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Abstract. Continuous process improvement (CPI) may require a BPEL process 
to be split amongst different participants. In this paper, we enable splitting 
standard BPEL - without any extensions or new middleware. We present a 
solution that uses a BPEL process, partition information, and results of data 
analysis to produce a BPEL process for each participant. The collective 
behavior of these participant processes recreates the control and data flow of the 
non-split process. Previous work presented process splitting using a variant of 
BPEL where data flow is modeled explicitly using ‘data links’. We reuse the 
control flow aspect from that work, focusing in this paper on maintaining the 
data dependencies in standard BPEL.  
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1 Introduction 

When outsourcing non-competitive parts of a process or restructuring an organization, 
it is often necessary to move fragments of a business process to different partners, 
companies, or simply physical locations within the same corporation. We provided a 
mechanism in [8] that takes a business process and a user-defined partition of it 
between participants, and creates a BPEL [16] processes for each participant such that 
the collective behavior of these processes is the same as the behavior of the unsplit 
one. The process model given as input was based on a variant of BPEL, referred to as 
BPEL-D, in which data dependencies were explicitly modeled using ‘data links’. 

Our work in this paper aims to study splitting a process specified in standard 
compliant BPEL, in which data dependencies are – by definition – implicit. We want 
to do so while maintaining transparency and without requiring additional middleware. 
Transparency here means that (1) the same process modeling concepts/language are 
used in both the main process and the processes created from splitting it; (2) process 
modifications made to transmit data and control dependencies are easily identifiable 
in these processes, as are the original activities. This enables the designer to more 
easily understand and debug the resulting processes, and enables tools to provide a 
view on each process without the generated communication activities.  
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Data analysis of BPEL processes returns data dependencies between activities. On 
a cursory glance, it seems that it would provide enough information to create the 
necessary BPEL-D data links. In fact, that was the assumption made in [8] when 
discussing how the approach could be used for standard BPEL. While for some cases 
that would be true, section 2 will show that the intricacies of the data sharing behavior 
exhibited by BPEL’s use of shared variables, parallelism, and dead path elimination 
(DPE) in fact require a more sophisticated approach. DPE [16] is the technique of 
propagating the disablement of an activity so that downstream activities do not hang 
waiting for it. This is especially needed for an activity with multiple incoming links, 
which is always a synchronizing join.  

Our work explains the necessary steps required to fully support splitting a BPEL 
process based on business need without extending BPEL or using specialized 
middleware. A main enabler is reproducing BPEL’s behavior in BPEL itself.  

2 Scenario and Overview 

Consider the purchasing scenario in Figure 1: It provides a 10% discount to members 
with ‘Gold’ status, a 5% discount to those with ‘Silver’ status, and no discount to all 
others. After receiving the order (A) and calculating the appropriate discount (C, D, or 
neither), the order status is updated (E), the order is processed (F), the customer 
account is billed (G), and a response is sent back stating the discount received (H). 
We will show how data is appropriately propagated between participant processes, 
created by splitting this example, using only BPEL constructs.  

 

 
 Sample: an ordering process that provides discounts to Gold and Silver customers   

Activity F reads data from A and E. In BPEL-D [8], data links from different 
activities were allowed to write to the same location of the target activity’s input 
container with a fixed conflict resolution policy of ‘random’. Data was considered 
valid if the activity that wrote it had completed successfully. For cases where data is 
needed from only one activity (e.g.: A to B, C, D above), data links suffice. However, 
consider G. It reads pymtInfo, whose value of amt comes from B, and possibly from C 
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or D. If one had drawn a data link from all three and the status is gold, then B and C 
would have run successfully but not D. There would be a race between B and C’s 
writes of amt, when only C should have won. A different resolution policy, such as 
‘last writer wins’, is needed here. However, this cannot be realized using the order of 
the incoming messages carrying the required data: they may get reordered on the 
network. Even if synchronized clocks [5] are used, BPEL does not have constructs to 
handle setting variable values based on time stamps. 

A high level overview of the approach we propose is: Given a BPEL process, a 
partition, and the results of data analysis on that process, we produce the appropriate 
BPEL constructs in the process of each participant to exchange the necessary data. 
For every reader of a variable, writer(s) in different participants need to send both the 
data and whether or not the writer(s) ran successfully. The participant’s process that 
contains the reader receives this information and assembles the value of the variable. 
The recipient uses a graph of receive and assign activities reproducing the 
dependencies of the original writers. Thus, any writer conflicts and races in the non-
split process are replicated. 

In more detail, the steps of our approach are: (1) Create a writer-dependency-graph 
(WDG) that encodes the control dependencies between the writers. (2) To reduce the 
number of messages, use information about a particular partition: Create a participant-
writer-dependency-graph (PWDG) that encodes the control dependencies between 
regions of writers whose conflicts can be resolved locally (in one participant). (3) 
Create Local Resolvers (LR) in the processes of the writers to send the data. (4) Create 
a ‘receiving flow’ (RF) in the process of the reading activity that receives the data and 
builds the value of the needed variable.  

Criteria: The criteria we aim to maintain is that conflicting writes between 
multiple activities are resolved in a manner that respects the explicit control order, as 
opposed to runtime completion times, in the original process model. 

Restriction: We assume that data flow follows control flow. We disallow splitting 
processes in which a write and a read that are in parallel write to the same location. 
BPEL does allow this behavior, but it is a violation of the Bernstein Criterion [1,12]. 
The Bernstein Criterion states that if two activities are executed sequentially and they 
do not have any data dependency on each other, they can be reordered to execute in 
parallel. 

3 Background 

Our work builds on [8], for which we now provide an overview. We reuse the parts of 
the algorithm that create the structure of the processes, the endpoint wiring, and 
splitting of control links. In order to enable splitting standard BPEL (i.e. without 
explicit data links) we need to specify (1) how data dependencies are encoded without 
appropriate BPEL extensions (see partition dependent graphs introduced below) and 
(2) how data dependencies are reflected in the generated BPEL processes by using 
just standard BPEL constructs.  

A designer splits a process by defining a partition of the set A of all its simple 
activities. Consider P, a set of participants. Every participant, p , consists of a 2 Pp 2 P
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participant name and a set of one or more activities such that: (i) a participant must 
have at least one activity, (ii) no two participants share an activity or a name, and (iii) 
every simple activity of the process is assigned to a participant. The result is one 
BPEL process and one WSDL file per participant, as well as a global wiring 
definition. Figure 2 shows a partition of the process in Figure 1.  

 
P1 = fpw = (w; fGg); px = (x; fA; B; Hg); py = (y; fE; Cg); pz = (z; fD; Fg)gP1 = fpw = (w; fGg); px = (x; fA; B; Hg); py = (y; fE; Cg); pz = (z; fD; Fg)g

 

The subset of BPEL constructs that our algorithm, in both [8] and this paper, can 
actually consume is: (i) processes with ‘suppressJoinFailure’ set to ‘yes’ (DPE on), 
(ii) exactly one correlation set, (iii) any number of partnerLinks, (iv) a single top level 
‘flow’ activity, (v) links, (vi) simple BPEL activities (except ‘terminate’, ‘throw’, 
‘compensate’, and endpoint reference copying in an ‘assign’). Additionally, (vii) a 
‘receive’ and its corresponding ‘reply’ are disallowed from being placed in different 
participants. The single correlation set restriction is to enable properly routing inter-
participant messages that transmit control and data dependencies.  
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The main idea of [8] is to split of control and data links by adding activities in the 
participant processes as shown in Figure 3. The top row shows splitting a control link 
with a transition condition q between M and N. To transmit the value of the link to N 
in participant 2, a scope with a fault handler for ‘joinFailure’ is used in participant 1. 
The body of the scope contains an invoke with ‘suppressJoinFailure’ set to ‘no’. The 
invoke sends ‘true()’ if the link from M evaluates to true. If not, then that invoke 
throws a joinFailure, because DPE is off at the invoke (suppressJoinFailure=no). The 
joinFailure is caught by the fault handler, which contains an invoke that sends 
‘false()’. Participant 2 receives the value of the link, using a ‘receive’ activity that is 
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Fig. 2. A partition, P1, of the process in Figure 1 

Fig. 3. Summary of link splitting in [8]: the rectangle is a fault handler that catches the BPEL 
‘joinFailure’ fault. Dashed line is a message  .



in turn linked to N with a transition condition set to the received value. This is the 
status, determined at runtime, of the link from M to N in the original process.  

The bottom row shows splitting a data link between P and O. We use, in 
participant 1, a similar construct to that of a split control link. ‘true()’ is used as the 
transition condition and the data is sent if O completes successfully. If O fails or is 
skipped, the invoke in the fault handler sends ‘false()’ and an empty data item is sent. 

In participant 2, a receiving block is created. Such a receiving block consists of (1) 
a receive activity receiving the data into a uniquely named variable r, (2) an assign 
activity copying from r.data to the desired variable, and (3) a link between them 
conditional on r.status. The message from participant 1 is written in xtmp. If the status 
is true, the assign writes the data to x. Otherwise the assign is skipped. P must wait for 
the data but does not depend on whether x was written, so the join condition of P is 
modified to ignore this new incoming link. 

4 Related Work 

There is a sizable body of work on splitting business processes, covered in more 
details in [8]. The most relevant using BPEL is [6] where a process is broken down 
into several BPEL processes using program analysis and possibly node reordering, 
with the aim of maximizing the throughput when multiple instances are running 
concurrently. They claim data analysis on BPEL can lead to enough information to 
easily propagate data. However, they support a limited set of dependencies because 
they do not handle faults – in particular those needed for Dead-Path-Elimination.  

Alternative approaches for maintaining data dependencies across processes are 
those that do not require standard BPEL, use new middleware, or tolerate 
fragmentation obfuscation. In the non-BPEL arena, the most relevant in splitting 
processes are the use of BPEL-D [8] (explicit data links) which is a simpler case of 
this paper’s algorithms, van der Aalst and Weske’s P2P approach [19] for multi-party 
business processes using Petri Nets, and Muth et. al’s work on Mentor [15] using 
State Charts. In the P2P work, a public workflow is defined as a Petri Net based 
Workflow Net, with interactions between the parties defined using a place between 
two transitions (one from each). Then, the flow is divided into one public part per 
party. Transformation rules are provided to allow one the creation of a private flow 
from a single party’s public one. In Mentor, a state and activity chart process model is 
split so that different partners can enact its different subsets. Data flow in activity 
charts, however, is explicitly modeled using labeled arcs between activities - much 
simpler to split than BPEL’s shared variables.  

For new middleware instead of our approach, one could explore a wide variety of 
other ways of propagating data. Examples include: shared data using space-based 
computing [11]; distributed BPEL engines like the OSIRIS system [18]; modifying a 
BPEL engine to support using data from partially ordered logical clocks [5] along 
with write conflict resolution rules.  

Dumas et. al [4] translate a process into an event based application on a space-
based computing runtime, to enable flexible process modeling. While not created for 
decomposition, it could be used for it: the process runs in a coordination space and is 
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thus distribution-friendly. The SELF-SERV Project [3] provides a distributed process 
execution runtime using state-charts as the process model. In both these works, the 
result is not inline with our goals: the use of a non-BPEL model (UML Activity 
diagrams, state charts), the requirement of new middleware (coordination space, 
SELF-SERV runtime), and lack of transparency because runtime artifacts are in a 
different model (controllers, coordinators) than the process itself.  

Mainstream data flow analysis techniques are presented in [14], but BPEL presents 
special challenges due to parallelism and especially Dead-Path-Elimination. The 
application of the Concurrent Single Static Assignment Form (CSSA, [10]) to BPEL 
is shown in [13]. The result of the CSSA analysis is a possible encoding of the use-
definition chains, where the definitions (write) of a variable for every use (read) are 
stated. Thus, the CSSA form can be transformed to provide a set of writers for each 
reading activity which can be in turn used as one of the inputs to our approach. 

We are not aware of any work that propagates data dependencies among fragments 
of a BPEL process in the presence of dead-path elimination and using BPEL itself. 

5 Encoding Dependencies 

In this section, we describe how the necessary data dependencies are captured and 
encoded. The Figure 1 scenario is used throughout to illustrate the various steps. The 
presented algorithms require the results of a data analysis on the process. In parallel, 
we are working on such an algorithm (in preparation for publication), optimized for 
our approach, but whose details are out of scope for this paper. Any data analysis 
algorithm on BPEL is usable provided it can handle dead path elimination, 
parallelism, and provide the result (directly or after manipulation) explained below.  

One challenging area is in handling writes to different parts of a variable. Our 
approach handles not only writes to an entire variable, but can handle multiple queries 
of the form that select a named path (i.e.: (/e)*, called lvalue in the BPEL 
specification) and do not refer to other variables. For example, consider w1 writes x.a, 
then w2 writes x.b, then r reads x; r should get data from both writers and in such a 
way that x.b from w1 does not overwrite x.b from w2 and vice versa for x.a. However, 
if they had both written to all of x, r would need x from just w2. On the other hand, 
whether an activity reads all or part of a variable is treated the same for the purposes 
of determining which data to send. 

The data algorithm result should provide for each activity a, and variable x read by 
a (or any of the transition conditions on a’s outgoing links), a set Qs(a,x). Qs(a,x) 
groups sets of queries on x with writers which may have written to the same parts of x 
expressed in those queries by the time a is reached in the control flow. Thus, Qs(a,x) 
is a set of tuples, each containing a query set and a writer set. Consider w1, w2, and w3 
that write to x such that their writes are visible to a when a is reached. Assume they 
respectively write to f , , and f . Then 

g gg g . Consider Ad  
to provide the set of all writers that a depends on for a variable x that it reads. In other 
words, using  to denote the projection to the iith component of a tuple tt, 

.  

x:b; x:cgfx:b; x:cg
2g); (fx:d2g); (fx:d

qs)qs)

fx:b; x:c; x:dgfx:b; x:c; x:dg
w2; w3g); (fx:ew2; w3g); (fx:e

x:d; x:egfx:d; x:eg
Qs(a; x) = f(fx:b; x:cg; fw1; w ; f ; fw3g)Qs(a; x) = f(fx:b; x:cg; fw1; w ; f ; fw3g)

¼i(t)¼i(t)
Ad(a; x) =

S
qs2Qs(a;x) ¼2(Ad(a; x) =

S
qs2Qs(a;x) ¼2(

(a; x)Ad(a; x)
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5.1 Writer Dependency Graph (WDG) 

We define a writer dependency graph (WDG) for activity a and variable x to be the 
flow representing the control dependencies between the activities in Ad . As we 
are dealing with the subset of BPEL that is a flow with links, the structure is a 
Directed Acyclic Graph. We have: WDG  where the nodes are the writers: 

(a; x)Ad(a; x)

a;x = (V;E)WDGa;x = (V;E)

V = Ad(a; x) ½ AV = Ad(a; x) ½ A 

As for the edges, if there is a path in the process between any two activities in Ad that 
contains no other activity in Ad, then there is an edge in the WDG connecting these 
two activities. Consider a function Paths(a,b) that returns all paths in the process 
between a and b. A path is expressed as an ordered set of activities. Formally, and 
where f : v1; v2g 2 Vfv1; v2g 2 V

(v1; v2) 2 E , jPaths(v1; v2)j > 0 ^ 8p 2 Paths(v1; v2); p \ V = fv1; v2g(v1; v2) 2 E , jPaths(v1; v2)j > 0 ^ 8p 2 Paths(v1; v2); p \ V = fv1; v2g 

A WDG is not dependent on a particular partition. Consider F in Figure 1. 
. E is control-dependent on A; therefore,  Ad(F; orderInfo) = fA; EgAd(F; orderInfo) = fA; Eg WDGF;orderInfoWDGF;orderInfo

= (fA; Eg; f(A; E)g)= (fA; Eg; f(A; E)g). Another example is WD . GG;pymtInfoWDGG;pymtInfo= (fB; C; Dg; f(B; C); (B;D)g)= (fB; C; Dg; f(B; C); (B;D)g)
To reduce the number of messages exchanged between partitions to handle the split 

data, one can: (i) use assigns for writers in the partition of the reader; (ii) join results 
of multiple writers in the same partition when possible. The next section shows how 
to do so while maintaining the partial order amongst partitions. 

5.2 Partitioned Writer Dependency Graph (PWDG) 

The partitioned writer dependency graph for a given WDG is the graph representing 
the control dependencies between the sets of writers of x for a based on a given 
partition of the process. A PWDG node is a tuple, containing a partition name and a 
set of activities. Each node represents a ‘region’. A region consists of activities of the 
same partition, where no activity from another partition is contained on any path 
between two of the region’s activities. The regions are constructed as follows: 

1) Place a temporary (root) node for each partition, and draw an edge from it to 
every WDG activity having no incoming links in that partition. This root node is 
needed to build the proper subgraphs in step 2. 

2) Form the largest strongly connected subgraphs where no path between its 
activities contains any activities from another partition.  

3) The regions are formed by the subgraphs after removing the temporary nodes. 
  

Each edge in the PWDG represents a control dependency between the regions. The 
edges of the PWDG are created by adding an edge between the nodes representing 
two regions, r1 and r2, if there exists at least one link whose source is in r1 and whose 
target is in r2.  

Consider the partition P1in Figure 2. The PWDG for F and variable orderInfo, and 
the PWDG of G and variable pymtInfo would therefore be as follows: 
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Next, consider a different partition, P2, similar to P1 except that C is in p  with D, 
instead of p , then the PWDG of H and response has only two nodes: 

zpz

ypy

PWDGH;response;P2 = (fn1 = (x; fBg); n2 = (z; fC; Dg)g; f(n1; n2)g)PWDGH;response;P2 = (fn1 = (x; fBg); n2 = (z; fC; Dg)g; f(n1; n2)g) 
If all writers and the reader are in the same partition, no PWDG is needed or 

created. Every PWDG node results in the creation of constructs to send the data in the 
writer’s partition and some to receive it in the reader’s partition. The former will be 
the Local Resolvers (section 5.3). The latter will be part of the Receiving Flow for the 
entire PWDG (section 5.4). 

5.3 Sending the  N ecessary V alues and the U se of Local Resolvers 

A writer sending data to a reader in another participant needs to send both whether or 
not the writer was successful and if so, also the value of the data. We name the pattern 
of activities constructed to send the data a Local Resolver (LR).  

If there is only one writer in a node of a PWDG, then: if the node is in the same 
partition as the PWDG, do nothing. Otherwise, the Local Resolver is simply a sending 
block as with an explicit data link (Figure 3, partition 1).  

If there is more than one writer, the algorithm below is used. Basically, conflicts 
between writers in the same PWDG node, n=(p,B), are resolved in the process of p: 
An activity waits for all writers in n and collects the status for each set of queries.  

Assume a PWDG for variable x, and the reader in partition pr. Consider id to be a 
map associating a unique string for each set of queries in Q, and idn to do the same 
for each PWDG node. For each PWDG node, n=(p,B), with more than one writer, add 
the following activities to the process of participant p:  

 
CREATE-LOCAL-RESOLVER-MULTIPLE-WRITERS(Node n, String x) 
1  Q = Qs(n; x)Q = Qs(n; x)
2 If p=pr   
3        Add b=new empty, v=new variable, v.name = idn(n) 
4        t = idn(n)    
5 If j , let  Q   Qj = 1jQj = 1 = fqsgQ = fqsg
6       If p!=pr 
7               b=CREATE-SENDING-BLOCK(x)    
8        8w 2 ¼2(qs)8w 2 ¼2(qs) 
9              Add link l    = (w; b; true())l = (w; b; true())
10 Else   // more than one query set               
11       If p!=pr        
12               Add b = new invoke, v = new variable 
13               b.inputVariable=v,  b.toPart=(“data”,x),  b.joinCondition=”true()” 
14               t=name(v)  
15         8qs 2 Q8qs 2 Q 
16               s = CREATE-ASSIGN-SCOPE(t,qs)        
17         Add link l   1 = (s; b; true())l1 = (s; b; true())
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CREATE-ASSIGN-SCOPE(String t, Set qs): 
       Add s= new scope 
       s.addFaultHandler(‘joinFailure’, 
                                     a_sf=new assign) 
       s.setActivity(a_s=new assign),    
       a_s.suppressJoinFailure=’no’              
       a_sf.addCopy(QSTATUS-STR(t,qs),false())     
       a_s.addCopy(QSTATUS-STR(t,qs), true())   
       8  w 2 ¼2(qs 2 Q)8w 2 ¼2(qs 2 Q)

            Add link l  = (w; as; true())l = (w; as; true())
       Return s 

QSTATUS-STR (String t, Set qs) 
   Return t + “.status” + id(qs) 

CREATE-SENDING-BLOCK(String x) 
        Add s= new scope 
        s.addFaultHandler(“joinFailure”, 
                                       invf=new invoke) 
        Add v = new variable 
        invf.inputVariable=v       
        invf.toPart=(“status”,false()) 
        s.setActivity(inv=new invoke) 
        inv.inputVariable=v        
        inv.toPart=(“status”,true()) 
        inv.toPart=(“data”,x) 
        inv.suppressJoinFailure=”no” 
        Return inv 

        
If the reader is in the same partition as the writers in this node, then we wait with 

an ‘empty’ (line 3). If all writers write to the same set of queries, and the node is not 
in the reader’s participant, use a sending block. Create a link from every writer to b, 
which is either the empty or the sending block’s invoke (line 6-9). Figure 4 shows 
such use of an invoke for C and D in partition y.  

If there is more than one query set, the status for each one needs to be written. If 
the reader is in another participant we create an invoke that runs regardless of the 
status of the writers (line 11-16). For each query, use a structure similar to a sending 
block (i.e.: scope, fault handler) to get the writers’ status (line 16), but using assigns 
rather than invokes. The assigns write true or false to a part of the status variable 
corresponding to the query. Create links from each writer of the query set to the 
assign in the scope. Create a link (line 17) from the scope to either the empty from 
line 3 or the invoke from line 12. 

 

 

5.4 Receiving Flow (RF)  

A Receiving Flow, for a reader a and variable x, is the structure created from a 
PWDG that creates the value of x needed by the time a runs. It contains a set of 
receive/assign activities, in a’s process, to resolve the write conflicts for x.  

Consider pr to be the reader’s partition, and G to be the PWDG from WDG(a,x). 
An RF defines a variable, vtmp, whose name is unique to the RF. The need for vtmp is 
explained in the next section. A receiving flow is created from G as follows: 
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Fig. 4. Snippets from processes from the process in Fig. 1 w/ partition P2 



        CREATE-RF(PWDG G) 
1 Create a <flow> F 
2 For all  n    = (p; B) 2 ¼1(G)n = (p; B) 2 ¼1(G)
3        PROCESS-NODE(n)  
4 For all    e  = (n1; n2) 2 ¼2(G)e = (n1; n2) 2 ¼2(G)

5        For all    d   2
6              Add a link l=(d, ban2 true())  

ean1d 2 ean1

7 Add af =new assign 
8  af :addCopy(vtmp ; x)af :addCopy(vtmp ; x)

9 Add links l  and l  f = (F; af ; true())lf = (F; af ; true()) r = (af ; a; true())lr = (af ; a; true())

10  joinCondition(a) = joinCondition(a) ^ (lr _ :lr)joinCondition(a) = joinCondition(a) ^ (lr _ :lr)

 
Create a flow activity (line 1). For each node (line2-3), we will add a block of 

constructs to receive the value of the variable and copy it into appropriate locations in 
a temporary, uniquely named variable vtmp. Link the blocks together (line 4-6) by 
connecting them based on the connections between the partitions, using ba and ea as 
the first and last activities of a block, respectively. The subscript is used to identify 
which node’s block they are for (i.e.: ean1 is the ea set created in PROCESS-
NODE(n1)). Link the flow to an assign (line 7-9) that copies from vtmp to x. Link the 
assign to a and modify a’s join condition to ignore the new link’s status (line 10).  
 

        PROCESS-NODE(Node n) //recall  n=(p,B) 
1    Q ,  ea  = Qs(n; x)Q = Qs(n; x) = ;ea = ;
2   //All activities added in this procedure are added to F 
3   If p    = prp = pr

4         If j ,  let  Q  Qj = 1jQj = 1 = fqsgQ = fqsg
5               ba =new assign,  
6               For all q ,  ba:  2 qsq 2 qs addCopy(vtmp :q; x + ":" + q)ba:addCopy(vtmp :q; x + ":" + q)

7               If j , Add link  l             Bj = 1jBj = 1 0 = (b 2 B; ba; true())l0 = (b 2 B; ba; true())

8               ea  Ã ea [ fbagea Ã ea [ fbag
9         Else  
10              ba =new empty      
11              For all q  s 2 Qqs 2 Q

12                    CREATE-Q-ASSIGN(  qs; "x";QSTATUS-STR(idn(n); qs))(qs; "x";QSTATUS-STR(idn(n); qs))

13         If j  Bj 6= 1jBj 6= 1

14              Add link l , where em=empty from LR 0 = (em; ba; true())l0 = (em; ba; true())
15        joinCondition(ba)=status(l0) 
16  Else  //p is not pr 
17        Add rrb= new receive,   joinCondition(rrb)=true(), rrb.variable=ri 
18        ba = rrb      //note that ea will be created in lines 20,23 
19           If j ,  let Q  Qj = 1jQj = 1 = fqsgQ = fqsg
20                    CREATE-Q-ASSIGN(  qs; "ri:data"; "ri:status")(qs; "ri:data"; "ri:status")

21        Else 
22              For all q  s 2 Qqs 2 Q

23                    CREATE-Q-ASSIGN(    qs; "ri:data"; QSTATUS-STR(ri; qs))(qs; "ri:data"; QSTATUS-STR(ri; qs))
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And the creation of the assigns for each query is as follows: 
 
CREATE-Q-ASSIGN(Set qs, String var, String statusP)        
    c.1      Add act =new assign  
    c.2      ea   Ã
    c.3      Add link l  

ea [ factgea Ã ea [ factg
= (ba; act ; statusP)l = (ba; act ; statusP)

    c.4      For all q ,  ac      2 qsq 2 qs t:addCopy(vtmp :q; var + ":" + q)act:addCopy(vtmp :q; var + ":" + q)

   
For each node: If the node is in the same participant as a and has, one query set, 

add an assign copying from the locations in x to the same locations in vtmp (line 3-6). 
If the node has only one writer, link from the writer to the assign (line 7). If it has 
more than one writer, an ‘empty’ was created in the Local Resolver (LR), so link from 
that empty to the assign (line 13-14). If the node has more than one query set, create 
an empty instead of an assign and (line 11-12) create one assign per query set. Create 
links from the empty to the new assigns whose status is whether the query set was 
successfully written (line c.3). Add a copy to each of these assigns, for every query in 
the query set, from the locations in x to the same locations in vtmp (line c.4). Then, 
(line 15) set the joinCondition of the empty or assign to only run if the data was valid.  

If the node is another partition, create a receiving block (line 17) instead of an 
assign. Set the joinCondition of the receive to true so it is never skipped. Again copy 
the queries into a set of assigns (line 19-23).  

Figure 5 shows two examples for partition P1 of our scenario. The top creates 
pymtInfo for G: The value of amt may come from B,C, or D but actNum always from 
B. The bottom creates orderInfo for F. Notice how A’s write is incorporated into the 
RF even though A and F are in the same participant.  

Note that receiving flows reproduce the building of the actual variable using BPEL 
semantics. Thus, the behavior of the original process is mirrored, not changed. 

 

 

Multiple RFs and the trailing assign  
Consider multiple readers of the same variable placed in the same participant Each RF 
writes to its local temporary variable, and only copies to the shared variable when the 
trailing assign at the end of the RF is reached. This temporary variable is used so that 
messages arriving out of order or to multiple RFs concerned with the same variable 
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Fig. 5. Two RFs using partition P1. Top: pymtInfo to G in w. Bottom: orderInfo to F in z. 



do not incorrectly overwrite each other’s values. The algorithms require that the 
original process adhere to the Bernstein Criterion; otherwise, one cannot guarantee 
that RFs with overlapping WDGs don’t interfere with each other’s writes. 

6 Conclusion and Future Work 

We provided an algorithm for splitting BPEL processes using BPEL itself for proper 
data communication between participants; furthermore, splits are transparent, i.e. it is 
clear where the changes are and they are done in the same modeling abstractions as 
the main process model. This has been achieved by use of LRs and RFs as long as the 
original process respects the Bernstein Criterion. If not, one would have to take into 
consideration actual completion times of activities, which goes beyond BPEL’s 
capabilities. Having placed the activities that handle data and control dependencies at 
the boundaries of the process and used naming conventions on the operations, we 
enable graphical/text-based filters to toggle views between the activities of the non-
split process and the ‘glue’ activities we have added. The difficulty in maintaining 
data dependencies in BPEL is due to unique situations (section 2), such as the ability 
to ‘revive’ a dead path with an ‘or’ join condition, resulting from dead-path 
elimination and parallelism. 

The complexity, in number of messages exchanged and activities added, depends 
on two factors: The amount of inter-participant data dependencies and the quality of 
the data algorithm. Poor data analysis leads to larger writer sets. At most one ‘invoke’ 
is added for each PWDG node, so the number of message exchanges added is at most 
the total number of PWDG nodes: O . For the number of added 
activities, the upper bound is quadratic, O . 

(nPWDG) = O(n)O(nPWDG) = O(n)

(nPWDG £maxO(nPWDG £max (jQsj)) = O(n2)(jQsj)) = O(n2)
Our future work includes optimizations such as merging overlapping RFs and 

targeted data analysis. A first step for optimization is the application of the work 
presented in [2,7,17] to BPEL. Also of interest is enabling transmitting (some) data 
dependencies for split loops and scopes, whose control is split in [9], by grafting 
activities in the participant processes. Other directions include effects of toggling 
DPE, and using the information of whether a split is exclusive or parallel by analyzing 
link transition conditions. Another aspect is to provide an implementation of the 
algorithm and perform quantitive evaluation on the process fragments it outputs. 

Acknowledgement  Jussi Vanhatalo,  for  suggesting  local  resolution  with  one  invoke, 
inspiring the current Local Resolver. David Marston, for his valuable review. 
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