A Domain-Specific Language for Web APIs and
Services Mashups

E. Michael Maximilien', Hernan Wilkinson?, Nirmit Desai®, and Stefan Tai'

1 IBM Research
{maxim, stai}@us.ibm.com
2 Universidad de Buenos Aires
hernan.wilkinson@gmail.com
3 N.C. State University
nvdesai@ncsu.edu

Abstract. Distributed programming has shifted from private networks
to the public Internet and from using private and controlled services to
increasingly using publicly available heterogeneous Web services (e.g.,
REST, SOAP, RSS, and Atom). This move enables the creation of in-
novative end-user-oriented composed services with user interfaces. These
services mashups are typically point solutions to specific (specialized)
problems; however, what is missing is a programming model that facil-
itates and accelerates creation and deployment of mashups of diverse ser-
vices. In this paper we describe a domain-specific language that
unifies the most common service models and facilitates service composi-
tion and integration into end-user-oriented Web applications. We demon-
strate our approach with an implementation that leverages the Ruby on
Rails framework.

1 Introduction

There are two paradigm shifts occurring on the Web that are changing the way
software is developed. The first is the increasing availability of Web APIs (or
Web services) in the form of Representational State Transfer (REST) [2] and
SOAP services, as well as RSS and Atom data services. These Web APIs enable
external partners (or software agents) to incorporate business data and processes
of the service providers into their own Web application or Web client. Indeed, the
proliferation of these Web APIs have resulted in various composed services with
Uls, or mashups, which provide solutions to very specific and narrow problems.
An example is Podbop.org, which combines the API and data retrieved from
Eventful.com with MySpace.com, as well as other MP3 databases, to create a site
for music lovers who want to sample music of new (unknown) artists performing
in local bars and clubs.

The second paradigm shift is a movement to increasingly program Web appli-
cations using dynamic programming languages and frameworks, e.g., JavaScript
with AJAX, Ruby with Ruby on Rails (RoR), Python with Zope, Smalltalk
with Seaside, as well as PHP. These languages allow for rapid application devel-
opment and testing; and not only afford programmers expressive and powerful

B. Kramer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 13-[Z6] 2007.
© Springer-Verlag Berlin Heidelberg 2007

14 E.M. Maximilien et al.

frameworks, but they also lead to the use of high-level abstractions which are
more representative of the domain in question.

In many ways these two paradigm shifts are complementary since they es-
sentially help realize the vision of a programmable Web. However, frameworks
focused directly on facilitating the creation and deployment of mashups of di-
verse Web APIs and services are missing. For instance, each type of service
(REST, SOAP, RSS, and Atom) has heterogeneous means of exposing the ser-
vice interface or none at all. Additionally, there is a need to help address common
distributed systems issues that arise [3].

In this paper we present a domain specific language (DSL) for services mashups
that alleviates some of these issues. In particular, our DSL (1) allows for a com-
mon interface representation among diverse service types, (2) facilitates exposing
asynchronous and synchronous method invocations, (3) gives a uniform model for
service data and service operations’ interactions, and (4) enables basic service data
caching. We demonstrate an implementation of our language using Ruby and the
RoR framework.

1.1 Organization

The rest of this paper is organized as follows. Section 2] gives an overview of our
platform architecture. We also provide a more thorough definition of services
mashups. Section [B gives a more precise definition of our language and some
brief examples of the language in action. Section @] describes our implementation.
Finally, SectionBlfollows with a discussion of our approach which includes related
works and limitations.

2 Background and Architecture

In order to demonstrate our approach to mashups and how a DSL can facilitate
mashup creation, it’s useful to first have a more precise definition of mashups
along with possible implementation approaches. We then illustrate our architec-
ture with a brief overview of the base platform that we use.

2.1 What Are Mashups?

At its core, a mashup is a Web application that aggregates multiple services to
achieve a new purpose. Conceptually, mashups are new Web applications used for
repurposing existing Web resources and services. They include all three aspects of
a typical Web application (model-view-controller) with additional functionality.
For us, a mashup includes three primary components:

1. Data mediation involves converting, transforming, and combining the data
elements from one or multiple services to meet the needs of the operations
of another. For instance, mediating between data models of tags represented
in both the Flickr [] and the Eventful’s APIs.

! http://api.flickr.com

A Domain-Specific Language for Web APIs and Services Mashups 15

2. Process (or protocol) mediation is essentially choreographing between the
different services to create a new process. For instance, process mediation
includes invoking the various service methods, waiting for asynchronous mes-
sages, and sending any necessary confirmation messages.

3. User interface customization is used to elicit user information as well as to
display intermittent and final process information to the user. Depending on
the domain, the user interface customization can be as simple as an HTML
page, a more complex series of input forms, or an interactive AJAX UL

2.2 Mashup Implementation Approaches

Two example technologies used to build mashups are the Google Web Toolkit
(GWT) [and plain RoR. As an example, consider implementing a mashup that
updates personal calendars from Atom feeds, and allows adding rating infor-
mation for events. Assume, without loss of generality, that each user’s calendar
can be accessed via a REST API using a key parameter to authenticate users.
The Atom feeds generate heterogeneous event entries for each up-coming talks.
And finally, each user has an account in Eventful, which exposes a common data
model for events and REST APIs to add, search, rate, and retrieve events.

Using GWT, two main components of the mashups are to represent the various
talk feeds entries and converting them to the uniform FEwvent data model of
Eventful. This involves data mediation between the model for a Talk entry from
the Atom feed to an the Fvent model in Eventful. For instance, the former may
have a location data as a string which needs to be parsed into the different fields
for location represented by the latter.

GWT does not have built-in libraries for accessing REST or Atom services.
This means that for each service type, there is a need to find an appropriate
Java T]ibrary or creating one manually and binding and testing to the services
in question.

Next, we need to mediate the protocols of the three services to achieve the
goals of our mashup. For instance, assume that the first page of our mashup
simply displays all up-coming events in the next two-weeks that are not already
added to the user’s calendar. One possible choreography between the three ser-
vices to achieve this goal is:

1. Retrieve entries from all feeds for up-coming talks. Additional consideration
for this step are: caching public entries for subsequent access or for other
users and enabling asynchronous updates of the cache.

2. Query the user’s calendar to get all talk entries for the next two weeks.

3. Mediate between the user’s calendar entries and the feed entries. Decide on
comparison criteria, e.g., time, date, location, and so on.

4. For each talk not present in the user’s calendar, create a common representa-
tion of these talks as events in Eventful and add to the Eventful database via
REST API. Eventful events include a model for speakers which also needs to

2 http://code.google.com /webtoolkit

16 E.M. Maximilien et al.

be mediated from the data feeds. If the talk is already present, then retrieve
it and mediate between the reconciled event in previous step and this one.
5. Present a formatted page to the user with each new event with checkboxes
and a button to enable the user to add events to her calendar.
6. Allow user to view events in her calendar. For each event: (1) display event
data; (2) allow user to delete the event; and (3) allow user to indicate atten-
dance.

It’s worth noting that using GWT to implement the choreography above re-
sults in adding custom code for the data mediation steps, for resolving the chore-
ography, as well as for any data caching. Additionally, there is no reuse of the
various steps across mashups of the same services.

Using RoR is effectively similar to using GWT, though simpler for some as-
pects. For instance, RoR’s built-in support for databases via ActiveRecord would
facilitate caching the feed entries into a relational database. However, this would
need to be manually done for each type of Tulk feed added to the system.

2.3 Ruby on Rails

The Ruby on Rails (RoR) framework enables agile development of Web ap-
plications. The framework contains primitives to help efficiently implement all
aspects of an Model-View-Controller (MVC) Web application. Each MVC Web
application contains: (1) Model classes representing the data elements of the ap-
plication’s domain. Model objects can persist their state in a database using a
series of conventions; (2) Views are the dynamic pages displayed to the user of
the Web application. Each view file contains HTML and embedded Ruby code
which is translated into JavaScript, HTML, and CSS on the server before being
sent to the client (i.e., browser); and (3) Controllers constitute the middle layer
between models and views. Controllers are classes whose names and methods
map to the application URL path. Controller methods contain business logic by
operating on model objects and accessing remote services.

Additionally, RoR also includes basic facilities to allow controllers to invoke
external SOAP Web services and to access remote Web resources. However, the
RoR Web API support lacks some key features needed to streamline and cre-
ate mashups, e.g., lack of consistent and uniform representation for all different
types of services, lack of support for asynchronous invocation of services’ oper-
ations that can work across all service types, and lack of provisions for easily
manipulating complex XML data (beyond parsing).

2.4 Architecture Overview

To address the above deficiencies (and others) as well as to provide a uniform
model for building and sharing services mashup we created the Swashup plat-
form. Our architecture extends the RoR architecture with a new DSL, supporting
libraries, as well as associated platform models and services. Figure [l illustrates
the high-level components of our architecture.

A Domain-Specific Language for Web APIs and Services Mashups 17

ng SOAP REST, and
_— ——- ‘ RSS/Atom services

-
'
|
i 0 o O
| Web browser (— ____________V____________ ;
: (mashup client) | h '1\ Service
! ervice ! endpoints
e ' | RoR Web 3 <l __ P
i application i |
! PXOVIILS
Example ! cache senice |
m;shup H proxies !
SwashupDSL 7 TTT-T------- aiiatatatatatutuiaiui

Swashup + RoR base + gems
< —> (models, DSL engine, and services)

Swashup ——

Fig. 1. Swashup high-level architecture

Using the Swashup Web UI tools, an end user creates, edits, and deploys a
Swashup project which contains the necessary information for describing the
services to be mashed up as well as the mashup information. Using the Swashup
platform services, the Swashup project is deployed as a complete RoR Web
application with all necessary service proxies, models, and initial views for each
mashup.

3 Swashup DSL

We now introduce our language and discuss the main requirements for any DSL
as well as some criteria for judging their value.

3.1 What Are DSLs?

A domain-specific language (DSL) is a ‘mini’ language built on top of a hosting
language that provides a common syntax and semantics to represent concepts
and behaviors in a particular domain. In general, using or designing a DSL helps
achieve the following goals: (1) Abstraction by enabling programming at a level
higher than what is available with the host programming language constructs
or its libraries. A DSL allows the domain concepts, actions, and behaviors to
be represented directly in the new syntax; (2) Terse Code as a side effect of
programming in a higher-level of abstraction; (3) Simple and Natural Syntax,
which leads to easy to write and read code; (4) Ease of Programming, which
is desirable of any programming language and also somewhat difficult to judge.
However, since a DSL enables the expression of constructs that map directly to a
domain, it generally makes programming easier (for applications in the domain)
than using the underlying language directly; and (5) Code Generation is how
a DSL primarily functions. Essentially, the DSL statements are translated at
runtime into code that uses the underlying language and its libraries. This can
be either using metaprogramming techniques or by code generation of program
files.

18 E.M. Maximilien et al.

3.2 Language Overview

In the Swashup DSL, we directly represent in the syntax, the concepts necessary
to cover the three main components of our conceptual model for mashups: (1)
data and mediation; (2) service APIs, their protocols, and choreography; and
(3) a means to generate Web applications with customized Uls for the result-
ing mashups. The following concepts form the main types of statements in our
language.

— data describes a data element used in a service. A data element corresponds
to an XML schema complex type. Each data element has a name and a
series of member attributes. These attributes’ types can be either regular
XSD simple types or other data elements. Section [gives more details on
our XML mapping approach including conventions and rules.

— api gives a complete description of a service’s interface. This includes de-
scriptions for the service’s API, including operation names, parameters, and
data types. An operation data type is either a simple type (e.g., string or
integer) or refers to a data element. Section 1] discusses the conventions
for creating api definitions for SOAP and REST services, as well as Atom
and RSS services.

— mediation describes the transformation of one or multiple data elements
to create a new one. Essentially, a mediation is a mapping between data
elements with some possible transformations.

— service binds a service api with a concrete service. Part of the binding is to
indicate the service’s type (e.g., SOAP, REST, RSS, or Atom), the service’s
endpoint, as well as give an alias for the service instance.

— recipe constitutes a collection of services and mashups. A recipe also in-
cludes views for each of the mashup wiring. Some views are automatically
generated and others are customized by the user.

e mashup is a composition of one or multiple services. It comprises a col-
lection of wiring declarations. Each mashup translates into a composed
service which may be exposed externally and used for further mashups.

e mediate invokes a mediation declaration with instances of the data
elements to mediate. The result of a mediate call is a primitive type
instance or another data element instance.

e wiring which comprises two levels of granularities of connecting the
services that are part of a mashup: (1) :protocol is a top-level structure
of a mashup. It represents one or multiple operation wirings and steps
invocations. It also associates with views as specified in Section B3] and
(2) :operation is the wiring of one or multiple services’ operations.
Operation wiring includes the ability to invoke services’ operations in an
asynchronous fashion by automatically setting up callbacks.

e step constitutes one atomic step in a protocol mediation. A step can be
invoked multiple times as part of a protocol wiring. A step is invoked
by the step’s name as a method call.

A Domain-Specific Language for Web APIs and Services Mashups 19

— tag and tags allows users to annotate terms to the various components of a
Swashup recipe as well as data and api definitions. These types of tagging
allows for some level of comments and idiosyncratic semantics to the various
components.

For brevity, a complete formalization of our language in BNF (Backus-Naur
form) is not described in this paper.

3.3 Conventions

Following one of RoR’s main philosophy, namely, using conventions over config-
umtions% our Swashup DSL includes a series of conventions. The use of conven-
tions is meant to simplify the language’s usage and to make the resulting code
more compact.

— Naming are added to most statements as the first parameter and as a
Ruby symbol or string. Names use either a camel-case (e.g., :SomeDataEle-
ment) format or lower-case (e.g., :some mashup) using underscore to separate
words. The data and api require camel-case. Other language constructs ac-
cept either camel-case or lower-case with underscore, e.g., wiring constructs.

— Variables are always lower-case with underscore separating the words in the
variable’s name.

— Recipes when deployed are complete RoR Web applications with controllers
matching each of the mashup.

— Mashups are converted to a RoR Web application controller and every pro-
tocol wiring translates into an action for the Web application. This allows
the application to be exposed as a service as well as adding views.

— Views by RoR convention associate with a controller’s action and therefore
with a protocol wiring. Using an async parameter to operation wiring
allows the views to be created with AJAX JavaScript that can check back
with the controller for updated data and refresh the view’s content.

3.4 Examples

To illustrate the power of our DSL we now give a complete example. Briefly, our
example mashes the data and protocol of two available services: (1) Google’s
SOAP search Web service and (2) Yahoo! Flickr’s photo REST API. The main
purpose of our mashup is to allow users to search for a phrase or word using
the Google search service and display the top results. Additionally, we display
the top thumb nail photos associated with the searched words from Flickr by
matching the tags that the Flickr community has used for the shared photos.

Our mashup’s recipe is divided into four listings (Listings [Tl to [[4]), each
illustrating one aspect of the solution. Listing [l shows how we use the DSL’s
data construct to represent the data coming from Flickr (starting line [I]). The
APT definition starts at line

3 http://www.rubyonrails.org/

20 E.M. Maximilien et al.

Listing 1.1. Example Swashup data and api definitions
1 data :Photo do

member :url, :xml text
3 member :tags, [:string], :xml text
end
5 api :FlickrApi do
api method :find photos,
7 texpects => [{:tags => [:string]}],
:returns => [[:Photo]]

9 end

Listing [[2 shows the start of our Google search SOAP API and Flickr REST
API mashup recipe. We start by tagging the recipe in lines [l Next we use
the service construct to create a binding to the Flickr REST service, giving it
an alias name of £ and we would include similarly for all other services used.

The service construct unifies the different types of services supported in
our DSL. It includes type specific parameters, e.g., :wsdl for a SOAP service,
and type independent parameters, for instance, the :endpoint which is used for
SOAP and REST services and used to indicate the RSS or Atom feed URL. The
service’s :api parameter points to the defined API (Listing [[T]) for SOAP or
REST services and is implicit for RSS and Atom feeds (see Section 1)) However,
RSS and Atom feeds require a :entry parameter to indicate the data definition
for the expected entries of of the data feed.

Listing 1.2. Example Swashup recipe showing tag(s) and service(s) definitions

9 recipe :GoogleFlikcrRecipe do

tag ‘recipe’,

1 :synonyms => [‘example’, ‘exemplar’, ‘pattern’]

service :flickr service , :alias = :f
13 :type => :rest,

api => :FlickrApi,

15 :endpoint => ‘http://rest.flickr.com/api’

service for Google search service
17 # constants declarations,other service definitions ,$\1ldots$

end

Next, we illustrate how to define mediators, wirings, and steps. These are
shown in Listing Our extract tags mediator starts in Line 20 and takes a
string input and divides it into a set of keywords by first filtering them.

Each wiring is converted into a method that can be called in the context
of the recipe, e.g., search ‘flickr mashups’, however, the value added for the
creating wiring (besides the design values and potential for reuse) is the ability
to automatically make the wiring invoke operations in an asynchronous fashion.

A Domain-Specific Language for Web APIs and Services Mashups 21

This is achieved by either passing a Ruby block that is called back with the
result of the wiring when the operation completes or by passing a block or
Ruby method taking one parameter using the automatically generated setter
method named search callback=. The result of last invocation of a wiring is
also automatically added to an instance variable by the wiring name.

Listing 1.3. Example Swashup recipe and mashup
recipe :GoogleFlikcrRecipe do

19 # tag(s), tags, service(s), and CONSTANT(s)
mediator (: extract tags, :data) do |string|
21 keywords = |[]

string . split.each do |s]|

23 keywords << s unless NONKEYWORDS. include 7 (s)
end
25 return keywords
end
27 wiring (: find images , :operation, :async) do |words]|
Q@Qurls = []
29 words. each do |w]|
url = f.find photo(w).url
31 @urls << url unless urls.include?(url)
end
33 return Qurls
end

35 step :search and images do |string|

@results = search(string)
37 @keywords = extract tags(string)
@urls = find images (keywords)
39 end
other mashup (s)
11 end
end

Listing [[.4] completes our example recipe. It illustrates how different mashups
are added to a recipe by adding different protocol wirings. Each protocol
wiring can accept parameters as a Ruby block parameters and can make calls
to steps, mediators, and operation wirings. Importantly, each mashup can have
it’s protocol wirings exposed as SOAP, REST, RSS, or Atom services. This is
achieved using the expose operation construct. For RSS and Atom services the
protocol expose operation uses an :entry parameter which binds to a data
indicating the format of the RSS or Atom entry and instance variable that will
contain the updated entry data.

22 E.M. Maximilien et al.

Listing 1.4. Example Swashup recipe and mashup

recipe :GoogleFlikcrRecipe do
43 # tag, tags, service, and any CONSTANT(s)
mediator(s), wiring(s), and step(s)
45 mashup :spell search images mashup do |g, f|
tags [‘mashup’, ‘spell’]
a7 wiring (: images for keywords, :protocol) do |words]|

expose operation :soap,

49 cexpects => [{:keywords => :string}]
:returns => [[:Photo]]
51 find images (words)
end
53 wiring (:search and images, :protocol) do |string |

expose operation :atom,
55 centry data => : GoogleSeearchResult ,
rentries => Qresults ,
57 :atom metadata => [{:author => ‘Jane Doe’}]
spelled = spell search (string)
59 search and images (spelled)
end
61 end # mashup
end # recipe

63 end

3.5 Value of DSL

As mentioned in Section 3] our DSL enables mashup programming at a higher-
level of abstraction than frameworks supporting Web application programming.
This is primarily achieved by defining high-level constructs that facilitate mashup
creations. Specifically:

1. Uniform treatment of diverse services (REST, SOAP, RSS, and Atom). This
is especially useful for REST, RSS, and Atom services which do not have
standard machine readable definitions (such as WSDL for SOAP services).

2. Facilitate asynchronous operation calls. For each wiring operation you can
specify :async as an option which will add (via metaprogramming) all nec-
essary code to call methods asynchronously and deal with callbacks and so
on.

3. Uniform treatment of service data elements. This includes having a defini-
tion of the data elements passed and returned to the service constructs.
Additionally, our data construct help: (1) facilitate data mediation and reuse
and (2) facilitate service data caching

A Domain-Specific Language for Web APIs and Services Mashups 23

4. Uniform design for mashups. Using our language we give some structure
to the design of service mashups while also enabling the full support of a
modern language and framework for Web application development.

5. Integrate into RoR. First by using Ruby as the implementation language
(which makes RoR integration seamless) but also in how to expose a recipe
as a RoR Web application.

4 Implementation

Our Swashup platform is implemented completely in Ruby and RoR. We lever-
age the RoR framework by using and extending various aspects. Using Ruby’s
metaprogramming support and the rich view capabilities of the RoR platform
every recipe is converted into a Web application that can be customized to create
rich AJAX Web applications. In addition, every recipe’s mashup can be exposed
as a Web service (SOAP, REST, RSS, or Atom). This is achieved using the DSL
constructs and a series of conventions.

Our metaprogramming approach is enabled using a series of class and object
templates for the different constructs of our DSL. For instance, each data con-
struct is translated into three classes: (1) a ROXMLH class to enable parsing and
generation of XML; (2) an ActiveRecord class to allow the data element to be
cached in a relational database; and (3) a Ruby class that seamlessly aggregates
the other two classes’ functionalities.

For each recipe we generate a full RoR Web application with a controller class
for each mashup. Each api construct translates into a RoR Action WebService
API classes that make use of the data classes. We extend the RoR classes to deal
with REST and other types of services. Each service construct translates into
an object that proxies the service it binds. The proxy exposes the api interface
and is adjusted for each type of service supported.

The mediator and operation wiring translate into Ruby methods that are
added to amodule created for each recipe. This module includes the Swashup plat-
form modules and is included itself into the generated controller classes for each of
the mashup constructs. Finally for each mashup we also generate an API class with
apimethod for each protocol wiring that includes an expose operation construct
call. This is how a mashup is exposed as a service.

For each protocol wiring we generate the following view related artifacts:

1. A partial view that includes an HTML form for the parameters of the pro-
tocol wiring. If the protocol wiring does not have parameters then no
partial view is generated. Using Ruby and ActiveRecord conventions we use
text fields for strings, numbers, and data fields marked xml attribute; and
we use an HTML form for fields that point to other data element using
xml object.

2. An RHTML template view with the name of the protocol wiring that in-
cludes the partial views and with some default text to indicate that this view
associates with the action and needs to be customized.

* http://roxml.rubyforge.org

24 E.M. Maximilien et al.

3. An action method in the generated mashup controller class that uses the data
from the partial view (if any is present) to call the protocol wiring method
and displays the view page.

4.1 Details

We achieve uniform data and service and api descriptions by extending the
RoR platform and using a series of conventions when describing services. First,
the service data are described by using the XML schema. For SOAP services this
schema is part of the WSDL and for REST, RSS, and Atom it can be inferred,
by the human designer, from service’s documentation, or from example input
and output messages. The representation of the api for a service depends on the
service’s type.

— SOAP services are expected to have an associated WSDL which makes the
API definition somewhat automatic. Each SOAP portType maps to an api
definition. Each operation in a portType maps to an apimethod in the
associated api and uses the input messages as expects parameters and out-
put messages for the returns hash B. The input and output message’s XSD
types translate one-to-one to a data definition. The service’s endpoint
parameter maps to the SOAP endpoint in the WSDL’s service section.

— REST services require additional conventions, especially since REST services

do not have associated standard description languages. Each REST service
specifies its endpoint as the root URI that is common across all of its oper-
ations. For instance, we use http://api.evdb.com for the Eventful’s API
since all REST operations have this root URI in common. The apimethod
for a REST api definition can also take a third :httpmethod parameter to
specify either if this operation should be an HTTP :get (default), :post,
:put, or :delete.
REST operations use a simple convention to convert the path into a Ruby
method. For path names that do not contain the underscore character (i.e.,
“7) in the operation’s path elements translate into a Ruby method that uses
underscore to separate its sections (if any). For instance, the path ‘search/-
customer’ translates into the operation named ‘search customer’. If the path
contains the underscore character then it is assumed that the path section
translates into two underscores when converting to a Ruby method. For
instance, the path ‘searchall/customers’ translates into the Ruby method
‘search all customers’.

— RSS and Atom services follow the same api so it never needs to be speci-

fied. Figure 2l shows the UML class diagram for Atom services showing the
operations available for any Atom service.
Since RSS and Atom services are feeds that contains recurring elements, the
type of the element must be specified in the service construct. That type
is specified as a data construct which uses its ActiveRecord part to enable
caching of the feed’s data entries.

5 A Ruby hash is equivalent to maps or dictionaries in other languages.

A Domain-Specific Language for Web APIs and Services Mashups 25

<<data>>
1 AtomMetadata

{ + author : String <<xml_text>>
51 + date : String <<xml_text>>

<<api>> + link : String <<xml_text>>

o ?meAE . Entry contains attributes matchi
+endpoaint : String x| <<data>> | __1 Atom feed entry. This may contain
+metadata : AtomMetadata Entr other data elements as well.

+ entries : Entz

Fig. 2. Atom service API UML class diagram

5 Discussion

The Swashup DSL gives a high-level abstraction and language to create service
mashups. Our initial implementation leverages and extends the RoR framework
to create a set of tools that facilitate mashup creation as well as management.

5.1 Related Works

We divide related works into two main categories: mashup tools and frameworks
and service compositions and service workflows.

Yahoo! Pipes [is an example of a mashup tool available on the Web. In
Yahoo! Pipes, services (primarily RSS and Atom data services) can be ‘piped’
together (a la UNIX pipes) to create more complex data composition mashups.
IBM’s QEDWiki [is another example of a mashup tool. However, unlike Yahoo!
Pipes, QEDWiki allows users to create widgets that access different services and
data sources. Using the wiki metaphor, QEDWiki aims to make the composi-
tion process iterative and collaborative. While similar in objectives, both Pipes
and QEDWIki differ from the Swashup platform, which focuses instead on giv-
ing common structures to mashups and creating a language to facilitate their
creation and sharing.

Since Swashup, at some level, is essentially a platform for services composition,
related works in services composition and workflows are important to note. BPEL
is a workflow language adapted for services—instead of orchestrating a flow
of activities, it orchestrates a flow of services [I]. Although BPEL has gained
currency as a services composition solution, it is not geared toward Ul-ready
situational applications and mashups.

5.2 Directions

While with the current Swashup DSL we are able to create recipes which en-
compass different types of services and somewhat complex data and protocol
mediation, there is a need to test our language and platform with even more
complex services and mediations. For instance, the types of mediations neces-
sary for back-end enterprise integration. For examples, services such as the ones
available in the SalesForce.com’s AppExchange §| platform.

5 http://pipes.yahoo.com
" http://services.alphaworks.ibm.com/qedwiki
8 http://www.salesforce.com/appexchange

26 E.M. Maximilien et al.

In addition to tooling enabling users of the Swashup platform to program
in our DSL, there is also a real need to directly facilitate the Ul customization
aspects of mashups. Currently, this is achieved using the RoR platform’s UT prim-
itives by using RHTML and AJAX library tags (e.g., prototype, script.aculo.us,
and others). One possible direction is to add support for Ul customization di-
rectly in our mashup DSL which could make recipes more complete at the point
of their creation.

Another direction is enabling the system and platform for collaboration [4].
We started in that direction by enabling the various components of a recipe to
be tagged with information. In addition we would like to explore adding directly
the ability to share, reuse, copy, restrict, and measure the effectiveness of recipes
in our tools. This may result in some changes to the DSL, especially in the area
of restricting access to recipes for instance. Additionally, with enough usage the
tags in the recipes may form a folksonomy, B which might help users discover
recipes and reuse them.

References

1. Curbera, F., Goland, Y., Klein, J., Leymann, F., Roller, D., Thatte, S., Weer-
awarana, S.: Business Process Execution Language for Web Services, Version
1.0 (2002), http://www-128.ibm.com/developerworks/library/specification/
ws-bpel/

2. Fielding, R.T.: Software Architectural Styles for Network-based Applications.
Ph.D. thesis, University of California, Irvine, CA (January 2000)

3. Goff, M.K.: Network Distributed Computing: Fitscapes and Fallacies. Prentice
Hall, Upper Saddle River, NJ (2003)

4. Tai, S., Desai, N., Mazzoleni, P.: Service communities: applications and middle-
ware. In: SEM-06. Proceedings of the 6th International Workshop on Software
Engineering and Middleware, Portland, OR, pp. 17-22 (2006)

9 http://en.wikipedia.org/wiki/Folksonomy

http://www-128.ibm.com/developerworks/library/specification/ws-bpel/
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/

	A Domain-Specific Language for Web APIs and Services Mashups
	Introduction
	Organization

	Background and Architecture
	What Are Mashups?
	Mashup Implementation Approaches
	Ruby on Rails
	Architecture Overview

	Swashup DSL
	What Are DSLs?
	Language Overview
	Conventions
	Examples
	Value of DSL

	Implementation
	Details

	Discussion
	Related Works
	Directions

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

