
Using Reo for Service Coordination

Alexander Lazovik� and Farhad Arbab

CWI, Amsterdam, Netherlands
{a.lazovik,farhad.arbab}@cwi.nl

Abstract. In this paper we address coordination of services in complex
business processes. As the main coordination mechanism we rely on a
channel-based exogenous coordination language, called Reo, and inves-
tigate its application to service-oriented architectures. Reo supports a
specific notion of composition that enables coordination of individual
services, as well as complex composite business processes. Accordingly,
a coordinated business process consists of a set of web services whose
collective behavior is coordinated by Reo.

1 Introduction

The current set of web service specifications defines protocols for web service
interoperability. On the base of existing services, large distributed computa-
tional units can be built, by composing complex compound services out of simple
atomic ones. In fact, composition and coordination go hand in hand. Coordinated
composition of services is one of the most challenging areas in SOA. A number
of existing standards offer techniques to compose services into a business pro-
cess that achieves specific business goals, e.g., BPEL. While BPEL is a powerful
standard for composition of services, it lacks support for actual coordination
of services. Orchestration and choreography, which have recently received con-
siderable attention in the web services community and for which new standards
(e.g., WS-CDL) are being proposed, are simply different aspects of coordination.
It is highly questionable whether approaches based on fragmented solutions for
various aspects of coordination, e.g., incongruent models and standards for chore-
ography and orchestration, can yield a satisfactory SOA. Most efforts up to now
have been focused on statically defined coordination, expressed as compositions,
e.g., BPEL. To the best of our knowledge the issues involved in dynamic coordi-
nation of web services with continuously changing requirements have not been
seriously considered. The closest attempts consider automatic or semi-automatic
service composition, service discovery, etc. However, all these approaches mainly
concentrate on how to compose a service, and do not pay adequate attention to
the coordination of existing services.

In this paper we address the issue of coordinated composition of services in
a loosely-coupled environment. As the main coordination mechanism, we rely

� This work was carried out during the tenure of an ERCIM “Alain Bensoussan”
Fellowship Programme.

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 398–403, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Using Reo for Service Coordination 399

on the channel-based exogenous coordination language Reo, and investigate its
application to SOA. Reo supports a specific notion of composition that enables
coordinated composition of individual services as well as composed business pro-
cesses. In our approach, it is easy to maintain loose couplings such that services
know next to nothing about each other. It is claimed that BPEL-like languages
maintain service independence. However, in practice they hard-wire services
through the connections that they specify in the process itself. In contrast, Reo
allows us to concentrate only on important protocol decisions and define only
those restrictions that actually form the domain knowledge, leaving more free-
dom for process specification, choice of individual services, and their run-time
execution. In a traditional scenario, it is very difficult and cost-ineffective to
make any modification to the process, because it often has a complex structure,
with complex relationships among its participants. We believe having a flexi-
ble coordination language like Reo is crucial for the success of service-oriented
architectures.

The rest of the paper is organized as follows. In Section 2 we consider Reo as a
modeling coordination language for services. A discussion of coordination issues,
together with a demonstrating example and tool implementation discussion ap-
pears in Section 3. We conclude in Section 4, with a summary of the paper and
a discussion of our further work.

2 The Reo Coordination Language

The Reo language was initially introduced in [1]. In this paper, we consider adap-
tation of general exogenous coordination techniques of Reo to service-oriented
architecture. In our setting, Reo is used to coordinate services and service pro-
cesses in an open service marketplace.

Reo is a coordination language, wherein so-called connectors are used to co-
ordinate components. Reo is designed to be exogenous , i.e. it is not aware of
the nature of the coordinated entities. Complex connectors are composed out
of primitive ones with well-defined behavior, supplied by the domain experts.
Channels are a typical example for primitive connectors in Reo. To build larger
connectors, channels can be attached to nodes and, in this way, arranged in a
circuit. Each channel type imposes its own rules for the data flow at its ends,
namely synchronization or mutual exclusion. The ends of a channel can be ei-
ther source ends or sink ends. While source ends can accept data, sink ends are
used to produce data. While the behavior of channels is user-defined, nodes are
fixed in their routing constraints. It it important to note, that the Reo connec-
tor is stateless (unless we have stateful channels introduced), and its execution
is instantaneous in an all-or-none matter. That is, the data is transferred from
the source nodes to sink nodes without ever being blocked in the middle, or not
transferred at all. Formally, a Reo connector is defined as follows:

Definition 1 (Reo connector). A connector C = 〈N , P , E, node, prim, type〉
consists of a set N of nodes, a set P of primitives, a set E of primitive ends
and functions:

400 A. Lazovik and F. Arbab

(a) (b) (c)

(i) (ii) (iii)

(i) (ii) (iii)

A

F G
E

C D

B

Fig. 1. Reo elements: (a)–nodes; (b)–primitive channels; (c)–XOR connector

– prim : E → P, assigning a primitive to each primitive end,
– node : E → N , assigning a node to each primitive end,
– type : E → {src, snk}, assigning a type to each primitive end.

Definition 2 (Reo-coordinated system). R = 〈C, S, serv〉, where:

– C is a Reo connector;
– S is a set of coordinated services;
– serv : S → 2E attaches services to primitive ends E of the connector C.

Services represent web service operations in the context of Reo connectors. Ser-
vices are black boxes, Reo does not know anything about their internal behavior
except the required inputs and possible outputs that are modeled by the serv
function. By this definition, services are attached to a Reo connector through
primitive ends: typically to write data to source ends, and read from sink ends.
Note that although we consider services as a part of a coordinated system, they
are still external to Reo. Services are independent distributed entities that uti-
lize Reo channels and connectors to communicate. The service implementation
details remain fully internal to individual elements, while the behavior of the
whole system is coordinated according to the Reo circuit.

Nodes are used as execution logical points, where execution over different
primitives is synchronized. Data flow at a node occurs, iff (i) at least one of
the attached sink ends provides data and (ii) all attached source ends are able
to accept data. Channels represent a communication mechanism that connects
nodes. A channel has two ends which typically correspond to in and out. The
actual channel semantics depends on its type. Reo does not restrict the possible
channels used as far as their semantics is provided. In this paper we consider
the primitive channels shown in Figure 1-(b), with (i)–communication channels;
(ii)–drain channels; and (iii)–spout channels. The top three channels represent
synchronous communication. A channel is called synchronous if it delays the
success of the appropriate pairs of operations on its two ends such that they can
succeed only simultaneously. The bottom three channels (visually represented as
dotted arrows) are lossy channel, that is, communication happens but the data
can be lost if nobody accepts it. For a more comprehensive discussion of various
channel types see [1]. It is important to note that channels can be composed
into a connector that is then used disregarding its internal details. An example
of such composed connector is a XOR element shown in Figure 1-(c). It is built
out of five sync channels, two lossy sync channels, and one sync drain. The
intuitive behavior of this connector is that data obtained as input through A is

Using Reo for Service Coordination 401

delivered to one of the output nodes F or G. If both F and G is willing to accept
data then node E non-deterministically selects which side of the connector will
succeed in passing the data. The sync drain channel B -E and the two C -E, D -E
channels ensure that data flows at only one of C and D, and hence F and G.

More details on the intuitive semantics of Reo is presented in [1] and in an
extended version of this paper [5]. Various formal semantics for Reo are presented
elsewhere, including one based on [2], which allows model checking over possible
executions of Reo circuit, as described in [3].

3 Building Travel Package in Reo

To illustrate our ideas we use a simple example that is taken from the standard
travel domain. We consider reserving a hotel and booking transportation (flight
or train in our simplified setting). This process is simple, and works for most
users. However, even typical scenarios are usually more complicated with more
services involved. Our simple process may be additionally enriched with services
that the average user may benefit from, e.g., restaurants, calendar, or museum
services. However, it is difficult to put all services within the same process:
different users require different services sharing only a few common services.

Traditionally, when a process designer defines a process specification, he must
explicitly define all steps and services in their precise execution order. This
basically means offering the same process and the same functionality to all users
that potentially need to travel. This makes it difficult to add new services, since
only a limited number of users are actually interested in the additional services.
We first consider some particular user’s travel expectations:

A trip to Vienna is planned for the time of a conference; a hotel is desired
in the center or not far from it; in his spare time, the client wishes to
visit some museums; he prefers to have a dinner at a restaurant of his
choice on one of the first evenings.

Hard-coded business process specifications cannot be used effectively for such a
complex yet typical goal with a large number of loosely coupled services. The
problem is that the number of potential additional services is enormous, and
every concrete user may be interested in only a few of them. Having these con-
siderations in mind, the business process is designed to contain only basic services
with a number of external services (or other processes) that are not directly a
part of the process, but a user may want them as an added value, e.g., museum
and places to visit, or booking a restaurant.

One of the possible Reo representations is provided in Figure 2. Box A cor-
responds to the process with basic functionality. The client initiates the process
by issuing a request to the hotel service. If there are no other constraints, the
process non-deterministically either reserves a flight or a train and proceeds to
payment. Note, that the hotel service is never blocked by the location synchro-
nization channels (between the hotel and the XOR (see Figure 1-(c)) element)
since they all are connected by lossy channels. In Figure 2 the flight service is

402 A. Lazovik and F. Arbab

Hotel

Flight Train

XOR

Payment

Restaurant

Info

Wikipedia

Government
Regulations

Sport events

Calendar

Museum

A

B

C

Fig. 2. A travel example in Reo

additionally monitored by a government service, that is, a flight booking is made
only if the government service accepts the reservation.

Box B corresponds to the user request for visiting a restaurant located not far
from the hotel. It is modeled as follows. The restaurant service itself is connected
to the hotel using the location synchronization channel, that is, the restaurant
service is invoked only if the hotel location is close. The location synchronization
channel is a domain-specific example of a primitive channel supplied by the
domain designers. It models a synchronization based on a physical location [5].
The synchronization is unidirectional: the hotel is reserved even if there are no
restaurants around. We also use a calendar service to check if the requested time
is free, and if it is, then the calendar service fires an event, that is, through the
synchronization channel, enables the restaurant service.

Box C shows a possible interactive scenario for requesting a museum visit.
If the user issues the corresponding request, the museum service is checked if it
is close to the hotel. Then it may show additional information from the tourist
office, or, if the user is interested, point to corresponding information from the
Wikipedia service. User interaction is modeled via a set of synchronization chan-
nels, each of which defines whether the corresponding service is interesting to the
user. Finally the payment service is used to order the requested travel package.
In this example the payment service is used as many times as it has incoming
events. For the real world application, it is practical to change the model to
enable the user to pay once for everything.

Using our example, we have just shown how Reo can be used to coordinate
different loosely-coupled services, and, thereby, extending the basic functionality
of the original basic process. An advantage of Reo is that it allows modeling to
reflect the way that users think of building a travel package: for each goal, we just
have to add a couple of new services, add some constraints in terms of channels
and synchronizations, and we have a new functionality available.

Using Reo for Service Coordination 403

The Reo coordination tool [4] is developed to aid process designers who are
interested in complex coordination scenarios. It is written in Java as a set of plug-
ins on top of the Eclipse platform (www.eclipse.org). Currently the framework
consists of the following parts: (i) graphical editors, supporting the most common
service and communication channel types; (ii) a simulation plug-in, that gener-
ates Flash animated simulations on the fly; (iii) BPEL converter, that allows
conversion of Reo connectors to BPEL and vice versa; (iv) java code generation
plug-in, as an alternative to BPEL, represents a service coordination model as
a set of java classes; (v) validation plug-in, that performs model checking of
coordination models represented as constraint automata.

4 Conclusions and Future Work

In this paper we presented an approach for service coordination based on the
exogenous coordination language Reo. It focuses on only the important protocol-
related decisions and requires the definition of only those restrictions that ac-
tually form the domain knowledge. Compared to traditional approaches, this
leaves much more freedom in process specification. Reo’s distinctive feature is a
very liberal notion of channels. New channels can be easily added as long as they
comply with a set of non-restrictive Reo requirements. As a consequence of the
compositional nature of Reo, we have convenient means for creating domain-
specific language extensions. This way, the coordination language provides a
unique combination of language mechanisms that makes it easy to smoothly
add new language constructs by composing existing language elements.

In this paper we assumed that services support a simplified interaction model.
While this is acceptable for simple information providers such as map or calen-
dar services, this assumption is not true in general. We plan to investigate the
possibility of using Reo in complex scenarios where services have extended lifecy-
cle support. Reo is perfect in defining new domain-specific language extensions.
However, we lack specific extensions to the coordination language that support
various issues important to services, e.g., temporal constraints, preferences, and
extended service descriptions.

References

1. Arbab, F.: Reo: a channel-based coordination model for component composition.
Math. Structures in CS 14(3), 329–366 (2004)

2. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in
Reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006)

3. Klueppelholz, S., Baier, C.: Symbolic model checking for channel-based component
connectors. In: FOCLASA’06 (2006)

4. Koehler, C., Lazovik, A., Arbab, F.: ReoService: coordination modeling tool. In:
ICSOC-07, Demo Session (2007)

5. Lazovik, A., Arbab, F.: Using Reo for service coordination. Technical report, CWI
(2007)

www.eclipse.org

	Using Reo for Service Coordination
	Introduction
	The Reo Coordination Language
	Building Travel Package in Reo
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

