An Agent-Based, Model-Driven Approach for
Enabling Interoperability in the Area of
Multi-brand Vehicle Configuration*

Ingo Zinnikus?, Christian Hahn?, Michael Klein!, and Klaus Fischer?

1 CAS Software AG, Karlsruhe (Germany)
michael.klein@cas.de
? DFKI GmbH, Saarbriicken (Germany)
{ingo.zinnikus, christian.hahn, klaus.fischer}@dfki.de

Abstract. With the change of EU regulations in the automotive mar-
ket in 2002, multi-brand car dealers became possible. Despite the high
economical expectations connected with them, the existing IT infrastruc-
ture does not provide satisfying support for these changes as it had been
developed independently by each brand for many years. In this paper,
we describe a solution which supports rapid prototyping by combining a
model-driven framework for cross-organisational service-oriented archi-
tectures (SOA) with an agent-based approach for flexible process exe-
cution. We discuss advantages of agent-based SOAs and summarize the
lessons learned.

1 Introduction

In cross-organisational business interactions such as multi-brand vehicle configu-
ration, the most desirable solution for integrating different partners would suggest
to integrate their processes and data on a rather low level. However, the internal
processes and interfaces of the participating partners are often pre-existing and
have to be taken as given. Furthermore, in cross-organisational scenarios part-
ners are typically very sensitive about their product data and the algorithms that
process it. In many cases, private processes are only partially visible and hidden
behind public interface descriptions [I]. This imposes restrictions on the possible
solutions for the problems which occur when partner processes are integrated.
Thus, a service-oriented architecture (SOA) is the most appropriate approach.
It enables partners to offer the functionality of their systems via a public service
interface (WSDL) and hide the sensitive parts behind it. As usual in a SOA, the
communication is performed by the exchange of messages between the partners.
A very important second advantage of SOA is the possibility of a loose cou-
pling of partners. New partners can enter the system with little effort whereas

* The work published in this paper is (partly) funded by the E.C. through the
ATHENA IP. It does not represent the view of E.C. or the ATHENA consortium,
and authors are solely responsible for the paper’s content.

B. Kramer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 330 2007.
© Springer-Verlag Berlin Heidelberg 2007

An Agent-Based, Model-Driven Approach for Enabling Interoperability 331

obsolete partners are able to leave it easily. Especially in the case where addi-
tional smaller non-OEM manufacturers providing vehicle parts like radios or tires
are integrated in the sales process, the system needs to become robust against
temporary unavailable partners.

Despite the advantages of a SOA, several difficulties arise especially in the case
where the systems of the partners have evolved independently for several years:

— The philosophies of the systems differ, e.g. one partner service uses a strict
sequential run through the product space whereas another service allows e.g.
randomly browsing through the products and product features.

— The granularity of operations of the various partner services differs.

— Non-functional aspects such as exception handling, session management,
transactional demarcation, which differ from partner to partner, supersede
the core functionality of the services.

— Structural differences in the payload data of the exchanged messages stem-
ming from data models used by the different partners’ sites are present.

— Semantical misunderstandings within the exchanged messages may arise due
to different tagging of business data, different conventions etc.

The European project ATHENA (Advanced Technologies for interoperability
of Heterogeneous Enterprise Networks and their Applications) provides a com-
prehensive set of methodologies and tools to address interoperability problems
of enterprise applications in order to realize seamless business interaction across
organizational boundaries. In this paper, we present the results of a pilot applica-
tion of the ATHENA approach to interoperability and the supporting technology
in a real-world scenario of a multi-brand vehicle dealer.

The paper is organized as follows. In Section 2] we will sketch the business case
of our pilot application and discuss the current and the to-be scenario for multi-
brand vehicle dealers. Sections [B] and [are devoted to our technical approach.
Here, we present the approach developed in ATHENA and used within our pilot
for the integration of cross-organizational processes. We discuss the advantages
of this approach in Section [and conclude the paper by taking a look at the
lessons learned in Section [7

2 Scenario

In 2002, due to new laws in EU legislation, the market of car distribution changed
fundamentally. Instead of being limited to selling only one brand, vending vehi-
cles of different brands under one roof was facilitated. Dealers now can reach a
broader audience and improve their business relations for more competitiveness.
As a consequence, many so-called multi-brand dealers have appeared.

Today, multi-brand dealers are confronted with a huge set of problems. Rather
than having to use the IT system of one specific car manufacturer, multi-brand
dealers are now faced with a number of different IT systems from their dif-
ferent manufacturers. One specific problem is the integration of configuration,
customization and ordering functionality for a variety of brands into the IT
landscape of a multi-brand dealer.

332 1. Zinnikus et al.

In this paper, the business cases we are looking at are such multi-brand deal-
ers. Multi-branding seamlessly offers products of different brands in one coherent
sales process. This establishes a certain level of comparability among products
of different brands and provides added value to the customers, thus strengthens
the competitiveness of multi-brand dealers. However, multi-branding calls for an
increased level of interoperability among the dealer on one side and the different
manufacturers on the other side.

Today, however, systems for car configuration and order processing of different
car manufacturers are isolated systems and not integrated into the dealer specific
IT landscape. Thus, multi-brand dealers are faced with a simple multiplication
of IT systems to support their pre-sales, sales and after-sales processes. As a con-
sequence, one of the desired advantages of multi-branding, namely to seamlessly
offer cars of different car manufactures and to establish comparability among the
different products is seriously put at stake. We rather observe the phenomenon
of what we call early brand selection, i.e. a customer has to choose his desired
brand at the beginning and than go all the way through its brand-specific prod-
uct configuration and order process. Changing the brand later means starting
the process all over from the beginning.

In this paper, we propose an integrated scenario, where multi-brand dealers
use services provided by the different car and non-OEM manufactures and plug
them into an integrated dealer system. In the following section, we will describe
our solution in more detail.

3 Our Solution

The desired to-be-scenario with its general architecture is depicted in Figure [T
The solution consists of two parts which are necessary to provide an integrated
solution for a multi-brand dealer:

— An integration of the manufacturers (lower part of the figure). The systems
of the different car and non-OEM manufacturers are integrated via an inte-
grator component. This integrator enables the dealer to access the software

jestomer o] | customer | [customers |

CRM
v

Integrator

Fig. 1. Overview over the architecture of the solution

An Agent-Based, Model-Driven Approach for Enabling Interoperability 333

of the manufacturers in a uniform manner. For the sake of the pilot applica-
tion, the car configurator CAS MERLIN by CAS Software AG currently used
for order processing and sales support applications by a leading German car
manufacturer was used.

— An integration of the customers (upper part of the figure). The interaction
of customers and the dealer is harmonized by integrating their different pro-
cesses within a CRM system. In the pilot setting, the CRM system CAS
GENESISWORLD was used.

In the following, we give an overview of our approach of the pilot application.
However, the paper will focus on the manufacturer integration (see Section
and M) and present the model-driven, agent-based integration approach for cross-
organizational processes modeling. The customer integration has already been
presented in detail in [2].

Manufacturer Integration

The integrator in the overall architecture in Figure [Il can be seen as a service
integrator performing message transformations.

The messages that are exchanged between the dealer and the manufacturers
are (conceptually) transformed in three steps. The resulting three layers of the
architecture of our service integrator are shown in Figure 2 (left hand side).

In the top most component, a message entering the component from the dealer
is analyzed by the CAS Instance Distributor and routed to the set of manufacturers
that need to process this request. If the dealer e.g. wants to find a suitable family
car for his customer, typically all (or many) of the manufacturers will receive the
message. If the dealer however wants to configure and order a car of a certain
brand, only this specific system will be addressed. In the inverse direction, i.e.
when the results of the different manufacturers reach the component, the CAS
Instance Aggregator comes into play: by applying metrics of equality, similarity

During design time During run time

e Set up platform e use model to process
independent model data and a concrete
Dealer platform

i Service S . Instance Instance
Intet— ‘ Instance Distributor/Aggregator ‘ Modeler Distributor/Aggregator
i grator / I \

‘ Schema Adaptor ‘ Semaphore m gssgg‘gch:n'l‘;‘l’;)nsformer
‘ Process Adaptor | PIM4SOA Jack Agent Platform

f X

/ \
e

Fig. 2. Integration of car and non-OEM manufacturers

334 1. Zinnikus et al.

and equivalence, it tries to combine the different partial results to one meaningful
integrated result.

The middle layer is responsible for harmonizing the data models of the differ-
ent manufacturers with the common data model of the dealer. Thus, the business
objects extracted from the incoming messages are remodeled and put into the
outgoing messages. It is important to mention that for this step in certain cases
several messages must be processed together in order to be able to rebuild a
business object and its dependent objects.

The task of the lower layer is to mediate between the integrator and the
different processes offered by the manufacturers, i.e. to adapt the sequence of
messages that is expected by a manufacturer system with the sequence that is
sent out by the dealer. Furthermore, the process adaptor reacts to unavailable
services e.g. by invoking alternative services.

All three components have been developed with a model-driven approach. In
a first step during design-time, platform independent models have been created
for each component. E.g., for the process adaptor, the metamodel PIM4SOA
(Platform Independent Model for Service Oriented Architectures) [3] was used
to define a connection between the processes of the dealer and manufacturer; for
the schema adaptor, SemaphoreEl was used to graphically map the entities and
attributes of one data model to the corresponding entities and attributes in the
other model. From these models, executables were generated, which have been
applied in a second step during run-time to process the data on a concrete plat-
form. E.g., for the process adaptor, the generated process models are executed
as software agent on Jack [4], an agent platform based on the BDI-agent theory
(belief-desire-intention, [3]).

In the following, we will describe this approach in detail and discuss advan-
tages and problems.

4 Mediating Services for Cross-Organisational Business
Processes

As can be seen from the description of the scenario, the setting includes a com-
plex interaction between the partners. The design of such a scenario implies a
number of problems which have to be solved:

— the different partners (may) expect different atomic protocol steps (service
granularity)

— the partners expect and provide different data structures

— changing the protocol and integration of a new partner should be possible
in a rapid manner (scalability)

— the execution of the message exchange should be flexible, i.e. in case a partner
is unavailable or busy, the protocol should nevertheless proceed

These are typical interoperability problems occuring in cross-organisational
scenarios which in our case have to be tackled with solutions for SOAs. A core

! http://www.modelbased.net/semaphore

An Agent-Based, Model-Driven Approach for Enabling Interoperability 335

idea in the ATHENA project was to bring together different approaches and
to combine them into a new framework: a modelling approach for designing
collaborative processes, a model-driven development framework for SOAs and an
agent-based approach for flexible execution. It turned out that these approaches
fit nicely together, as e.g. the PIM4SOA metamodel and the agents’ metamodel
bear a striking resemblance to each other.

Hence, the first problem is solved by specifying a collaborative protocol which
allows adapting to different service granularities. The mediation of the data is
tackled with transformations which are specified at design-time and executed
at run-time by transforming the exchanged messages based on the design-time
transformations.

Scalability is envisaged by applying a model-driven approach: the protocol is
specified on a platform-independent level so that a change in the protocol can
be made on this level and code generated automatically.

Finally, flexibility is achieved by applying a BDI agent-based approach. BDI
agents provide flexible behaviour for exception-handling in a natural way (com-
pared to e.g. BPELAWS where specifying code for faults often leads to compli-
cated, nested code).

PIM4SOA: A Platform-Independent Model for SOAs

The PIM4SOA is a visual platform-independent model (PIM) which specifies
services in a technology independent manner. It represents an integrated view
of SOAs in which different components can be deployed on different execution
platforms. The PIM4SOA model helps us to align relevant aspects of enterprise
and technical IT models, such as process, organisation and products models. The
PIM4SOA metamodel defines modelling concepts that can be used to model four
different aspects or views of a SOA:

Services are an abstraction and an encapsulation of the functionality provided
by an autonomous entity. Service architectures are composed of functions
provided by a system or a set of systems to achieve a shared goal. The
service concepts of the PIM4SOA metamodel have been heavily based on
the Web Services Architecture as proposed by W3C [0].

Information is related to the messages or structures exchanged, processed and
stored by software systems or software components. The information con-
cepts of the PIM4SOA metamodel have been based on the structural con-
structs for class modelling in UML 2.0 [7].

Processes describe sequencing of work in terms of actions, control flows, in-
formation flows, interactions, protocols, etc. The process concepts of the
PIM4SOA metamodel have been founded on ongoing standardization work
for the Business Process Definition Metamodel (BPDM) [g].

Non-functional aspects can be applied to services, information and processes.
Concepts for describing non-functional aspects of SOAs have been based
on the UML Profile for Modeling Quality of Service and Fault Tolerance
Characteristics and Mechanisms [9].

336 1. Zinnikus et al.

Servicelnteagrator : Role

+ roles

ServicelntegratorProvider : ServiceProvider
+ participates + participates

DealerCallaborationse : Cnllahﬁrat\DnUse _Manufact‘urer[nllahnrat\DnUse : CollabarationUse
+ cDIIabUrat\Dn..) + collabaration
DealerCollaboration : Collabaration ManufacturerCollaboration © Collsboration
108 + role sk i + rolg
Dealer : Role Servicelntegrator : Rols Manufacturer : Role Servicelntegrator @ Rols
+ messages + messages + Messages + Messages
initRequest : Message InitResponse | Message initializeProductRequest © Message initislizeProductResponse « Message

Fig. 3. PIM4SOA Model for Pilot (part)

Via model-to-model transformations, PIM4SOA models can be transformed
into underlying platform-specific models (PSM) such as XSD, Jack BDI-agents
or BPEL.

The business protocol between dealer (dealer software), integrator and manu-
facturers is specified as PIM4SOA model (see Figure). In order to execute
collaborative processes specified on the PIM level, the first step consists of
transforming PIM4SOA models to agent models that can be directly executed
by specific agent execution platforms. In our case, the Jack Intelligent agent
framework is used for the execution of BDI-style agents. The constructs of the
PIM4SOA metamodel are mapped to BDI-agents represented by the Jack meta-
model (JackMM). For detailed information on JackMM we refer to [10].

In this service-oriented setting, the partners provide and exhibit services. Part-
ner (manufacturer etc.) services are described as WSDL interfaces. The WSDL
files are used to generate integration stubs for the integrator. We use a model-
driven approach for mapping WSDL concepts to agent concepts, thereby inte-
grating agents into a SOA and supporting rapid prototyping.

The partner models are transformed to a Jack agent model with the model-
to-model transformation developed in ATHENA. The following sketch outlines
the metamodel mappings (see Figure] for more details, cf. e.g. [10]).

A ServiceProvider (i.e. ServicelntegratorProvider in Figure B)) is assigned to
a Team (which is an extension of an Agent). The name of the ServiceProvider
coincides with the name of the Team, its roles are the roles the Team performs.
Furthermore, the team makes use of the roles specified as bound roles in the
CollaborationUse (i.e. Dealer and Manufacturer), in which it participates. For
each of these roles, we additionally introduce an atomic Team. The Process of
the ServiceProvider is mapped to the TeamPlan of the non-atomic Team. This
TeamPlan defines how a combined service is orchestrated by making use of the
services the atomic Teams (i.e. ManufacturerTeam and DealerTeam in Figure B)
provide. Finally, Messages that are sent by the roles we already have transformed
are mapped to Events in JackMM.

The process integrator and the manufacturers are modelled as Web services.
Their interface is described by WSDL descriptions publishing the platform as

An Agent-Based, Model-Driven Approach for Enabling Interoperability 337

PIM4SOA JackMM WSDLMM
PIM4S0A2Jack WSDL2Jack
Kessagezivent RolezRole
i ; © Copabi Service 2Capability
+ handleEvent
+ postsEvent
g i + ancleErent Services
© Servicebrovider | —————— °, : O Event oA &) ProductintegratoMDAS ervicsService
coleborstion % i + BoRtEvent

© Collaboration \

+ behaviour : (O Role - s
+ constrants ;

@ Process

R e 7|G'“‘“ Operations
+ subcodabortions + 1ok
+ roles: it : + teamflans
JerviceProviderZTean
+messages - (3 TeamPlan
© Messages ;
ProcesszTeanPlan

Fig. 4. PIM4SOA and WSDLMM to JackMM transformation

Web service. In the pilot, only the process integrator is executed by Jack agents
which are wrapped by a Web service, whereas the manufacturers and other
partner services are pure Web services. For integrating Web services into the
Jack agent platform, we map a service as described by a WSDL file to the
agent concept Capability which can be conceived of as a module. A capability
provides access to the Web services via automatically generated stubs (using
Apache Axis). A capability comprises of plans for invoking the operations as
declared in the WSDL (it encapsulates and corresponds to commands such as
invoke and reply in BPEL4WS).

By executing the model transformations we automatically derive the JackMM
model illustrated in Figure [(for more details, cf. [I0]). It should be stressed
that these model transformations and the respective code generation can be done
automatically if (i) the PIM4SOA model is defined properly and (ii) the WSDL
descriptions are available. The only interventions necessary for a system designer
are the insertion of the proper XSLT transformations and the assignment of the
capabilities to the agents/teams responsible for a specific Web service invocation.

5 Advantages of Agent-Based SOAs

The similarities between agent architectures and SOAs have already been recog-
nized (e.g. [1]). In fact, the strong correspondence between the PIM4SOA and
the JackMM confirms this observation. In the following we will briefly discuss
advantages of applying BDI-agents in a service-oriented environment.

In order to compare an agent-based approach with other standards for Web
service composition, the distinction introduced in [I2] between fixed, semi-fixed,
and explorative composition is useful. Fixed composition can be done with

338 1. Zinnikus et al.

+sends
InitializeProductRequest @ Event | ServicelntegratorProvider TeamPan : TearmPlan Handes ~| integratorinitRequest : Event

+ Lses

+sends +hanclles

:ré.érv-\.céfhtegrrjajtoir_lﬁrov.l-deﬁeam ¥ ?éamr |

+ requires + requires
g + performs &
Marufacturer @ Role Servicelntegrator : Role Dealer : Role

+handles + performs + performs
“sends

| ManufacturerTearn : Team | ! DealerTeam : Team |

+handles

+sends
+ Uses + uses
Manufacturer TeamPlan : TeamPlan DialerTeamPlan @ TeamPlan

Fig. 5. Jack Model generated from PIM4SOA (part)

e.g. BPEL4AWS, but also by applying BDI agents. Semi-fixed composition might
also be specified with BPEL4AWS: partner links are defined at design-time, but
the actual service endpoint for a partner might be fixed at run-time, as long
as the service complies with the structure defined at design-time. Late bind-
ing can also be done with the Jack framework. The service endpoint needs to
be set (at the latest) when the actual call to the service is done. Explorative
composition is beyond of what BPEL4WS and a BDI-agent approach offer (at
least if they are used in a 'normal’ way). To enable explorative composition, a
general purpose planner might be applied which dynamically generates, based
on the service descriptions stored in a registry, a plan which tries to achieve the
objective specified by the consumer [I3].

It might seem as if BPEL4WS and BDI-style agents offer the same features.
However, there are several advantages of a BDI-style agent approach. An impor-
tant question is how the availability of a partner service is detected. This might
be checked only by actually calling the service. If the service is not available or
does not return the expected output, an exception will be raised. BPEL4AWS
provides a fault handler which allows specifying what to do in case of an excep-
tion. Similarly, an agent plan will fail if a Web service call raises an exception,
and execute some activities specified for the failure case.

However, the difference is that a plan is executed in a context which specifies
conditions for plan instances and also other applicable plans. The context is
implicitly given by the beliefs of an agent and can be made explicit. If for a
specific goal several options are feasible, an agent chooses one of these options
and, in case of a failure, immediately executes the next feasible option to achieve
the desired goal. This means that in a given context, several plan instances
might be executed, e.g. for all known services of a specific type, the services
are called (one after another), until one of the services provides the desired
result. An exception in one plan instance then leads to the execution of another
plan instance for the next known service. Additionally, BDI-style agents permit
‘meta-level reasoning’ which allows choosing the most feasible plan according to
specified criteria.

An Agent-Based, Model-Driven Approach for Enabling Interoperability 339

In our car configuration scenario, agents have to react to service unavailability
and the protocols for e.g. selecting a non-OEM supplier involve auctions or first
come - first served mechanisms which can be modelled in an very elegant manner
with a BDI-agent approach. The BDI-agent approach supports this adaptive
behaviour in a natural way, whereas a BPEL4AWS process specification which
attempts to provide the same behaviour would require awkward coding such as
nested fault handlers etc.

Furthermore, since it is in many cases not possible to fully specify all necessary
details on the PIM level, a system engineer must add these details on the PSM
level. Hence, customizing the composition is facilitated since the different plans
clearly structure the alternatives of possible actions. Since the control structure
is implicit, changes in a plan do not have impact on the control structure, reduc-
ing the danger of errors in the code. Another advantage is that extending the
behaviour by adding a new, alternative plan for a specific task is straightforward.
The new plan is simply added to the plan library and will be executed at the
next opportunity.

Finally, business process notations allow specifying unstructured processes. To
execute these processes with BPEL, unstructured PIM4SOA process descriptions
normally are transformed to block-structured BPEL processes. In doing so, most
approaches restrict the expressiveness of processes by only permitting acyclic
or already (block-)structured graphs [14]. In the case that any unstructured
processes shall be executed, an approach like described in [I5] has to be followed.
The idea is to translate processes with arbitrary topologies to BPEL by making
solely use of its Event Handler concept. The result is again cumbersome BPEL
code, whereas the Jack agent platform naturally supports event-based behaviour.

6 Related Work

Apart from the wealth of literature about business process modelling, enterprise
application integration and SOAs, the relation between agents and SOAs has
already been investigated. [T1] cover several important aspects, [I6] propose the
application of agents for workflows in general. [I7] and [I8] present a technical
and conceptual integration of an agent platform and Web services. However, the
model-driven approach and the strong consideration of problems related to cross-
organisational settings have not been investigated in this context. Furthermore,
our focus on tightly integrating BDI-style agents fits much better to a model-
driven, process-centric setting than the Web service gateway to a JADE agent
platform considered by e.g. [17].

7 Conclusions and Summary

From a research transfer point of view, the following lessons could be learned:

— Evidently, a model based approach is a step in the right direction as design-
time tasks are separated from run-time tasks which allows performing them

340 1. Zinnikus et al.

graphically. Moreover, it is easier to react to changes of the different inter-
acting partners as only the models have to be adapted but not the run-time
environment,.

— The PIM4SOA metamodel is sufficient for modelling basic exchange patterns
but needs to be more expressive.

— A model-driven, agent-based approach offers additional flexibility and ad-
vantages (in general and in the scenario discussed) when agents are tightly
integrated into a service-oriented framework.

In this paper, we presented a pilot developed within the EU project ATHENA
in the area of multi-brand automotive dealers. For its realization, several integra-
tion problems on different levels had to be solved. We described a solution which
supports rapid prototyping by combining a model-driven framework for cross-
organisational service-oriented architectures with an agent-based approach for
flexible process execution. We argued that agent-based SOAs provide additional
advantages over standard process execution environments.

References

1. Schulz, K., Orlowska, A.: Facilitating cross-organisational workflows with a work-
flow view approach. Data and Knowledge Engineering 51(1), 109-147 (2004)

2. Klein, M., Greiner, U., Gen8ller, T., Kuhn, J., Born, M.: Enabling Interoperability
in the Area of Multi-Brand Vehicle Configuration. In: I-ESA 2007. 3rd International
Conference on Interoperability for Enterprise Software and Applications (2007)

3. Benguria, G., Larrucea, X., Elvesater, B., Neple, T., Beardsmore, A., Friess, M.: A
Platform Independent Model for Service Oriented Architectures. In: I-ESA 2006.
2nd International Conference on Interoperability of Enterprise Software and Ap-
plications (2006)

4. JACK Intelligent Agents: The Agent Oriented Software Group (AOS) (2006),
http://www.agent-software.com/shared/home/

5. Rao, A.S., Georgeff, M.P.: Modeling Rational Agents within a BDI-Architecture.
In: Allen, J., Fikes, R., Sandewall, E. (eds.) KR91. 2nd International Conference
on Principles of Knowledge Representation and Reasoning, pp. 473-484. Morgan
Kaufmann publishers Inc., San Mateo, CA, USA (1991)

6. W3C: Web Services Architecture, World Wide Web Consortium (W3C), W3C
Working Group Note (February 11, 2004),
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

7. OMG: UML 2.0 Superstructure Specification, Object Management Group (OMG),
Document ptc/03-08-02 (August 2003),
http://www.omg.org/docs/ptc/03-08-02. pdf

8. IBM: Adaptive, Borland, Data Access Technologies, EDS, and 88 Solutions, ”Busi-
ness Process Definition Metamodel - Revised Submission to BEI RFP bei/2003-01-
06”, Object Management Group (OMG), Document bei/04-08-03 (August 2004),
http://www.omg.org/docs/bei/04-08-03.pdf

9. OMG: UML Profile for Modeling Quality of Service and Fault Tolerance Charac-
teristics and Mechanisms, Object Management Group (OMG), Document ptc/04-
09-01 (September 2004), http://www.omg.org/docs/ptc/04-09-01.pdf

http://www.agent-software.com/shared/home/
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.omg.org/docs/ptc/03-08-02.pdf
http://www.omg.org/docs/bei/04-08-03.pdf
http://www.omg.org/docs/ptc/04-09-01.pdf

10.

11.

12.

13.

14.

15.

16.

17.

18.

An Agent-Based, Model-Driven Approach for Enabling Interoperability 341

Hahn, C., Madrigal-Mora, C., Fischer, K., Elvesater, B., Berre, A.J., Zinnikus, I.:
Meta-models, Models, and Model Transformations: Towards Interoperable Agents.
In: Fischer, K., Timm, I.J., André, E., Zhong, N. (eds.) MATES 2006. LNCS
(LNATI), vol. 4196, Springer, Heidelberg (2006)

Singh, M., Huhns, M.: Service Oriented Computing: Semantics, Processes, Agents.
John Wiley & Sons, Chichster, West Sussex, UK (2005)

Yang, J., Heuvel, W., Papazoglou, M.: Tackling the Challenges of Service Com-
position in e-Marketplaces. In: RIDE-2EC 2002. 12th International Workshop on
Research Issues on Data Engineering: Engineering E-Commerce/E-Business Sys-
tems (2002)

Sirin, E., Parsia, B., Wu, D., Hendler, J.A., Nau, D.S.: HTN planning for Web
Service composition using SHOP2. J. Web Sem. 1, 377-396 (2004)

Mendling, J., Lassen, K., Zdun, U.: Transformation Strategies between Block- Ori-
ented and Graph-Oriented Process Modelling Languages. In: Lehner, F., Nekabel,
H., Kleinschmidt, P. (eds.) Multikonferenz Wirtschaftsinformatik 2006 (MKWI
2006), Berlin (2006)

Ouyang, C., Dumas, M., Breutel, S., ter Hofstede, A.H.M.: Translating Standard
Process Models to BPEL. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006. LNCS,
vol. 4001, Springer, Heidelberg (2006)

Vidal, J.M., Buhler, P., Stahl, C.: Multiagent systems with workflows. IEEE In-
ternet Computing 8(1), 76-82 (2004)

Greenwood, D., Calisti, M.: Engineering Web Service — Agent Integration. In: IEEE
Systems, Cybernetics and Man Conference, the Hague, Netherlands, October 10-
13, 2004, pp. 10-13. IEEE Computer Society Press, Los Alamitos (2004)
Dickinson, 1., Wooldridge, M.: Agents are not (just) web services: Considering
BDI agents and web services. In: SOCABE. AAMAS 2005 Workshop on Service-
Oriented Computing and Agent-Based Engineering (2005)

	An Agent-Based, Model-Driven Approach for Enabling Interoperability in the Area of Multi-brand Vehicle Configuration
	Introduction
	Scenario
	Our Solution
	Mediating Services for Cross-Organisational Business Processes
	Advantages of Agent-Based SOAs
	Related Work
	Conclusions and Summary
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

