. Fox, J.: An R and S-Plus Companion to Applied Regression. Sage Publications, Thousand
Oaks (2002)

118 N. Sato and K.S. Trivedi

6. Garg, S., Kintala, C., Yajnik, S., Huang, Y., Trivedi, K.: Performance and reliability evalua-
tion of passive replication schemes in application level fault tolerance. In: the 29th Annual
International Symposium on Fault-Tolerant Computing, p. 322 (1999)

7. Goseva-Popstojanova, K., Trivedi, K.: Architecture-based Approach to Reliability Assess-
ment of Software Systems. Performance Evaluation 45(2/3), 179–204 (2001)

8. Goyal, A., Lavenberg, S., Trivedi, K.: Probabilistic Modeling of Computer System Availabil-
ity. Annals of Operations Research 8, 285–306 (1987)

9. Heidelberger, P., Trivedi, K.: Analytic Queueing Models for Programs with Internal Concur-
rency. IEEE Transactions on Computers 32(1), 73–82 (1983)

10. Hirel, C., Sahner, R., Zang, X., Trivedi, K.: Reliability and Performability Modeling using
SHARPE 2000. In: Haverkort, B., Bohnenkamp, H.C., Smith, C.U. (eds.) TOOLS 2000.
LNCS, vol. 1786, Springer, Heidelberg (2000)

11. Littlewood, B.: A reliability model for systems with markov structure. Applied Statistics 24(2),
172–177 (1975)

12. Meeker, W., Escobar, L.: Statistical Methods for Reliability Data. John Wiley & Sons, West
Sussex, England (1998)

13. OASIS: Specification: Business Process Execution Language for Web Services (1.1) (2004)
14. Sharma, V., Trivedi, K.: Reliability and performance of component based software systems

with restarts, retries, reboots and repairs. In: International Symposium on Software Reliability
Engineering (2006)

15. Tobias, P., Trindade, D.: Applied Reliability, 2nd edn. Kluwer, Dordrecht (1995)
16. Towsley, D., Browne, J., Chandy, K.: Models for Parallel Processing within Programs: Ap-

plication to CPU:I/O and I/O:I/O Overlap. CACM 21(10), 821–831 (1978)
17. Trivedi, K.: SPNP User’s Manual Version 6.0. Duke University (September 1999)
18. Trivedi, K.: Probability and Statistics with Reliability, Queuing, and Computer Science Ap-

plications. John Wiley & Sons, West Sussex, England (2001)
19. Wang, D., Fricks, R., Trivedi, K.: Dealing with Non-Exponential Distributions in Depend-

ability Models. In: Performance Evaluation and Perspectives, pp. 273–302 (2003)
20. Wang, D., Trivedi, K.: Modeling User-Perceived Service Availability. In: Malek, M., Nett, E.,

Suri, N. (eds.) ISAS 2005. LNCS, vol. 3694, pp. 107–122. Springer, Heidelberg (2005)
21. Wang, W., Choi, H., Trivedi, K.: Analysis of Conditional MTTF of Fault-Tolerant Systems.

Microelectronics and Reliability 38(3), 393–401 (1998)
22. Whitt, W.: The queueing network analyzer. Bell System Technical Journal 62(9), 2779–2815

(1983)

	Stochastic Modeling of CompositeWeb Services for Closed-Form Analysis of Their Performance and Reliability Bottlenecks
	Introduction
	CTMC Formulation of Composite WS
	CTMC for a Process with Concurrency
	CTMC with Failures
	CTMC with Restarts
	Response Time and Service Reliability
	Parameterization

	Bottleneck Detection
	Evaluation
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

