Grid Application Fault Diagnosis Using
Wrapper Services and Machine Learning

Jiirgen Hofer and Thomas Fahringer

Distributed and Parallel Systems Group
Institute of Computer Science, University of Innsbruck
Technikerstrasse 21a, 6020 Innsbruck, Austria
{juergen,tf}@dps.uibk.ac.at

Abstract. With increasing size and complexity of Grids manual di-
agnosis of individual application faults becomes impractical and time-
consuming. Quick and accurate identification of the root cause of failures
is an important prerequisite for building reliable systems. We describe a
pragmatic model-based technique for application-specific fault diagnosis
based on indicators, symptoms and rules. Customized wrapper services
then apply this knowledge to reason about root causes of failures. In ad-
dition to user-provided diagnosis models we show that given a set of past
classified fault events it is possible to extract new models through learn-
ing that are able to diagnose new faults. We investigated and compared
algorithms of supervised classification learning and cluster analysis. Our
approach was implemented as part of the Otho Toolkit that ’service-
enables’ legacy applications based on synthesis of wrapper service.

1 Introduction

A portion of todays applications used in High-Performance and Grid environ-
ments belongs to the class of batch-oriented programs with command-line in-
terfaces. They typically have long lifecycles that surpass multiple generations
of Grid and Service environments. Service Oriented Architectures and Web ser-
vices became a widely accepted and mature paradigm for designing loosely-
coupled large-scale distributed systems and can hide heterogeneity of underlying
resources. As re-implementation of application codes is frequently too expensive
in time and cost, their (semi-)automatic adaptation and migration to newer envi-
ronments is of paramount importance. We suggest an approach with tailor-made
wrapper services customized to each application. Mapping the functionality of
applications to wrapper services requires not only to map input and output ar-
guments, messages and files but also to ensure that the applications behavior
is well-reflected. For instance the occurrence of faults may lead to errors that
need to be detected, diagnosed propagated via the wrapper services interface,
such that clients may react appropriately and handled to prevent larger sys-
tem failures. In order to recover from failures root causes have to be identified,
e.g. unsatisfied dependencies, invalid arguments, configuration problems, expired
credentials, quota limits, disk crashes, etc. With increasing complexity of Grids

B. Krémer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 233 2007.
© Springer-Verlag Berlin Heidelberg 2007

234 J. Hofer and T. Fahringer

- growing in size and heterogeneity - this tasks becomes increasingly difficult.
Several abstraction layers conveniently shield the user from lower level issues.
However these layers also hide important information required for fault diagno-
sis. Users or support staff are forced to drill down through layers for tracking
possible causes. For larger number of failures it then quickly becomes impractical
and time-expensive to manually investigate on individual causes by hand.

2 Diagnosing Application Faults

Normally software has been extensively tested before released to production.
Nevertheless in large-scale deployments and complex environments such as Grids
applications are likely to fai%. Common reasons are improper installations or
deployments, configuration problems, failures of dependent resources such as
hosts, network links, storage devices, limitations or excess on resource usage,
performance and concurrency issues, usage errors, etc. Our goal is to provide
a mechanism to automatically identify and distinguish such causes. The fault
diagnosis process consists of the tasks of error detection, hypothesizing pos-
sible faults, identification of actual fault via analysis of application, applica-
tion artifacts and environment and finally reporting of diagnosis results. Two
applications are used throughout this paper: the raytracer POV-Ray [29], an
open-source general-purpose visualization application and the GNU Linear Pro-
gramming Toolkit (GLPK) [28] a software package for solving linear program-
ming and mixed integer programming problems.

2.1 Building Fault Diagnosis Models

Instead of requiring a full formal system specification we provide a set of easy-
to-use elements for building fault diagnosis models. They allow developers to
describe cases in which their programs may fail and users to describe cases in
which their programs have failed in the past. As no knowledge on formal system
specification techniques is required we believe our approach is practical and more
likely to be applied in the community of Grid users. The diagnosis models are
rule-based case descriptions that allow services to perform automated reasoning
on the most-likely cause of failures of the wrapped application. Results are then
reported to clients. Such diagnosis models are constructed as follows.

1. Indicators are externally visible and monitorable effects of the execution of
a certain application. We distinguish boolean-valued predicates, e.g. the ex-
istence of a certain file or directory, indicators returning strings (StringInd)
such as patterns in output, error or log-files, indicators returning reals (Re-
allnd) and indicators performing counting operations (CountInd) such as
the number of files in a directory. A few examples are given below

! In accordance with Laprie [I8] we define a fault as the hypothesized or identified
cause of an error, e.g. due to a hardware defect; an error as a deviation from the
correct system state that, if improperly handled or unrecognized, may lead to system
failures where the delivered service deviates from specified service.

Grid Application Fault Diagnosis 235

(3 file) file extract stdout(regexp) extract real stdout(regexp)
(3 file)dir extract file(file, regexp) extract real stderr(regexp)
(Iregexp)pattern stdout count pattern stdout(regexp) exitCode()
(3file)((3regexp)pattern file) count files(regexp) wall time()

Next to the set of predefined indicators we allow the use of custom user-
provided indicators specific to certain applications, e.g. to verify functional
correctness via result checks, error rates, data formats, etc. In some cases
runtime argument values are needed as parameters for indicators, e.g. to
refer to an output file named via a program argument. Formally we use the
O(argname) notation to refer to runtime arguments.

. A symptom is a set of indicators describing an undesirable situation, more
concretely the existence of a fault. Symptoms are comparisons of indicators
with literal values or comparative combinations of indicators evaluating to
boolean values.

symptom b CountInd|RealInd{< | |
symptom b CountInd|ReallInd{< | |
symptom = StringInd{= | #}{s|s € string

symptom = StringInd{= | #}StringInd
symptom = Predicate|—symptom|symptom A symptom

>Hr|r € R}

<l=|=>|
<| > | >}CountInd|Reallnd
}

Examples for symptoms would be if a coredump file was created, occurrence
of the string 'Segmentation fault’ in stderr, programs exit code other than
zero, output values above some threshold, number of output files below a
certain number, etc.

Rules built on the basis of symptoms allow to reason about fault types. We
define rules as implications of the form (s; Asa A...As,) = u. Example
diagnosis rules for the POV-Ray application are given below.

exit=0 AT file(O(sceneout)) A —~Ipattern stdout(”Failed”) = done successful
exit=249 = failed illegal argument
exit=0 AT file(O(sceneout)) A filesize(O(sceneout)) =0 A
Ipattern stdout(”Disk quota exceeded.”) = failed quota
exit=0 A filesize(O(sceneout)) = 0 = failed disk quota exceeded
exit=0 A3 file(O(sceneout)) A
Ipattern stdout(”File Error open”) = failed file writing error
exit=0 Adpattern stdout(”Got 1 SIGINT”) = failed received sigint
exit=137 Adpattern stdout(”Killed”) = failed received sigkill
gramExit=1 A3pattern gram log(’proxy is not valid long enough’) = failed proxy expires soon
gramExit=1 Adpattern gram log(’couldn’t find a valid proxy’)A
Ipattern gram log(’proxy does not exist’) = failed no proxy
gramExit=1 Adpattern gram log('proxy does not exist’) = failed proxy expired

E.g. the second rule states that the return code 249 unambiguously iden-
tifies an illegal argument fault. Failures caused by exceeded disk quota are
recognized by an apparently successful return code however in combination
with a zero-size outputfile and a certain error message.

. Finally a set of rules builds a fault diagnosis model. The rules are meant to
be evaluated post-mortem, i.e. immediately after the execution terminated,
in the specified ordering. If no rule evaluates to true, the fault cannot be
identified. Depending on the desired behavior the diagnosis can continue
the evaluation if multiple rules are satisfied. The fault is then considered to
belong to all found classes.

236 J. Hofer and T. Fahringer

3 Creating Diagnosis Models Using Machine Learning

With increasing utilization both variety and frequency of faults will increase.
Our hypothesis is that given a set of past classified fault events diagnosis models
can be learned that are able to correctly classify even unseen novel faults. Fault
events are analyzed using he superset of the indicators to build a comprehensive
knowledge as trainingset for machine learning. For this purpose an initial set of
services is created and deployed. At runtime each fault is analyzed to form a
fault event. We investigated on two different learning techniques. In supervised
classification learning each fault event in the trainingset has be classified a priori.
This is a manual step done by users, service provider or developers. Now the
classified training set is used as input to the machine learning procedure that
creates new models which are then used to classify faults. The second technique
is cluster analysis where the faults do not have to be tagged with class labels
but the algorithm partitions the trainingset into groups of fault events that have
some degree of similarity.

In order to build the knowledge base each fault incidence has to be analyzed
using the superset of indicators. For each detected fault event a tuple of the
form (I UT) x (S UF)) is generated and added to a repository. The tuple con-
tains all relevant information characterizing a certain fault incidence specific to
a given application. A set of boolean or numeric indicators i; € I such as exis-
tence, modification, size, open for reading/writing as detailed above and a set of
boolean indicators t; € T whether certain regular expression-based patterns (er-
ror messages, codes) can be found, are applied to a given set of artifacts created
during applications runs. Those artifacts include the standard input/output files
associated with each process of and application and the execution environment
by s; € S, i.e. stdout, stderr, system log and log files of resource management
system and application-specific input and output files f; € F'. The latter set has
to be provided by the user and may be a function of the program arguments.

We selected a set of six well-known supervised classification techniques and
three different cluster analysis algorithms [621132] listed in Table[I]and Table[2
The techniques were chosen based on their capabilities to analyze all aspects of

Table 1. Overview on Utilized Classification Techniques

Supervised Classification Learning

OneR (OR) is an algorithm that produces one-level classification rules based on single
attributes. A classification rule consists of an antecedent that applies tests
to reason about the consequent.

DecisionStump (DS) produces simple one-level decision trees. Decision trees follow the divide-
and-conquer principle where the problem space is partitioned by outcome
of tests until all examples belong to the same class.

Logistic (LG) is a statistical modeling approach based on logistic regression where coeffi-
cient are estimated using the maximum log-likelihood method.
BayesNet (BN) is a statistical modeling approach producing Bayesian networks in forms of

directed acyclic graphs with probabilities over relevant attributes.
DecisionTable (DT) denotes an algorithm that produces a table consisting of relevant attributes,
their values and the prediction class.
J48 is an improved version of the C4.5 decision tree machine learning algorithm.
in a decision tree each internal node represents a test on an attribute,
branches are the outcomes and leaf nodes indicate the class

Grid Application Fault Diagnosis 237

Table 2. Overview on Utilized Cluster Analysis Techniques

Cluster Analysis

k-means (SK) the number of clusters being sought is defined in the parameter k. then k
points are chosen as random cluster centers and instances assigned to closest
center. then the new mean is calculated for each cluster. this is repeated
until the cluster memberships stop changing.

expectation- same basic procedure as k-means algorithm, but calculates the probabilities

minimization (EM) for each instance to belong to a certain cluster, then calculate the statistical
distribution parameters

FarthestFirst (FF) implements the Farthest First Traversal Algorithm [7] which is a heuristic
for approximation of cluster centers designed after procedure of k-means

our trainingsets, their acceptance within the machine learning community and
past experience of the authors for similar problems.

4 Implementation

In previous work we discussed the semi-automatic transformation of legacy ap-
plications to services for integration into service-oriented environments [SI9UT0].
We focused on resource-intensive, non-interactive command-line programs as
typically used in HPC and Grid environments and presented the Otho Toolkit,
a service-enabler for Legacy Applications LA. Based on formal LA descriptions
it generates tailor-made wrapper services, referred to as Executor Services X'S.
They provide a purely functional interface hiding technical details of the wrap-
ping process on a certain execution platform, the Backend BE. Input and out-
put arguments, messages to standard input and output, consumed and produced
files are mapped to the XS interface. Multiple views on the same LA can be
defined to reflect different needs or to ease usage of complex interfaces. The
Otho Toolkit generates wrapper service source codes including a build system.
Multiple service environments can be targeted and the services may be equipped
with application-specific features and generic extensions.

Wrapper services, and especially Executor Services XS synthesized by the
Otho Toolkit, already possess detailed knowledge on the application structure
and behavior, control its execution and lifecycle and are aware of input and
output arguments, messages and files. Moreover they have the necessary prox-
imity to the execution host for fault investigation. Therefore we chose to address
and implement the fault diagnosis as part of the Otho Toolkit and the XS it
creates. All indicators were implemented as generic Bash and Python scripts.
We extended Otho Toolkits £A4 description to include fault diagnosis models.
The Otho Toolkit then generates a custom diagnosis program that evaluates
each case using the generic indicator scripts immediately after termination of
the application. The diagnosis program evaluates the diagnosis model rule by
rule. Indicator results are cached to prevent redundant evaluations. If the XS
uses job submission to a resource management systems the £A and the fault
diagnosis script are submitted as one job to ensure execution on the same re-
source. In addition to the formal notation introduced before we developed a
simple XML-based syntax for representing fault diagnosis models.

238 J. Hofer and T. Fahringer

<fdiag>
<cause name="successful" status="DONE">
<exitCode value="0" />
<fileExists name="|sceneout|" />
<not><regexpStdout value="Failed" /></not>
</cause>
<cause name="illegal argument" status="FAILED">
<exitCode value="249" />
</cause>
</fdiag>

This shortened example lists two root causes each named and tagged with a post-
execution status value. A set of indicators sequentially evaluated with logical
conjunction can be given. Elements may be negated by adding a 'not’ tag.

@ Povrayimage (executePovraylmageRequestType)
createResource
= £l resourceld string
[¥linput | [requestElement [€] createResourceRequest i
(€] worldir string
P €]
<Noutput | [responseElement | [€] createResourceResponse & sceneini string
LA [€] scenepov string
P £ C
Dinput I 6] exec wes[B] sceneout string
Gouput | [r [E] exec] width =
4 getStatus [€] hei
ght int
Glinput | I [=] gerStawsk [&] format PovraylmageFormat e H
fyimeag UNSUBMITTED '
Woutput | [P r I [&] getStatusR [e] antialiasing boolean SUBMITTED H
% getFaultDiagnosis ACTIVE H
P) SUSPENDED
Blinpur | 7 [2] getFaultDiag (getStatusRequestType)
loutput | [P responseElement | [€] getFaultDiagnosisResponse = (Flresourceid string
4 getStOur
= " s)
Blinput | Fr & getsedo (getStatusResponseType!
&l output | [7 responseElement [€] getStdOutResponse (6 staws Staws
[T
dinput | [requestElement €] getstdErrRequest FAILED_DISKQUOTA]
Diinp A El g i (getFaultDiagnosisRequestType) iRl e 4
{Noutput | [F responseElement [€] getStdErrResponse T 2 it
— - e {fl resourceld string FAILED_SIGINT !
lestroyResource
FAILED_ILLEGALARGUMENT
linput | I7 requestElement [€] destroyResourceRequest }fgmfaueringnnswsResuunseTvum| FAILED. NOPROXY '
<l outpur | I7 responseElement | [€] destroyResourceResponse ‘ [¢] faultclass FaultClass FAILED_PROXYEXPIRED :
4 suspend

Fig. 1. XS Interface Adaptations for providing Fault Diagnosis

The fault diagnosis capabilities and states need to be represented in the service
interface. Figure [l shows a partial graphical rendering of the services WSDL
interface [31] of synthesized wrapper services for the POV-Ray application and
the Axis2 [27] XS platform. The request type contains the input argument values
for the wrapped LA. Operations allow to query service state and fault diagnosis
both of which are represented by enumeration values. Obviously the interface
differs depending on the service platform used. Axis2 webservice operations for
instance carry a job identifier whereas WSRF GT4 services rely on stateful
resource properties.

5 Evaluation

For evaluation we used our implementation based on the Otho Toolkit and the
XS it synthesizes. The machine learning techniques described above were im-
plemented as part of XS using an existing machine learning library [30]. We

Grid Application Fault Diagnosis 239

deployed both case study applications on the AustrianGrid [26] and injected sev-
eral types of faults. The resulting training set was used in its raw state (’failed
noise’), in a cleaned state (*failed clean’) and to allow our classifier to also identify
correct behaviour with added successful runs ('failed/succ clean’).

The performance or accuracy of classifier is commonly evaluated in terms
of their success rates which is the proportion of true and false predictions. An
important issue in classification is the question about which set of instances to
learn from and which set to evaluate against, as classifiers tend to show better
performance if evaluated against the training set than against unseen examples.
Therefore we applied three evaluation techniques. First we used the full dataset
(’ts’) for learning and evaluation. Second we used two-third for learning one-third
for evaluation (’66-sp’). Third we used 10-fold cross-validation (’10-cv’) where
metrics are averaged from ten iterations with 9/10 of examples used for training
and 1/10 for evaluation. The set of examples not used for training but to which
the classifier is tested against represent unseen fault cases. As we had all fault
incidences tagged with class labels the evaluation of the clustering techniques
was straightforward. During the learning phase we ignored the classes and then
compared the instances in a cluster with their labels counting wrong assignments.

Clustering a trainingset with k& attributes spawns a k-dimensional space in
which aggregation of examples are to be found. Figure 2l depicts a 2-dimensional
subspace with two indicators used in the cluster analysis for faults of the POV-
Ray application, namely its exit code and whether a certain pattern occurs in
stdout. Elements have been slightly scattered for visualization purposes. The
plot nicely illustrates four clusters, three of which are homogeneous. Elements
aligned at return code of 137 indicate a ’failed sigkill’ or a failed sighup’ signal,
depending on the outcome of the second indicator. The ’failed illegalargument’
examples group in this particular view around a return code of 249. Contrarily
the other fault incidences cannot be clearly assigned to clusters in this subspace.
Figure [contains parts of the results of our experiments with the classification
learning. Vertical axes show the accuracy. In general it can be observed that pre-
diction accuracy for the GLPK application case study were better than those for
the POV-Ray application in most cases. The overall quality apparently strongly

POV-Ray Fault Diagnosis Cluster Example

fri& & A

F_SIGKILL
F_ILLARG
. FfSISG(Ia—iUP
F_SIGINT
SE FpiskQu
Tr SUCCESS |

indicator([2]: pattern_stdout(killed)
O MmO X X +

0 137 249
indicator[1]: exit code

Fig. 2. Visualization of 2-Indicator subspace of SimpleK Means Clustering

240

J. Hofer and T. Fahringer

POV-Ray Prediction Accuracy: OR

L f/s clean ——
f noise ---x---

ts 10-cv

66-sp

POV-Ray Prediction Accuracy: BN

k- —-»—-——»—-——x—»—»—»—»—

: ey
L f/s clean ——

C fnoise ——x---
ts 10-cv oo

GLPK Prediction Accuracy: OR

L f/s clean —+—
L f noise ---x---
...
Lo Hemee

| Ty
ts 10-cv 66-sp

GLPK Prediction Accuracy: BN

B f/s clean —+—
I~ f‘noise X
ts 10-cv 66-sp

POV-Ray Prediction Accuracy: DS

B f/s clean —+—
i fnoise ———x-—-
i [O =
.)
ts 10-cv 66-sp

[T
[T ——ex
L fls clean ——

C fnoise -~
ts 10-cv oosp

GLPK Prediction Accuracy: DS

[f/s clean —+—

i f noise ———x--—-

[e AR .
T X

o 10-cv 66-sp

| T Hmmmmmmmmmm T x
B f/s clean —+—

B f‘noise X
ts 10-cv 66-sp

POV-Ray Prediction Accuracy: Logistic

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.9
0.8

0.6
0.5
0.4
0.3
0.2

[T e
B f/s clean —+—

B f‘noise e
ts 10-cv 66-sp

POV-Ray Prediction Accuracy: J48

- B e BT X
r f/s clean —+—

- f‘noise X
ts 10-cv 66-sp

GLPK Prediction Accuracy: LG

I f/s clean —+—
B f‘noise X
ts 10-cv 66-sp

GLPK Prediction Accuracy: J48

I N
K f/s clean —+—

I fnoise ——x—
ts 10-cv 66-sp

Fig. 3. Evaluation of Machine Learning Algorithms per Algorithm

depends not only on the machine learning technique but also on the concrete ap-
plication, the indicators used and the corresponding structure of the training set.
The second observation is that even on the cleaned datasets the algorithms OR,
and DS show significantly lower prediction accuracy than LG, DT, BN and J48.
For POV-Ray using 10-fold cross-validation DS has an accuracy of only 0.429
and OR of 0.635 on the succ/failed compared to an observed 0.837 lower bound
accuracy for the other algorithms. Both methods produce rather simplistic clas-
sifier clearly unsuited to capture complex fault events. Nevertheless for trivial
diagnostics, e.g. exit code unambiguously identifies fault case, they may be use-
ful as part of meta-models. The remaining four algorithms LG, DT, BN and J48
show comparable performance without significant differences among each other.
For the cleaned datasets 'failed /succ cleaned’ and ’failed cleaned’ all four provide
outstanding performance, correctly classifying up to 100% of unseen instances.
For instance for the POV-Ray application J48 has on the ’failed uncleaned’ raw
dataset slightly better performance of 0.898 compared to 0.837 of DT and 0.857
of BN and LG on average on the unseen data. During evaluation we observed

Grid Application Fault Diagnosis 241

POV-Ray: Incorrectly Clustered Instances GLPK: Incorrectly Clustered Instances
0.6 - 06
noise KX noise KXXx
nonoise nonoise FXEEL
05 done 0.5 done
E 04 | g 04 |
£ £
2 2
o 03[o 03F
= =
© ©
° 0.2 | ° 0.2 |
0.1 0.1 - 5
b3S
0 0
clustering algorithm clustering algorithm

Fig. 4. Evaluation of Clustering Algorithms

that the statistical models BN and LG tend to capture also noise, whereas J48
tree pruning prevented such undesired behavior.

Figure @ plots some of the results of our evaluation on the clustering algo-
rithms. The plots compares the relative number of incorrectly clustered instances
for the algorithms SK, EM and FF for three trainingsets. In general the relative
number of errors varied between 0 and 0.5. On the POV-Ray cleaned dataset
the EM algorithm was able to perfectly assign all faults to the correct classes.
Lower error rates varied up to 0.2. As with our classification algorithms the
noisy trainingsets caused major disturbance with error rates between 0.4 and
0.5. In our experiments we could not identify a clustering algorithm significantly
outperforming the others. Nevertheless clustering techniques proved to provide
good suggestions and valuable guidance for building groups of similar faults.
Such otherwise difficult to acquire knowledge and understanding on the nature
of faults of applications in a particular setting are of great help to people de-
signing fault-aware application services.

6 Service Evolution for Fault Diagnosis Improvement

The process of lcontinuous diagnosis improvement as realized with the Otho
Toolkit and XS is depicted in Figure [Initially a set of services is created
and deployed by the Otho Toolkit. At runtime each fault is analyzed, tagged
and added to the knowledge base. This is a manual step done by users, service
provider or developers. Now the classified training set is used as input to the
machine learning procedure that creates new models which enable the classifica-
tion of unseen fault events that are similar to past faults. The updated or newly
learned model is then fed into the Otho Toolkit that creates and redeploys an
improved revision of the XS. Additional events are then again collected, learning
is re-triggered, followed by synthesis and redeployment and so forth. As the XS
evolves along this cycle its capabilities to diagnose application faults correctly
are continuously improved.

242 J. Hofer and T. Fahringer
- Soltroconfiguraton wpeated nput [rane
N Otho Toolkit ~ f&---------- A
[. ETHENF
1, synthesize and replace IF G AND
1 v ~
request ! N
rm s i xs
Identified . ~
XS Client |@===-f-=m oo ,e:r;:"'f trigger < _ !
% [' re-learning N
return results : 4 Learning Fault
yes | : Diagnosis Model
Execution successful ; 4
Management STENG add class label

Control - | IF D AND
-
’]

an

ETHEN F
. IF GAND
-

/
/
,/ leamn

XS
Provider

Fault 7 Y A classify —
BE Detection Unidentified 3 ____ 1. _______ D PR i
Fault add classification hints
. . . . il 1 Il
..ll

Fig. 5. Service Evolution for Fault Diagnosis Improvement

7 Related Work

Monitoring and failure detection systems [T2/T4125] are important Grid compo-
nents however they discriminate faults no further than into generic task-crashes
and per-task exceptions. On the other hand a variety of systems has been sug-
gested for building fault tolerant applications and middleware [I3/16] which could
benefit from accurate and detailed diagnosis of faults and their causes. Common
approaches for fault diagnosis start from formal system specifications [TJI522]
or from its source code [4I17] to derive test cases. Instead neither source code
availability nor a formal system specification are prerequisites to our approach.
Fault diagnosis in Grids however still is a largely manual time-consuming task.
Efforts include an approach for fault localization through unit tests [5] that
however requires manual implementation of test cases and frameworks for verifi-
cation of software stacks and interoperability agreements [24]. Instead we use a
model-based description and to automatically generate diagnosis code. The use
of machine learning has been successfully applied to many kinds of different clas-
sification problems [3I23], e.g. to classify software behavior based on execution
data [2] or to locate anomalies in sets of processes via function-level traces [20].
The use of Bayesian Belief Networks for fault localization was proposed [19] but
provides neither implementation nor experimental evaluation.

8 Conclusion

With increasing size and complexity of Grids manual application fault diagnosis
is a difficult and time-expensive task. We developed a model-based mechanism
allowing users, support staff or application developers to formulate precise, rule-
based fault diagnosis models evaluated immediately after program termination.
Such diagnosis models are used by services to provide accurate and reliable re-
ports. Our approach was implemented as part of application wrapper services
synthesized by the Otho Toolkit. In addition we suggest the use of machine learn-
ing to semi-automatically create fault diagnosis models based on past classified

Grid Application Fault Diagnosis 243

fault events. Our evaluation showed that the learned diagnosis models were able
to classify novel fault situations with high accuracy. The overall performance of
the learned classifier was good but depends on the quality of the dataset. We
observed significant perturbation caused by noisy or falsely labeled examples.
Ideally developers, service providers and knowledgeable users therefore regu-
larly remove unclean examples from the training set. Our results motivate us to
continue with the presented work. We plan to use a larger set of applications
to get access to a larger variety of faults. Moreover we intend to investigate on
overheads and scalability of our fault diagnosis and machine learning approach.

Acknowledgements

This paper presents follow-up work to a preceding workshop contribution [I1].
The presented work was partially funded by the European Union through the IST
FP6-004265 CoreGRID, IST FP6-031688 EGEE-2 and IST FP6-034601 Edu-
tain@Grid projects.

References

1. Abrial, J.-R., Schuman, S.A., Meyer, B.: A specification language. In: McNaughten,
R., McKeag, R.C. (eds.) On the Construction of Programs, Cambridge University
Press, Cambridge (1980)

2. Bowring, J., Rehg, J., Harrold, M.J.: Active learning for automatic classification
of software behavior. In: ISSTA 2004. Proc. of the Int. Symp. on Software Testing
and Analysis (July 2004)

3. Chen, M., Zheng, A., Lloyd, J., Jordan, M., Brewer, E.: Failure diagnosis using
decision trees. In: ICAC. Proc. of Int. Conf. on Autonomic Computing, York, NY
(May 2004)

4. Millo, R., Mathur, A.: A grammar based fault classification scheme and its appli-
cation to the classification of the errors of tex. Technical Report SERC-TR-165-P,
Purdue University (1995)

5. Duarte, A.N., Brasileiro, F., Cirne, W., Filho, J.S.A.: Collaborative fault diagno-
sis in grids through automated tests. In: Proc. of the The IEEE 20th Int. Conf.
on Advanced Information Networking and Applications, IEEE Computer Society
Press, Los Alamitos (2006)

6. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann,
San Francisco (2001)

7. Hochbaum, Shmoys,: A best possible heuristic for the k-center problem. Mathe-
matics of Operations Research 10(2), 180-184 (1985)

8. Hofer, J., Fahringer, T.: Presenting Scientific Legacy Programs as Grid Services via
Program Synthesis. In: Proceedings of 2nd IEEE International Conference on e-
Science and Grid Computing, Amsterdam, Netherlands, December 4-6, 2006, IEEE
Computer Society Press, Los Alamitos (2006)

9. Hofer, J., Fahringer, T.: Specification-based Synthesis of Tailor-made Grid Service
Wrappers for Scientific Legacy Codes. In: Grid’06. Proceedings of 7th IEEE/ACM
International Conference on Grid Computing (Grid’06), Short Paper and Poster,
Barcelona, Spain, September 28-29, 2006 (2006)

244

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

23.

24.

25.

J. Hofer and T. Fahringer

Hofer, J., Fahringer, T.: The Otho Toolkit - Synthesizing Tailor-made Scientific
Grid Application Wrapper Services. Journal of Multiagent and Grid Systems 3(3)
2007

élofer? J., Fahringer, T.: Towards automated diagnosis of application faults using
wrapper services and machine learning. In: Proceedings of CoreGRID Workshop
on Grid Middleware, Dresden, Germany, June 25-26, 2007, pp. 25-26. Springer,
Heidelberg (2007)

Horita, Y., Taura, K., Chikayama, T.: A scalable and efficient self-organizing failure
detector for grid applications. In: Grid’05. 6th IEEE/ACM Int. Workshop on Grid
Computing, IEEE Computer Society Press, Los Alamitos (2005)

Hwang, S., Kesselman, C.: A flexible framework for fault tolerance in the grid.
Journal of Grid Computing 1(3), 251-272 (2003)

Hwang, S., Kesselman, C.: Gridworkflow: A flexible failure handling framework for
the grid. In: HPDC’03. 12th IEEE Int. Symp. on High Performance Distributed
Computing, Seattle, Washington, IEEE Press, Los Alamitos (2003)

Jones, C.: Systematic Software Development using VDM. Prentice Hall, Englewood
Cliffs (1990)

Kola, G., Kosar, T., Livny, M.: Phoenix: Making data-intensive grid applications
fault-tolerant. In: Proc. of 5th IEEE/ACM Int. Workshop on Grid Computing,
Pittsburgh, Pennsylvania, November 8, 2004, pp. 251-258 (2004)

Kuhn, D.R.: Fault classes and error detection in specification based testing. ACM
Transactions on Software Engineering Methodology 8(4), 411-424 (1999)

Laprie, J.-C.: Dependable computing and fault tolerance: Concepts and terminol-
ogy. In: Proc. of 15th Int. Symp. on Fault-Tolerant Computing (1985)

Meshkat, L., Allcock, W., Deelman, E., Kesselman, C.: Fault location in grids us-
ing bayesian belief networks. Technical Report GriPhyN-2002-8, GriPhyN Project
2002

1(\/[irgo)rodskiy, A.V., Maruyama, N., Miller, B.P.: Problem diagnosis in large-scale
computing environments. In: Proc. of ACM/IEEE Supercomputing’06 Conference
(2006)

Mitchell, T.M.: Machine Learning. McGraw-Hill, Boston (1997)

. Ortmeier, F., Reif, W.: Failure-sensitive Specification - A formal method for finding

failure modes. Technical report, University of Augsburg (January 12, 2004)
Podgurski, A., Leon, D., Francis, P., Masri, W., Minch, M., Sun, J., Wang, B.:
Automated support for classifying software failure reports. In: Proc. of 25th Int.
Conf. on Software Engineering, Portland, Oregon, pp. 465-475 (2003)

Smallen, S., Olschanowsky, C., Ericson, K., Beckman, P., Schopf, J.M.: The inca
test harness and reporting framework. In: Proc. of the ACM/IEEE Supercomput-
ing’04 Conference (November 2004)

Stelling, P., Foster, 1., Kesselman, C., Lee, C., von Laszewski, G.: A fault detection
service for wide area distributed computations. In: Proc. 7th IEEE Symp. on High
Performance Distributed Computing, pp. 268-278. IEEE Computer Society Press,
Los Alamitos (1998)

. AustrianGrid, http://wuw.austriangrid.at

. Apache Axis2, http://ws.apache.org/axis2/

. GNU Linear Programming Kit (GLPK), http://www.gnu.org/software/glpk/

. POV-Ray, http://www.povray.org

. Weka, http://www.cs.waikato.ac.nz/ml/weka

. Web Service Description Language (WSDL), http://www.w3.org/TR/wsdl

. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-

niques with Java Implementations. Morgan Kaufmann, San Francisco (2000)

http://www.austriangrid.at
http://ws.apache.org/axis2/
http://www.gnu.org/software/glpk/
http://www.povray.org
http://www.cs.waikato.ac.nz/ml/weka
http://www.w3.org/TR/wsdl

	Grid Application Fault Diagnosis Using Wrapper Services and Machine Learning
	Introduction
	Diagnosing Application Faults
	Building Fault Diagnosis Models

	Creating Diagnosis Models Using Machine Learning
	Implementation
	Evaluation
	Service Evolution for Fault Diagnosis Improvement
	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

