
Stochastic COWS�

Davide Prandi and Paola Quaglia

Dipartimento di Informatica e Telecomunicazioni, Università di Trento, Italy

Abstract. A stochastic extension of COWS is presented. First the for-
malism is given an operational semantics leading to finitely branching
transition systems. Then its syntax and semantics are enriched along the
lines of Markovian extensions of process calculi. This allows addressing
quantitative reasoning about the behaviour of the specified web services.
For instance, a simple case study shows that services can be analyzed
using the PRISM probabilistic model checker.

1 Introduction

Interacting via web services is becoming a programming paradigm, and a number
of languages, mostly based on XML, has been designed for, e.g., coordinating,
orchestrating, and querying services. While the design of those languages and of
supporting tools is quickly improving, the formal underpinning of the program-
ming paradigm is still uncertain.

This calls for the investigation of models that can ground the development of
methodologies, techniques, and tools for the rigorous analysis of service prop-
erties. Recent works on the translation of web service primitives into well-
understood formal settings (e.g., [2,3]), as well as on the definition of process
calculi for the specification of web service behaviours (e.g., [6,8]), go in this
direction. These approaches, although based on languages still quite far from
WS-BPEL, WSFL, WSCI, or WSDL, bring in the advantage of being based on
clean semantic models. For instance, process calculi typically come with a struc-
tural operational semantics in Plotkin’s style: The dynamic behaviour of a term
of the language is represented by a connected oriented graph (called transition
system) whose nodes are the reachable states of the system, and whose paths
stay for its possible runs. This feature is indeed one of the main reasons why
process calculi have been extensively used over the years for the specification
and verification of distributed systems. One can guess that the same feature
could also be useful to reason about the dynamic behaviour of web services.
The challenge is appropriately tuning calculi and formal techniques to this new
interaction paradigm.

In this paper we present a stochastic extension of COWS [8] (Calculus for
Orchestration of Web Services), a calculus strongly inspired by WS-BPEL which
combines primitives of well-known process calculi (like, e.g., the π-calculus [9,16])
with constructs meant to model web services orchestration. For instance, besides
� This work has been partially sponsored by the project SENSORIA, IST-2005-016004.

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 245–257, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

246 D. Prandi and P. Quaglia

the expected request/invoke communication primitives, COWS has operators to
specify protection, delimited receiving activities, and killing activities. A number
of other interesting constructs, although not taken as primitives of the language,
have been shown to be easily encoded in COWS. This is the case, e.g., for fault
and compensation handlers [8].

The operational semantics of COWS provides a full qualitative account on the
behaviour of services specified in the language. Quantitative aspects of compu-
tation, though, are as crucial to SOC as qualitative ones (think, e.g., of quality
of service, resource usage, or service level agreement). In this paper, we first
present a version of the operational semantics of COWS that, giving raise to
finitely branching transition systems, is suitable to stochastic reasoning (Sec. 2).
The syntax and semantics of the calculus is then enriched along the lines of
Markovian extensions of process calculi [11,5] (Sec. 3). Basic actions are associ-
ated with a random duration governed by a negative exponential distribution.
In this way the semantic models associated to services result to be Continu-
ous Time Markov Chains, popular models for automated verification. To give a
flavour of our approach, we show how the stochastic model checker PRISM [14]
can be used to check a few properties of a simple case study (Sec. 4).

2 Operational Semantics of Monadic COWS

We consider a monadic (vs polyadic) version of the calculus, i.e., it is assumed
that request/invoke interactions can carry one single parameter at a time (vs
multiple parameters). This simplifies the presentation without impacting on the
sort of primitives the calculus is based on, and indeed our setting could be gen-
eralized to the case of polyadic communications. Some other differences between
the operational approach used in [8] and the one provided here are due to the fact
that, for the effective application of Markovian techniques, we need to guarantee
that the generated transition system is finitely branching. In order to ensure
this main property we chose to express recursive behaviours by means of service
identifiers rather than by replication. Syntactically, this is the single deviation
from the language as presented in [8]. From the semantic point of view, though,
some modifications of the operational setting are also needed. They will be fully
commented upon below.

The syntax of COWS is based on three countable and pairwise disjoint sets:
the set of names N (ranged over by m, n, o, p, m′, n′, o′, p′), the set of variables V
(ranged over by x, y, x′, y′), and the set of killer labels K (ranged over by k, k′).
Services are expressed as structured activities built from basic activities that
involve elements of the above sets. In particular, request and invoke activities
occur at endpoints, which in [8] are identified by both a partner and an operation
name. Here, for ease of notation, we let endpoints be denoted by single identifiers.
In what follows, u, v, w, u′, v′, w′ are used to range over N ∪V , and d, d′ to range
over N ∪V ∪K. Names, variables, and killer labels are collectively referred to as
entities .

Stochastic COWS 247

The terms of the COWS language are generated by the following grammar.

s ::= u ! w | g | s | s | {|s|} | kill(k) | [d]s | S(n1, . . . , nj)
g ::= 0 | p ? w. s | g + g

where, for some service s, a defining equation S(n1, . . . , nj) = s is given.
A service s can consist in an asynchronous invoke activity over the endpoint u

with parameter w (u ! w), or it can be generated by a guarded choice. In this case
it can either be the empty activity 0, or a choice between two guarded commands
(g + g), or an input-guarded service p ? w. s that waits for a communication
over the endpoint p and then proceeds as s after the (possible) instantiation of
the input parameter w. Besides service identifiers like S(n1, . . . , nj), which are
used to model recursive behaviours, the language offers a few other primitive
operators: parallel composition (s | s), protection ({|s|}), kill activity (kill(k)),
and delimitation of the entity d within s ([d]s).

In [d]s the occurrence of [d] is a binding for d with scope s. An entity is free
if it is not under the scope of a binder. It is bound otherwise. An occurrence of
one term in a service is unguarded if it is not underneath a request.

Like in [8], the operational semantics of COWS is defined for closed services,
i.e. for services whose variables and killer labels are all bound. Moreover, to
be sure to get finitely branching transition systems, we work under two main
assumptions. First, it is assumed that service identifiers do not occur unguarded.
Second, we assume that there is no homonymy either among bound entities or
among free and bound entities of the service under consideration. This condition
can be initially met by appropriately refreshing the term, and is dynamically kept
true by a suitable management of the unfolding of recursion.

The labelled transition relation α−→ between services is defined by the rules
collected in Tab. 1 and by symmetric rules for the commutative operators of
choice and of parallel composition. Labels α are given by the following grammar

α ::= †k | † | p ? w | p ! n | p ? (x) | p ! (n) | p · σ · σ′

where, for some n and x, σ ranges over ε, {n/x}, {(n)/x}, and σ′ over ε, {n/x}.
Label †k (†) denotes that a request for terminating a term s in the delimi-

tation [k]s is being (was) executed. Label p ? w (p ! n) stays for the execution
of a request (an invocation) activity over the endpoint p with parameter w (n,
respectively). Label p · σ · σ′ denotes a communication over the endpoint p. The
two components σ and σ′ of label p · σ · σ′ are meant to implement a best-match
communication mechanism. Among the possibly many receives that could match
the same invocation, priority of communication is given to the most defined one.
This is achieved by possibly delaying the name substitution induced by the in-
teraction, and also by preventing further moves after a name substitution has
been improperly applied. To this end, σ′ recalls the name substitution, and σ
signals whether is has been already applied (σ = ε) or not. We observe that
labels like p · {(n)/x} · σ′, just as p ? (x) and p ! (n), have no counterpart in [8].
These labels are used in the rules for scope opening and closure that have no
analogue in [8] where scope modification is handled by means of a congruence

248 D. Prandi and P. Quaglia

Table 1. Operational semantics of COWS

kill(k)
†k−→ 0 (kill) p ? w. s

p ? w−−−→ s (req) p ! n
p ! n−−→ 0 (inv)

g1
α−→ s

g1 + g2
α−→ s

(choice)
s

α−→ s′

{|s|} α−→ {|s′|}
(prot)

s1
p ! n−−→ s′

1 s2
p ? n−−−→ s′

2

s1 | s2
p·ε·ε−−−→ s′

1 | s′
2

(com n)

s1
p ! n−−→ s′

1 s2
p ? x−−−→ s′

2 (s1 | s2) �↓p ? n

s1 | s2
p·{n/x}·{n/x}−−−−−−−−−→ s′

1 | s′
2

(com x)

s1
p·σ·σ′
−−−−→ s′

1 σ′ = {n/x} ⇒ s2 �↓p ? n

s1 | s2
p·σ·σ′
−−−−→ s′

1 | s2

(par conf)
s

p·{n/x}·{n/x}−−−−−−−−−→ s′

[x]s
p·ε·{n/x}−−−−−−→ s′{n/x}

(del sub)

s1
†k−→ s′

1

s1 | s2
†k−→ s′

1 | halt(s2)
(par kill) s1

α−→ s′
1 α �= p · σ · σ′ α �= †k
s1 | s2

α−→ s′
1 | s2

(par pass)

s
†k−→ s′

[k]s
†−→ [k]s′

(del kill) s
α−→ s′ d �∈ d(α) s ↓d ⇒ (α = † or α = †k)

[d]s α−→ [d]s′ (del pass)

− −
s{m1 . . . mj/n1 . . . nj} α−→ s′ S(n1, . . . , nj) = s

S(m1, . . . , mj)
l dec(α)−−−−−→ s dec(α, s′)

(ser id)

s
p ? x−−−→ s′

[x]s
p ? (x)−−−−→ s′

(op req)

s1
p ! (n)−−−−→ s′

1 s2
p ? (x)−−−−→ s′

2 (s1 | s2) �↓p ? n

s1 | s2
p·ε·{n/x}−−−−−−→ [n](s′

1 | s′
2{n/x})

(cl nx)

s
p ! n−−→ s′

[n]s
p ! (n)−−−−→ s′

(op inv)

s1
p ! (n)−−−−→ s′

1 s2
p ? x−−−→ s′

2 (s1 | s2) �↓p ? n

s1 | s2
p·{(n)/x}·{n/x}−−−−−−−−−−−→ s′

1 | s′
2

(cl n)

s
p·{(n)/x}·{n/x}−−−−−−−−−−−→ s′

[x]s
p·ε·{n/x}−−−−−−→ [n]s′{n/x}

(del cl)
s1

p ! n−−→ s′
1 s2

p ? (x)−−−−→ s′
2 (s1 | s2) �↓p ? n

s1 | s2
p·ε·{n/x}−−−−−−→ s′

1 | s′
2{n/x}

(cl x)

relation. Their intuitive meaning is analogous to the one of the corresponding
labels p · {n/x} · σ′, p ? x, and p ! n. The parentheses only record that the scope
of the entity is undergoing a modification.

Notation and auxiliary functions. We use [d1, . . . , d2] as a shorthand for [d1] . . .
[d2], and adopt the notation s{d′

1 . . . d′
j/d1 . . . dj} to mean the simultaneous sub-

stitution of dis by d′is in the term s . We write s ↓p ? n if, for some s′, an un-
guarded subterm of s has the shape p ? n. s′. Analogously, we write s ↓k if some
unguarded subterm of s has the shape kill(k). The predicates s �↓p ? n and s �↓k are
used as negations of s ↓p ? n and of s ↓k, respectively. Function halt(), used to de-
fine service behaviours correspondingly to the execution of a kill activity, takes a

Stochastic COWS 249

service s and eliminates all of its unprotected subservices. In detail: halt(u ! w) =
halt(g) = halt(kill(k)) = 0, and halt({|s|}) = {|s|}. Function halt() is a homo-
morphism on the other operators, namely: halt(s1 | s2) = halt(s1) | halt(s2),
halt([d]s) = [d]halt(s), and halt(S(m1, . . . , mj)) = halt(s{m1 . . . mj/n1 . . . nj})
for S(n1, . . . , nj) = s. Finally, an auxiliary function d() on labels is defined. We
let d(p · {n/x} · σ′) = d(p · {(n)/x} · σ′) = {n, x} and d(p · ε · σ′) = ∅. For the
other forms of labels, d(α) stays for the set of entities occurring in α.

Tab. 1 defines α−→ for a rich class of labels. This is technically necessary to get
what is actually taken as an execution step of a closed service:

s
α−→ s′ with either α = † or α = p · ε · σ′.

The upper portion of Tab. 1 displays the monadic version of rules which are
in common with the operational semantics presented in [8]. We first comment
on the most interesting rules of that portion.

The execution of the kill(k) primitive (axiom kill) results in spreading the killer
signal †k that forces the termination of all the parallel services (rule par kill) but
the protected ones (rule prot). Once †k reaches the delimiter of its scope, the killer
signal is turned off to † (rule del kill). Kill activities are executed eagerly: When-
ever a kill primitive occurs unguarded within a service s delimited by d, the service
[d]s can only execute actions of the form †k or † (rule del pass).

Notice that, by our convention on the use of meta-entities, an invoke activity
(axiom inv) cannot take place if its parameter is a variable. Variable instanti-
ation can take place, involving the whole scope of variable x, due to a pending
communication action of shape p · {n/x} · {n/x} (rule del sub). Communication
allows the pairing of the invoke activity p ! n with either the best-matching ac-
tivity p ? n (rule com n), or with a less defined p ? x action if a best-match is not
offered by the locally available context (rule com x). A best-match for p ! n is
looked for in the surrounding parallel services (rule par conf) until either p ? n
or the delimiter of the variable scope is found. In the first case the attempt to
establish an interaction between p ! n and p ? x is blocked by the non applicability
of the rules for parallel composition.

The rules in the lower portion of Tab. 1 are a main novelty w.r.t. [8]. In order
to carry out quantitative reasoning on the behaviour of services we need to base
our stochastic extension on a finitely branching transition system. This was not
the case for the authors of [8] who defined their setting for modelling purposes,
and hence were mainly interested in runs of services rather than on the complete
description of their behaviour in terms of graphs. Indeed, in [8] the operational
semantics of COWS is presented in the most elegant way by using both the
replication operator and structural congruence. The rules described below are
meant to get rid of both these two ingredients while retaining the expressive
power of the language.

As said, we discarded the replication operator in favour of service identifiers.
Their use, just as that of replication, is a typical way to allow recursion in
the language. When replication is out of the language, the main issue about
simulating the expressivity of structural congruence is relative to the manage-
ment of scope opening for delimiters.

250 D. Prandi and P. Quaglia

As an example, the operational semantics in [8] permits the interaction be-
tween the parallel components of service [n]p ! n | [x]p ? x. 0 because, by struc-
tural congruence, that parallel composition is exactly the same as [n][x](p ! n |
p ? x.0) and hence the transition [n]p ! n | [x]p ? x.0

p·ε·{n/x}−−−−−−→ [n](0 | 0) is
allowed.

Except for rule ser id , all the newly introduced rules are meant to manage
possible moves of delimiters without relying on a notion of structural congruence.
The effect is obtained by using a mechanism for opening and closing the scope
of binders that is analogous to the technique adopted in the definition of the
labelled transition systems of the π-calculus.

Both rules op req and op inv open the scope of their parameter by removing
the delimiter from the residual service and recording the binding in the transition
label. The definition of the opening rules is where our assumption on the non-
homonymy of entities comes into play. If not working under that assumption,
we should care of possible name captures caused when closing the scope of the
opened entity. To be sure to avoid this, we should allow the applicability of the
opening rules to a countably infinite set of entities, which surely contrasts with
our need to get finitely branching transition systems.

The idea underlying the opening/closing technique is the following. Opened
activities can pass over parallel compositions till a (possibly best) match is found.
When this happens, communication can take place and, if due, the delimiter is
put back into the term to bind the whole of the residual service.

The three closing rules in Tab. 1 reflect the possible recombinations of pairs of
request and invoke activities when at least one of them carries the information
that the scope of its parameter has been opened. In each case the parameter of
the request is a variable. (If it is a name then, independently on any assumption
on entities, it is surely distinct from the invoke parameter.) Recombinations have
to be ruled out in different ways depending on the relative original positions of
delimiters and parallel composition.

Rule cl nx takes care of scenarios like the one illustrated above for the ser-
vice [n]p ! n | [x]p ? x.0. Delimiters are originally distributed over the parallel
operator, and their scope can be opened to embrace both parallel components.
The single delimiter that reappears in the residual term is the one for n.

Rule cl x regulates the case when only variable x underwent a scope opening.
The delimiter for the invoke parameter, if present, is in outermost position w.r.t.
both the delimiter for x and the parallel operator. An example of this situation is
p ! n | [x]p ? x. 0. The invoke can still find a best matching, though. Think, e.g., of
the service (p ! n | p ? n.0) | [x]p ? x.0. If such matching is not available, then the
closing communication can effectively occur and the variable gets instantiated.

Rule cl n handles those scenarios when the delimiter for the invoke is within
the scope of the delimiter for x, like, e.g., in [x](p ? x. 0 | [n]p ! n). Communica-
tion is left pending by executing p · {(n)/x} · {n/x} which is passed over possible
parallel compositions using the par conf rule. Variable x is instantiated when
p · {(n)/x} · {n/x} reaches the delimiter for x (rule del cl). On the occasion, [x]
becomes a delimiter for n.

Stochastic COWS 251

NS(p1,m1) | NS(p2,m2) | ES(p,p1,p2) | US(p,n)
where

NS(p,m) = [x] p?x. [k,o]({|NS(p,m)|} | x!m | o!o | o?o. kill(k))
ES(p,p1,p2) = [y,n1,n2,z1,z2] p?y.
(p1!n1 | p2!n2 | n1?z1.(y!z1|ES(p,p1,p2)) + n2?z2.(y!z2|ES(p,p1,p2)))

US(p,n) = p!n | [z] n?z.0

Fig. 1. COWS specification of a news/e-mail service

Rule ser id states that the behaviour of an identifier depends on the behaviour
of its defining service after the substitution of actual parameters for formal pa-
rameters. The rule is engineered in such a way that the non-homonymy condition
on bound entities is preserved by the unfoldings of the identifier. This is obtained
by using decorated versions of transition label and of derived service in the con-
clusion of the ser id rule. Function l dec(α) decorates the bound name of α,
if any. Function s dec(α, s) returns a copy of s where all of the occurrences of
both the bound names of s and of the bound name possibly occurring in α
have been decorated. The decoration mechanism is an instance of a technique
typically used in the implementation of the abstract machines for calculi with
naming and α-conversion (see, e.g., [12,15]). Here the idea is to enrich entities
by superscripts consisting in finite strings of zeros, with d staying for the entity
decorated by the empty string. Each time an entity is decorated, an extra zero is
appended to the string. Entities decorated by distinct strings are different, and
this ensures that the non-homonymy condition is dynamically preserved.

Fig. 1 displays the COWS specification of a simple service adapted from the
CNN/BBC example in [10]. The global system, which will be used later on to
carry on simple quantitative analysis, consists of two news services (NS(p1,m1)
and NS(p2,m2)), the e-mail service ES(p,p1,p2), and a user US(p,n). The user
invokes the e-mail service asking to receive a message with the latest news. On
its side, ES(p,p1,p2) asks them to both NS(p1,m1) and NS(p2,m2) and sends
back to the user the news it receives first. The sub-component o!o|o?o.kill(k)
of the news service will be used to simulate (via a delay associated to the invoke
and to the request over o) a time-out for replying to ES(p,p1,p2).

3 Stochastic Semantics

The stochastic extension of COWS is presented below. The syntax of the basic
calculus is enriched in such a way that kill, invoke, and request actions are asso-
ciated with a random variable with exponential distribution. Since exponential
distribution is uniquely determined by a single parameter, called rate, the above
mentioned atomic activities become pairs (μ,r), where μ represents the basic
action, and r ∈ R

+ is the rate of μ. In the enriched syntax, kill activities, invoke
activities, and input-guarded services are written:

(kill(k), λ) (u ! w, δ) (p ? w, γ). s

252 D. Prandi and P. Quaglia

Table 2. Apparent rate of a request

req(p; (kill(k), λ)) = req(p; (u ! w, δ)) = req(p;0) = 0

req(p; (p′ ? w, γ). s′) =
γ if p = p′

0 oth. req(p; s1 | s2) = req(p; s1) + req(p; s2)

req(p; g1 + g2) = req(p; g1) + req(p; g2) req(p; {|s|}) = req(p; s)

req(p; [d]s) =
0 if p = d or s ↓d

req(p; s) oth.
req(p; S(m1, . . . , mj)) = req(p; s{m1 . . . mj/n1 . . . nj}) if S(n1, . . . , nj) = s

T bl A f

where the metavariables λ, δ and γ are used to range over kill, invoke and re-
quest rates, respectively. The intuitive meaning of (kill(k), λ) is that the activity
kill(k) is completed after a delay Δt drawn from the exponential distribution
with parameter λ. I.e., the elapsed time Δt models the use of resources needed
to complete kill(k). The meaning of both (u ! w, δ) and (p ? w, γ) is analogous.

Whenever more than one activity is enabled, the dynamic evolution of a ser-
vice is driven by a race condition: All the enabled activities try to proceed, but
only the fastest one succeeds. Race conditions ground the replacement of the
non-deterministic choice of COWS by a probabilistic choice. The probability of
a computational step s

α−→ s′ is the ratio between its rate and the exit rate of
s which is defined as the sum of the rates of all the activities enabled in s. For
instance, service S = [x][y]((p ? x, γ1). s1 + (p ? y, γ2). s2) has exit rate γ1 + γ2
and the probability that the activity p ? x is completed is γ1/(γ1 + γ2).

The exit rate of a service is computed on the basis of the so-called commu-
nication rate, which is turn is defined in terms of the apparent rate of request
and invoke activities [13,7]. The apparent rate of a request over the endpoint p
in a service s, written req(p; s), is the sum of the rates of all the requests over
the endpoint p which are enabled in s. Function req(p; s) is defined in Tab. 2 by
induction on the structure of s. It just sums up the rates of all the requests that
can be executed in s at endpoint p. As an example, we show in the following the
computation of the apparent rate of a request over p for the above service S.

req(p; S) = req(p; (p ? x, γ1). s1 + (p ? y, γ2). s2)
= req(p; (p ? x, γ1). s1) + req(p; (p ? y, γ2). s2) = γ1 + γ2

The apparent rate of an invoke over p in a service s, written inv(p; s), is defined
analogously to req(p; s). It computes the sum of the rates of all the invoke
activities at p which are enabled in s. Its formal definition is omitted for the sake
of space. The apparent communication rate of a synchronization at endpoint p
in service s is taken to be the slower value between req(p; s) and inv(p; s), i.e.
min(req(p; s), inv(p; s)).

All the requests over a certain endpoint p in s compete to take a communica-
tion over p. Therefore, given that a request at p is enabled in s, the probability
that a request (p ? x, γ) completes, is γ/req(p; s). Likewise, when an invoke at p
is enabled in s, the probability that the invoke (p ! n, δ) completes is δ/inv(p; s).
Hence, if a communication at p occurs in s, the probability that (p ?x, γ) and
(p ! n, δ) are involved is γ/req(p; s) × δ/inv(p; s).

Stochastic COWS 253

Table 3. Apparent rate of α in service s

�(α; s) =

�����
����

req(p; s) if α = p ? w, p ? (x)
inv(p; s) if α = p ! n, p ! (n)
[req(p; s), inv(p; s)] if α = p · σ · σ′

0 oth.

The rate of the communication between (p ? x, γ) and (p ! n, δ) in s is given by
the following formula:

γ

req(p; s)
δ

inv(p; s)
min(req(p; s), inv(p; s)) (1)

namely, it is given by the product of the apparent rate of the communication
and of the probability, given that a communication at p occurs in s, that this is
just a communication between (p ? x, γ) and (p ! n, δ).

The stochastic semantics of COWS uses enhanced labels in the style of [4].
An enhanced label θ is a triple (α, ρ, ρ′) prefixed by a choice-address ϑ. The α
component of the triple is a label of the transition system in Tab. 1. The two
components ρ and ρ′ can both be either a rate (λ, γ, or δ) or a two dimensional
vector of request-invoke rates [γ, δ]. We will comment later on upon the usefulness
of the choice-address component ϑ.

The enhanced label ϑ(α, ρ, ρ′) records in ρ the rate of the fired action. Axioms
kill , req, and inv become respectively:

(kill(k), λ)
(†k,λ,λ)−−−−−→ 0 (p ? w, γ) . s

(p ? w,γ,γ)−−−−−−→ s (p ! n, δ)
(p ! n,δ,δ)−−−−−−→ 0 .

The apparent rate of an activity labelled by α is computed inductively and
saved in the ρ′ component of the enhanced label ϑ(α, ρ, ρ′). Accordingly, rule
par pass takes the shape shown below.

s1
ϑ(α,ρ,ρ′)−−−−−−→ s′1 α �= p · σ · σ′ α �= †k

s1 | s2
ϑ(α,ρ,ρ′+	(α;s2))−−−−−−−−−−−→ s′1 | s2

(par pass)

Function
(α; s), defined in Tab. 3, computes the apparent rate of the activity α
in the service s. If α is a request (an invoke) at endpoint p, then function
(α; s)
returns req(p; s) (inv(p; s)). In case of a communication at p, function
(α; s)
returns the vector [req(p; s), inv(p; s)] of the request apparent rate and of the
invoke apparent rate. Rules par conf and par kill are modified in a similar way.

An example of application of the par pass rule follows.

(p ! n, δ1)
(p ! n,δ1,δ1)−−−−−−−→ 0 (inv)

(p ! n, δ1) | (p ! m,δ2)
(p ! n,δ1,δ1+�(p ! n;(p ! m,δ2)))−−−−−−−−−−−−−−−−−−−→ 0 | (p ! m, δ2)

(par pass)

The enhanced label (p ! n, δ1, δ1 +
(p ! n; (p ! m, δ2))) records that the activity
p ! n is taking place with rate δ1, and with apparent rate δ1 +
(p ! n; (p ! m, δ2)) =
δ1 + δ2.

254 D. Prandi and P. Quaglia

To compute the rate of a communication between the request (p ? n, γ) in s1
and the invoke (p ! n, δ) in s2 with apparent rates γ′′ and δ′′, respectively, the
enhanced label keeps track of both the rates γ and δ, and of both the apparent
rates γ′′ +
(p ? n; s2) and δ′′ +
(p ! n; s1). Rule com n is modified as follows.

s1
ϑ(p ? n,γ,γ′′)−−−−−−−−→ s′1 s2

ϑ′(p ! n,δ,δ′′)−−−−−−−−→ s′2

s1 | s2
(ϑ,ϑ′)(p·ε·ε,[γ,δ],[γ′′+	(p ? n;s2),δ′′+	(p ! n;s1)])−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ s′1 | s′2

(com n)

Notice that the enhanced label in the conclusion of rule com n contains all
the data needed to compute the relative communication rate which, following
Eq. (1), is given by (γ/γ′)(δ/δ′) min(γ′, δ′) where γ′ = γ′′ +
(p ? n; s2) and δ′ =
δ′′ +
(p ! n; s1). From the point of view of stochastic information, rules com x ,
cl nx , cl x , and cl n behave the same as rule com n . Indeed their stochastic
versions are similar to the one of com n.

Rules prot , del sub, del kill , del pass , ser id , op req, op inv , and del cl are
transparent w.r.t. stochastic information, i.e., their conclusion does not change

the values ρ and ρ′ occurring in the premise s
ϑ(α,ρ,ρ′)−−−−−−→ s′. We report here only

the stochastic version of del kill , the other rules are changed in an analogous
way.

s
ϑ(†k,ρ,ρ′)−−−−−−→ s′

[k]s
ϑ(†,ρ,ρ′)−−−−−→ [k]s′

(del kill)

Rule choice deserves special care. Consider the service (p ! n, δ) | (p ? n, γ).0+
(p ? n, γ).0, and suppose that enhanced labels would not comprise a choice-
address component. Then the above service could perform two communications
at p, both with the same label (p ·ε ·ε, [γ, δ], [γ+γ, δ]) and with the same residual
service 0 | 0. If the semantic setting is not able to discriminate between these two
transitions, then the exit rate of the service cannot be consistently computed.
This calls for having a way to distinguish between the choice of either the left
or the right branch of a choice service. Indeed, the stochastic rules for choice
become the following ones.

g1
ϑ(α,ρ,ρ′)−−−−−−→ s

g1 + g2
+0ϑ(α,ρ,ρ′+	(α;g2))−−−−−−−−−−−−−→ s

(choice0)
g2

ϑ(α,ρ,ρ′)−−−−−−→ s

g1 + g2
+1ϑ(α,ρ,ρ′+	(α;g1))−−−−−−−−−−−−−→ s

(choice1)

By these rules, the above service (p ! n, δ) | (p ? n, γ).0+(p ? n, γ).0 executes two
transitions leading to the same residual process but labelled by +0(p, [γ, δ], [γ +
γ, δ]) and by +1(p, [γ, δ], [γ + γ, δ]), respectively.

We conclude the presentation of the stochastic semantics of COWS by pro-
viding the definition of stochastic execution step of a closed service:

s
ϑ(α,ρ,ρ′)−−−−−−→ s′ with either α = † or α = p · ε · σ′.

Stochastic COWS 255

4 Stochastic Analysis

The definition of stochastic execution step has two main properties: (i) it can
be computed automatically by applying the rules of the operational semantics;
(ii) it is completely abstract, i.e., enhanced labels only collect information about
rates and apparent rates. For instance, it would be possible to compute the com-
munication rate using a formula different from Eq. (1). This makes the modelling
phase independent from the analysis phase, and also allows the application of
different analysis techniques to the same model.

In what follows, we show how to apply Continuous Time Markov Chain
(CTMC) based analysis to COWS terms. A CTMC is a triple C = (Q, q,R)
where Q is a finite set of states, q is the initial state, R : Q × Q → R

+ is the
transition matrix. We write R(q1, q2) = r to mean that q1 evolves to q2 with rate
r. Various tools are available to analyze CTMCs. Among them there are prob-
abilistic model checkers: Tools that allow the formal verification of stochastic
systems against quantitative properties.

A service s′ is a derivative of service s if s′ can be reached from s by a finite
number of stochastic evolution steps. The derivative set of a service s, ds(s),
is the set including s and all of its derivatives. A service s is finite if ds(s) is
finite. Given a finite service s, the associated CTMC is C(s) = (ds(s), s,R),
where R(s, s′) =

∑

s
θ−→s′

rate(θ). Here the rate of label θ, rate(θ), is computed
accordingly to Eq. (1):

rate(θ) =
{

(γ/γ′)(δ/δ′)min(γ′, δ′) if θ = ϑ(p, [γ, δ], [γ′, δ′])
ρ if θ = ϑ(†, ρ, ρ′)

After the above definition, we can analyse COWS services exploiting available
tools on CTMCs. As a very simple example, we show how the news/e-mail service
in Fig. 1 can be verified using PRISM [14], a probabilistic model checking tool
that offers direct support for CTMCs and can check properties described in
Continuous Stochastic Logic [1]. A short selection of example properties that
can be verified against the news/e-mail service follows.

– P ≥ 0.9[true U≥ 60(NS1 | NS2)]: “With probability greater than 0.9
either NS(p1,m1) or NS(p2,m2) are activated in at most 60 units of time”;

Fig. 2. Probability that US(p,n) receives either the message m1 or m2 within time T

256 D. Prandi and P. Quaglia

– P ≥ 1 [true U (m1|m2)]: “The user US(p,n) receives either the message
m1 or m2 with probability 1”;

– P=?[trueU[T,T](m1|m2)]: “Which is the probability that the user US(p,n)
receives either the message m1 or m2 within time T?” Fig. 2 shows a plot gener-
ated by PRISM when checking the news/e-mail service against this property.

5 Concluding Remarks

We presented a stochastic extension of COWS, a formal calculus strongly in-
spired by WS-BPEL, and showed how the obtained semantic model can be used
as input to carry on probabilistic verification using PRISM.

The technical approach presented in this paper aims at producing an inte-
grated set of tools to quantitatively model, simulate and analyse web service
descriptions.

Acknowledgements. WethankRosarioPugliese,FrancescoTiezzi,andananony-
mous referee for their useful comments and suggestions on a draft of this work.

References

1. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Model-checking continuous-time
markov chains. ACM TOCL 1(1), 162–170 (2000)

2. Bruni, R., Melgratti, H.C., Montanari, U.: Theoretical foundations for compensa-
tions in flow composition languages. In: POPL ’05, pp. 209–220 (2005)

3. Bruni, R., Melgratti, H.C., Tuosto, E.: Translating Orc Features into Petri Nets
and the Join Calculus. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM
2006. LNCS, vol. 4184, pp. 123–137. Springer, Heidelberg (2006)

4. Degano,P.,Priami,C.:Enhancedoperationalsemantics.ACMCS33(2),135–176(2001)
5. Gilmore, S.T., Tribastone, M.: Evaluating the scalability of a web service-based

distributed e-learning and course management system. In: Bravetti, M., Núñez,
M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 214–226. Springer,
Heidelberg (2006)

6. Guidi, C., Lucchi, R., Gorrieri, R., Busi, N., Zavattaro, G.: A Calculus for Service
Oriented Computing. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS,
vol. 4294, Springer, Heidelberg (2006)

7. Hillston, J.: A Compositional Approach to Performance Modelling. In: CUP (1996)
8. Lapadula, A., Pugliese, R., Tiezzi, F.: Calculus for Orchestration of Web Services.

In: Proc. ESOP’07. LNCS, vol. 4421, pp. 33–47. Springer, Heidelberg (2007) (full
version available at), http://rap.dsi.unifi.it/cows/

9. Milner, R.: Communicating and mobile systems: the π-calculus. In: CUP (1999)
10. Misra, J., Cook, W.R.: Computation Orchestration: A Basis for Wide-area Com-

puting. SoSyM 6(1), 83–110 (2007)
11. PEPA (2007), http://www.dcs.ed.ac.uk/pepa/
12. Pottier, F.: An Overview of Cαml. ENTCS 148(2), 27–52 (2006)
13. Priami, C.: Stochastic π-calculus. The Computer Journal 38(7), 578–589 (1995)
14. PRISM (2007), http://www.cs.bham.ac.uk/∼dxp/prism/
15. Quaglia, P.: Explicit substitutions for pi-congruences. TCS 269(1-2), 83–134 (2001)
16. Sangiorgi, D., Walker, D.: The π-calculus: a Theory of Mobile Processes. In: CUP

(2001)

http://rap.dsi.unifi.it/cows/
http://www.dcs.ed.ac.uk/pepa/
http://www.cs.bham.ac.uk/~dxp/prism/

	Stochastic COWS
	Introduction
	Operational Semantics of Monadic COWS
	Stochastic Semantics
	Stochastic Analysis
	Concluding Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

