Improving Temporal-Awareness of
WS-Agreement*

C. Miiller, O. Martin-Diaz, A. Ruiz-Cortés, M. Resinas, and P. Ferndndez

Dpto. Lenguajes y Sistemas Informéticos
ETS. Ingenierfa Informdtica - Universidad de Sevilla (Spain - Espaiia)
41012 Sevilla (Spain - Espana)
{cmuller , resinas, pablofm, aruiz}@us .es, octavio@lsi.us.es

Abstract. WS-Agreement (WS-Ag) is a proposed recommendation of
the Open Grid Forum that provides a schema to describe SLAs and a
protocol to create them based on a mechanism of templates. However,
although it identifies the necessity of specifying temporal-aware agree-
ment terms (e.g. the response time is 30 ms from 8:00h to 17:00h and
15 ms from 17:00h to 8:00h), to the best of our knowledge, there are
no existing proposals that deal with that necessity. We propose an ex-
tension that gives WS-Ag support to temporality. This allows describing
expressive validity periods such as those composed by several periodic
or non-periodic intervals and it applies not only to the agreement terms
themselves but also to other parts of WS-Ag such as creation constraints
and preferences about the service properties. In addition, in this paper
we propose a preference XML schema to describe preferences over any
set of service properties using any kind of utility function. In further re-
search we will study a concrete specification for those utility functions.

Keywords: Temporal-Aware, Quality of Service, Service Level Agree-
ment, WS-Agreement, Utility Functions.

1 Introduction

Service oriented architectures are based on the use of loosely coupled services to
support the requirements of business processes and users. In this context, service
level agreements (SLAs) [T2/T3J20] can be used to regulate the execution of the
services and to provide guarantees related to them.

A SLA wusually specifies “which” service is offered and “how” it is offered.
That is to say, it includes requirements and guarantees about functional, and
non-functional properties of the services. However, another important question
about services is “when”. Temporality affects orthogonally all aspects of a SLA
because it may refer to the entire agreement (e.g. the agreement expires on
2007/05/31); to any functional property of the service (e.g. this operation of
the service is available from 8:00h to 18:00h); or to any non-functional property

* This work has been partially supported by the European Commission (FEDER) and
Spanish Government under CICYT project Web-Factories (TIN2006-00472).

B. Kramer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 1934206} 2007.
(© Springer-Verlag Berlin Heidelberg 2007

194 C. Miiller et al.

that appears in the SLA (e.g. the response time is 30 ms from 8:00h to 17:00h
and 15 ms from 17:00h to 8:00h). Therefore, a temporal-aware SLA allows us
to express precisely the periods of time in which its terms are valid.

The most significant language to specify SLAs is WS-Agreement (WS-Ag)
[12]. WS-Ag is a proposed recommendation of the Open Grid Forum working
group (OGF) that provides a schema for defining SLAs and a protocol for creat-
ing them based on a mechanism of templates. For compatibility and complexity,
WS-Ag only defines the general structure of the agreement. Other aspects such
as defining domain-specific extensions or specific languages for expressing con-
ditions are out of the scope of WS-Ag. For this reason the research community
has proposed several WS-Ag extensions like [I] and [21]. This is also the case
of temporality: WS-Ag recognizes that it is necessary to include temporality in
the agreement terms, but for the above mentioned reasons it does not establish
how to specify it. However, as far as we know, there is no existing extension to
WS-Ag that tackles the problem of temporality.

In this paper, we propose an extension to give WS-Ag support to temporality.
To define it, we build on a previous work [I8], in which we presented operational
semantics on constraint-based temporal-aware matchmaking. We define a tem-
poral XML schema and we describe how this temporal schema can be applied
to the different elements of WS-Ag.

The advantages of our approach are the following: (i) we apply temporality
not only to the entire agreement and the agreement terms but also to other
elements of WS-Ag such as the creation constraints, which are used to create
agreements based on templates, and business values, which are used to express
preferences about the terms of the agreement; (ii) we support expressive specifi-
cations of validity periods such as composed intervals like “From 8:00h to 14:00h
and From 16:00h to 18:00h” and periodical intervals like “From Mondays to Fri-
days, from 8:00 to 18:00”, and (iii) as the extension builds on [I§], we have a
sound foundation on which to develop a constraint-based implementation to give
support to the temporal extension.

Moreover, we also propose a preference XML schema to describe preferences
over any set of service properties using any kind of utility function instead of
the constant float utility function which WS-Ag specifies. The specific language
for describing those utility functions is currently open and we will study it in
further research.

This paper is structured as follows. Section 2introduces a case study in which
temporality is an important feature. Section B] presents the WS-Ag structure
and its temporal-awareness. Section] exposes our proposal of WS-Ag extension
on temporal-awareness and on preferences descriptions. Section Bl compares the
related proposals. Finally Section [0l exposes our conclusions and future work.

2 A Case Study

In general, temporal issues are present in the majority of agreements in real-
world scenarios. In this section we explore a particular case where a provider

Improving Temporal-Awareness of WS-Agreement 195

offers computing services to other organizations; i.e. customers send jobs (data
to be processed by a certain algorithm) to be executed in the provider’s infras-
tructure. This specific scenario represents a common situation in research fields
with intensive computational requirements [4IT15] as it has a wide set of temporal
features that can be covered by our model.

In this scenario, a provider is likely to be looking for an optimization in the
usage of its resources; that means unused (or underused) resources represent a
lack of benefits and, therefore, a low recovery of the initial investment. In doing
so, agreement offers should vary in a certain period on the basis of two key
elements: (i) The mean time between two consecutive requests (MTBR) in the
period and (ii) SLAs already signed with other customers for that period.

Concretely, we focus our case study in the following terms:

— The global validity of the SLA is from october 1/2007 to december 30/2007.

— All Sundays at 23:00h. servers are down for an hour due to maintenance.

— The Provider needs part of its server resources for its own computing ne-
cessities from Mondays to Fridays, from 8:00h to 18:00h. Therefore, in such
time period, the provider requires that consumers specify in their service
requests a MTBR greater or equal to 20 seconds.

— At any other instant, all server resources can be offered to consumers. Thus,
at those instants the provider allows more exigent service requests over
MTBR from consumers. Concretely the MTBR can be greater or equal to 1
second.

— The service consumer (i.e. the client) must specify in his agreement offer: a
request; an algorithm for processing the request; the MTBR; and lastly the
temporal execution pattern for the request (that means an estimation about
when the service invocations are going to occur).

— The provider prefers receiving demands with a requirement of 20s or more
of MTBR from Mondays to Fridays, from 8:00h to 18:00h. Thus, demands
which require less MTBR should be satisfied when the provider has all server
resources available.

— The provider prefers satisfying only one more exigent demand over MTBR
(e.g. only one demand with MTBR=10s) rather than several less exigent
demands over MTBR (e.g. 10 demands with 100s of MTBR each one).

— In periods with high MTBR available, the provider prefers customers de-
manding the Knapsack algorithm (as first choice), or Kruskal algorithm (as
second choice). In other cases, the provider prefers demands of Dijkstra al-
gorithm, or Kruskal algorithm (in this order of preference).

On the consumer side, we consider a case where a certain customer needs to
compare two different algorithms with the same requirements on MTBR.

3 WS-Agreement in a Nutshell

3.1 Basic Description of WS-Agreement

In this section we will discuss WS-Ag, a framework for specifying electronic
agreements. Concretely, this proposed recommendation specifies an XML-based

196 C. Miiller et al.

language and a protocol for advertising the capabilities of service providers,
creating agreements based on agreement offers (with the possibility of further
agreement compliance monitoring at runtime).

The interaction protocol comprises of two participants: the agreement initiator
(that triggers the beginning of the process) and the agreement responder (that
reacts to the initiator’s requests). The protocol is divided in three main stages
namely: (i) the initiator of the agreement process asks for agreement templates to
the agreement responder.(ii) The initiator sends to the responder an agreement
offer taking into account the agreement variability contained in the template.
(iii) The responder accepts or rejects the agreement offer; additionally, if the
responder rejects it, the process may start again.

WS-Ag proposes a structure of the agreement with the following elements:

Name: it identifies the agreement and can be used for reference to it.

Context: it includes information such as the name of the parties and their
roles of initiator or responder of the agreement. Additionally, it can refer to an
agreement template if needed. In this element, an agreement lifetime can be
defined by means of an element called “ExpirationTime”.

Terms: agreement terms are wrapped by term compositors, which allow simple
terms or sets of terms to be denoted by “ExactlyOne”, “OneOrMore”, or “All”.
The following are the two main types of terms:

1. Service terms: they provide information to instantiate or identify services
and operations involved in the agreement. Additionally, it can comprise in-
formation about the measurable service properties.

2. Guarantee terms: they describe the service level objectives (SLO) agreed by
the parties. They comprise a SLO specified as a target for a key performance
indicator, or as a “CustomServiceLevel” element in a customized way; it
also includes the scope of the term (e.g. a certain operation of the service or
the whole service itself); a “QualifyingCondition” that specifies the validity
conditions under which the term is applied; and information about business
properties in the “BusinessValueList” element of the guarantee term such as
“Importance”, “Penalty” or “Reward” and “Preference” defined as an utility
value pointing to a service term.

In order to create agreements, WS-Ag allows to specify templates with the
above structure, but including agreement creation constraints that should be
taken into account during the agreement creation process. These constraints de-
scribe the variability allowed by a party; they can be denoted as general “Con-
straints”, or “Items” pointing to specific locations with their own constraints.

3.2 Temporal-Awareness of WS-Agreement

Concerning temporal issues, WS-Ag identifies two locations to include temporal
awareness. On the one hand, lifetime for the entire agreement must be included in

Improving Temporal-Awareness of WS-Agreement 197

Agreement Offer
Name ...

Agreement Template

Name -

Context

Context

<ServiceF

/ServiceP

ionTime>30/12/2007 irationTime>

<ExpirationTime>31/12/2007</ExpirationTime>

Terms Compositor

Creation Constraints <All>

<ServiceDescriptionTerm...>
<Request>Sample.txt</Request>
<Algorithm>Dijkstra</Algorithm>
<MTBR>40</MTBR>
<ExecutionTime>48 h.</ExecutionTime>

</ServiceDescriptionTerm>

Terms Compositor

<All> <Item Name="AlgorithmAllowed">

<Location>

lIServiceDescriptionTerm/Algorithm

</Location>

<ltemConstraint>

<xs:restriction base="xs:string">
<xs:enumeration value=“Dijkstra"/>

ation value=" ">

<xs:enumeration value="“Kruskal"/>

<Ixs:restriction>

</ltemConstraint>

<ServiceDescriptionTerm...>
<Request> </Request>
<Algorithm> </Algorithm>

<MTBR> </MTBR>
<ExecutionTime> </ExecutionTime>
</ServiceDescriptionTerm>

<ServiceDescriptionTerm...>
<Request>Sample.txt</Request>

<ServiceProperties...>
<Variables>
<Variable name="MTBR”

]
<MTBR>40</MTBR>
<ExecutionTime>48 h.</ExecutionTime>

</ServiceDescriptionTerm>

ic=” ”,
) metric="seconds”> </Item> <ServiceProperties...>

<Location> <Item Name="ExecTimeAllowed"> <Variables>

lIServiceDescriptionTerm/MTBR <Location> <Variable name="MTBR” metric="seconds”>

</Location> <Location>

<Variable>
<Variables>
</ServiceProperties>
<GuaranteeTerm
Obligated=“ServiceProvider”..>

lIServiceDescriptionTerm/ExecutionTime
</Location>
<ltemConstraint>
<restriction base="

liServiceDescriptionTerm/MTBR
</Location>
<Variable>

)
<xsd:minInclusive value=“01"/>
<xsd:maxinclusive value=“120"/>

</ServiceProperties>

<SLO>"MTBR 2 20”</SLO> <l-- from an hour to 5 days -->

Term Obli er
<SLO>"MTBR 2 20”</SLO>

</GuaranteeTerm> <Ixsd:restriction> </GuaranteeTerm>
</ltemConstraint>
</AlI> </item> <IAlI>

(a) Agreement Template. (b) Agreement Offer.

Fig. 1. An Example of Agreement Template and a possible Agreement Offer

Context into the “ExpirationTime” element (i.e. the last instant where the agree-
ment is valid). On the other hand, WS-Ag recommends the use of “QualifyingCon-
dition” elements for describing validity periods of terms and/or the party pref-
erences. However, the specification document leaves open the specific way these
temporal awareness must be exposed for reasons of compatibility and complexity.

The case study presented in the previous section includes several issues with
little (or no) support with WS-Ag; in particular, the temporal execution pattern
has a high degree of complexity for the WS-Ag recommendation (it includes sev-
eral temporal expressions) thus we have to reduce it as denoted in the agreement
template of Figure This implies two main simplifications: (i) specifying the
lifetime with an expiration time only (not initial time); (ii) temporal execution
pattern for the request (which in the case study is expressed as several validity
periods) has to be changed with a simple value of execution time.

Additionally, the need of restarting the server periodically could have been
described as creation constraints for the agreement (and thus consumers would
have to take these constraints into account in their agreement offers). However,
we find that WS-Ag does not allow this temporal description, and therefore we
have to reduce the example by restricting only the possible range of execution
time in hours (and in addition the algorithms allowed). The possible values for
MTBR correspond to the worst case (MTBR>20s) and the preferences of the
provider require the validity period of the case to be included in the example,
but for the above reason it is not possible.

Figure depicts an offer for such template describing an execution of the
same request with two different algorithms with similar MTBR.

198 C. Miiller et al.

4 Our Proposal

We propose a WS-Ag extension for describing temporal properties in SLAs. At
first, we specify a generic temporal XML schema which allows to include several
forms of validity periods.

4.1 Temporal Schema

We have already studied temporality on web services in previous works. In [18]
we presented a constraint-based approach to temporal-aware web services pro-
curement. In [I9] we elaborated a study about expressiveness of temporal de-
scriptions for web services. And we have reviewed the kinds of temporal periods
defined in the IETF RFC 3060 [24]. Now we can formulate that validity periods
on SLAs can be composed of one or more temporal intervals, periodic or not.
There are several types of intervals, namely non-disjoint, disjoint (both men-
tioned by Allen in [3]), and/or periodical. A non-disjoint interval is composed
of a single interval. A disjoint interval is composed of several sub-intervals, so
that it does not include all time points between its lower and upper ends. And
an interval is periodical if it is repeated regularly.

We have designed an XML schema named “twsag.xsd” for describing these va-
lidity periods in practice. An interval is the basic element; different non-disjoint
intervals can be grouped together so that more complex intervals can be com-
posed. Several authors [BII7] have proposed a more friendly representation of
XML schemas by means of UML class diagrams. Thus, Figure 2 shows an UML
class diagram which represents “twsag.xsd”; the three interfaces denote the types
of intervals above mentioned: (1) Interval: it stands for the basic element; it
is comprised of an initial time and a duration (which can be infinite) expressed
in seconds, hours, days, or months. (2) Disjoint: it stands for disjoint intervals
constituted of a set of intervals related by a logic operator (or, and, or xor). (3)
Periodical: it stands for periodic intervals, be either disjoint or non-disjoint.
Its periodicity is comprised of the number of period repetitions (which can be
infinite) and a frequency expressed in seconds, hours, days, or months, which
denotes the time between two consecutive intervals.

Our proposal allows to include temporality regarding several aspects of agree-
ments. Therefore, we comment them separately: first, temporality on agreement
terms and agreement creation constraints in Section .2} and later, temporality
on preferences in Section

4.2 Temporality on Terms and Creation Constraints

Depending on the way validity periods affect the agreement terms, we classify
them in two groups: (1) global periods (GP) if validity periods wrap all agreement
terms; and (2) local periods (LP) in other cases. We have studied the inclusion
of these types of periods in the WS-Ag structure.

WS-Ag specifies the lifetime of agreements by means of an “Expiration Time”
in the context. Thus, it only allows a non-disjoint GP, starting from the current

Improving Temporal-Awareness of WS-Agreement 199

49 Interval

O init : DateTime
o duration : float
o durationMetric : {Seconds, Hours, Days, Months}

{incomplete} ‘F

9 Disjoint 3 Periodical
o op : {And, Or, Xor} o repetitions : float
o frequency : float
o frequencyMetric : {Seconds, Hours, Days, Months}

Fig. 2. Schema for Temporal Intervals

date. For a lifetime to be expressed without restrictions, we propose to use
the “Any” element, which allows to include any information in the context, for
including a new element called “GlobalPeriod” in order to describe it as an
“Interval” element of our temporal schema.

WS-Ag recommends to specify temporality regarding agreement terms in the
“QualifyingCondition” element. We propose to specify these local periods by
means of “Interval” elements of our temporal schema.

Figure [shows the global and local periods for the scenario described in
Section 2 Figure @] shows a template and an offer using our WS-Ag extension
for describing the validity periods in this case study. In Figure note that
non-disjoint intervals are put into a single periodical non-disjoint interval which
constitutes the agreement offer GP; and periodical disjoint intervals are used to
constitute the agreement offer LPs.

It is important to remark that WS-Ag only includes temporal properties in
guarantee terms. However, we also need to describe validity periods of service
terms. In Figure functional properties described in service description terms
are active only at specific validity periods (e.g. we must use the service descrip-
tion term with MTBR>20s, in case of periods with a minimum of 20s of MTBR
allowed). Therefore, we make use of term compositors to associate service terms
with the guarantee terms which contain the desired validity period.

We also allow to specify temporal properties regarding the agreement creation
constraints. There are two ways of describe them: either to allow validity periods
on single constraints, e.g. “Provider must allow execution tests with a minimum
MTBR of 40s, 48 hours before agreement initiation date”; or to allow several
constraints apart from the validity period definition, e.g. the previous constraints

200 C. Miiller et al.

¥ 2 Mon-Sat (Weekly)

Q O From Oct 01/2007
to Dec 30/2007
O Sunday (Weekly)
> - From Oct 01/2007

to Dec 30/2007
¥ 3 Mon-Fri (Weekly)
) — — — — — — — — — — — — O From Oct 01/2007
: : : to Dec 30/2007
r : ¥ Sat-Sund (Weekly)
mmO From Oct 01/2007
I : to Dec 30/2007
| : : O Mon-Fri (Weekly)
» —_—————— -0 > — — — — — - From Oct 01/2007
I] : : : to Dec 30/2007
) : : .
b e o 2
I: 2 4 6 8 10 12 14 16 18 20 22
I
I Ve MoreMTBR LocalPeriod
| GuaranteeTerm1: MTBR = 20
_ _ _ __ _|LessMTBR LocalPeriod
GuaranteeTerm2: MTBR = |
AgreementTemplate GlobalPeriod

GuaranteeTerm1 A GuaranteeTerm2

Fig. 3. Global & Local Periods for the Case Study

without validity period: “Provider must allow execution tests with 40s of MTBR”,
and also “Provider must assure a maximum execution time of 24 hours”, both
active during the validity period: “48 hours before agreement initiation date”.
For temporality in creation constraints to be allowed, we propose to describe
it as an “Interval” element of our temporal schema: (1) a new element un-
der the “Item” of creation constraints, for describing temporal periods on a
single constraint (by means of “Any” element of WS-Ag); and (2) the “Con-
straint” element for temporal periods on several constraints. Figure [B] denotes
case (1) with an example of testing requests before an agreement initiation
date.

4.3 Temporality on Preferences

In a guarantee term, a validity period described in “QualifyingCondition”
involves not only the service level objective, but also the preferences in the
“BusinessValueList” element. However, preferences in WS-Ag are described with
limitations, because we must specify a float constant value in the “Preference”
element in order to describe the utility of a concrete service description term.
That forces to define (1) several service description terms with different choices
of values in service properties according to preferences, and (2) several guaran-
tee terms, including the constant utility of each service description term on each
validity period. Therefore, we obtain constant utility functions anyway.

In order to use any utility function with any number of service properties,
we propose to extend the manner of expressing preferences in WS-Ag by using
the “CustomBusinessValue” element. Our purpose is to describe the preference

Improving Temporal-Awareness of WS-Agreement

Agreement Template

Name

Context

Ser

<GlobalPeriod>
<I--Global Period Defi
</GlobalPeriod>

Terms Compositor
<All>

<ServiceDescriptionTerm>
<Request> </Request>
<Algorithm> </Algorithm>
<MTBR> </MTBR>

</ServiceDescriptionTerm>

<ServiceProperties>
<Variables>
<Variable name="MTBR”
metric="seconds”>

<Location>
liServiceDescriptionTerm/MTBR
</Location>

<Variable>

<Variable name="Algorithm”>
<Location>

Term O

<QualifyingCondition>
< reMTBR Period Definition-->
</QualifyingCondition>
<SLO>"MTBR 2 20”</SLO>
<BusinessValueList>
<CustomBussinessValue>
<VariableReference>Algorithm</...>
<UtilityFunction>F1(U)</...>
<VariableReference>MTBR</...>
<UtilityFunction>F3(U)</...>
</CustomBussinessValue>
</BusinessValueList>
</GuaranteeTerm>

Agreement Offer

[Name -

Context

<GlobalPeriod>
<!--Global Period Definition-->
</GlobalPeriod>

Term Obli Servi
<QualifyingCondition>
<l--LessMTBR Period Definition-->
</QualifyingCondition>
<SLO>"MTBR 2 1"</SLO>

<ILocation>
<Variable>
<Variables>
</ServiceProperties>

ist>
<CustomBussinessValue>
<VariableReference>Algorithms</...>
<UtilityFunction>F2(U)</...>
<VariableReference>MTBR</...>
<UtilityFunction>F4(U)</...>
<ICustomBussinessValue>
</BusinessValueList>
</GuaranteeTerm>

INANNNANANAANAN

</All>

Creation Constraints

<ltem Name="AlgorithmAllowed”>
<Location>

<ILocation>
<ItemConstraint>
<xs:restriction base="xs:string">

liServiceDescriptionTerm/Algorithm

<ltem Name="MTBRAllowed">
<Location>
liServiceDescriptionTerm/MTBR
</Location>
<ltemConstraint>

Terms Compositor
<All>
Vi perties...>
<ExactlyOne>
<All>
<ServiceDescriptionTerm...>
<Request>Sample.txt</Request>
<Algorithm>Knapsack</Algorithm>
<MTBR>20</MTBR>
</ServiceDescriptionTerm>

‘erm Obli Servi i >
<QualifyingCondition>
<I--MoreMTBR Period Definition-->
</QualifyingCondition>
<SLO>"MTBR 2 20"</SLO>
...<!-The same BussinessValue and Utility-->
</GuaranteeTerm>
<IAI>
<All>
<ServiceDescriptionTerm...>
<Request>Sample.txt</Request>
<Algorithm>Knapsack</Algorithm>
<MTBR>1</MTBR>
<IServiceDescriptionTerm>
‘erm Obli ‘Servit i e
<QualifyingCondition>
<I--LessMTBR Period Definition-->

201

<Periodical frequency="1.0" to 12/30/2007 frequencyMetric="Seconds” iy
frequencyMetric=" 13 weeks repetitions="13.0"> to 24:00:
Global repetitions="13.0"> <Disjoint op="And"> in Seconds
Period <Interval init="2007-10-01T00:00:00+01:00"

<restriction base="xsd:positivelnteger"> </QualifyingCondition>
<xs:enumeration value=“Dijkstra" /> <xsd:minlinclusive value=“01"/> <SLO>"MTBR 2 1”</SLO>
ion value=" > Ixsd:restri n. ...<1--The same BussinessValue and Utility-->
<xs:enumeration value=“Kruskal" /> </ltemConstraint> </GuaranteeTerm>
<Ixs:restriction> </item> <IAlI>
</itemConstraint> </ExactlyOne>
</ltem> </AlI>
(a) Agreement Template. (b) Agreement Offer.

7~ <GlobalPeriod>

From 10/01/2007|

duration="187.l{;

<[Periodical>
\-</GlobalPeriod>

,<Periodica| frequency="62.0"—
frequencyMetric="Hours”
repetitions="13.0">

Weekend
+

/<Periodical frequency="0.0"

<Periodical frequency="57601.00"

From 0:00:00|

frequencyMetric="Seconds”, to 7:59:59

n\urs"l> repetitions="5.0"> in Seconds

From Monday 0:00| <Interval init="2007-10-01T00:! +01:00”

to Sunday 23:00 duration="28799.0! From 0:00:00
durationMetric="Seconds”/; to 18:00:01
Less </Periodical> in Seconds

From 18:00 to 24:00) MTBR <Periodical frequency="64801.00
+ Period frequencyMetric=“Seconds”

repetitions="5.0">

<Periodical 14.07 From 0:00 to 8:00 <Interval init="2007-10-01T18:00:01+01:00”
More fre;uene’yMetr‘i?:%rs"\ duration="21599.00"——_ | From 18:00:01
MTBR repetitions="5.0"> durationMetric="Seconds”/> | to 24:00:00
Period init="" 11T08:06: . <IPeriodical> in Seconds
<interval ::tr;ﬁza?_.',q g"g {T08706:00+01:00 <Interval init="2007-10-06T00:00:00+01:00
ionMetric=" ” duration="2.0"
<Iperi°dicalr:uratlonMetnc- Houes”/> durationMetric="Days"/>
iodi <IDisjoint>
\</Periodical> pamsioin®

(c) Period Definitions.

Fig. 4. Agreement Template and Agreement Offer

202 C. Miiller et al.

<template...>

<CreationConstraints>
<Item Name="TestPrevious">
<Location>
//ServiceDescriptionTerm/MTBR
</Location>
<ItemConstraint>
<xsd:restriction base="xsd:positivelnteger">
<xsd:minInclusive value="40"/>
</xsd:restriction>
</ItemConstraint>
<Interval init="2007-09-29T00:00:00+01:00"
duration="2.0"
durationMetric="Days"/>
</Item>
</CreationConstraints>

</template>

Fig. 5. Example of Creation Constraints with Temporality

of one or more service properties in a concrete validity period with any kind
of utility function. Figure [6] shows the structure of our preference XML schema
for describing the “CustomBusinessValue” element. It defines utility functions
pointing to one or a group of variables, which are described in the corresponding
“ServiceProperties” element of WS-Ag.

- utilityfunction

[interface» |
- utilityfunction &3 utilityF :

3 CustomBussinessValue 1 1.%
-| variablereference
- [<interface» |
£ 3
1 & 3 VariableReference

e
variablereference

Fig. 6. Schema for Preferences

Figure shows the utility function with its name; currently the way for
expressing the function is open. For simplicity, in the example we only describe
utility functions over one variable. To represent the utility functions, we have
to take into account the provider preferences included in the case study. Those
preferences are several criteria on the algorithms, on satisfying demands in con-
crete validity periods, and on satisfying one more exigent demand in MTBR (e.g.
a lower value) than several less exigent demands. Figure [7] denotes the utility
functions referenced in Figure

Improving Temporal-Awareness of WS-Agreement 203

“MoremtBR | [Utilityld| ccouTBR MoreMTBR

| Period ‘ | 1.0}~ Period Period

RO T 09 b FaU) | Fa(U)

[LessMTBR | |

| Period | 0.8 |

R S e
»— —e— — — 0.6 |
| | 0.5} |
| l— —e— 04— |
R |
| | (.
| | [oq |

[Algorithm], | [| | | | | | | | | —
® 1 F 1 1 1 1 1 1 1 1 1 —
Dijkstra Knapsack Kruskal 1 10 20 30 40 50 60 70 80 90 100 -

Fig. 7. Utility Functions from the Case Study

5 Related Work

Several authors have studied temporal-awareness on service descriptions. In Ta-
ble [we show a comparative of their proposals, including this paper (those of
traditional web at left side, and those of semantic web at right).

Concerning temporal-aware terms, the table denotes that authors who con-
sider GPs, only mention “Non-Periodical” and “Non-Disjoint” intervals, but nei-
ther “Periodical” nor “Disjoint” intervals. On the other hand, authors who take
into account LPs mention “Periodical” and “Non-Disjoint”, but only METEOR-
S and WSMO/WSML show interest in “Non-Periodical” intervals. The other
authors don’t even mention “Non-Periodical” or “Disjoint” intervals in their
works. The reason for that lack of “Disjoint” intervals may be due to the fact
that they can be expressed by means of several “Non-Disjoint” intervals, though
this solution is less expressive. We emphasize WSML(HP) and WSOL because
these proposals concern both GPs and LPs in their works. Other proposals like
QoSOnt, METEOR-S, and WSMO/WSML have declared that they will study
GPs and LPs in their future work.

Only a few of the proposals, among those which are temporal-aware, have
taken preferences into account. However, to the best of our knowledge, none of
them have studied temporality on preferences and creation constraints. We dis-
tinguish two ways to declare the preferences: (1) by comparing the “degree of
similarity” between values of service properties from different agreement offers
and templates; for example, if a provider specifies in the agreement template that
it prefers a value of MTBR of 30s, an agreement offer which requires a MTBR
of 32s will be more similar to the template than another offer requiring 20s; and
(2) by comparing utility values given by utility functions defined on the service
properties, just as we have described above. Both alternatives use weights as a
means of incorporating the degree of importance among service properties to the

204 C. Miiller et al.

Table 1. Comparative between Traditional & Semantic Web Proposals

)
= =8 S8 %
—ig — = 2 EH < g S

g = & S L w8l n u

22328 ITEEY S EEE R

ﬁgu%qoq 8;'20*580

OQ..‘DO’Q’—' - = =

2T 55202042 523 533 2¢E

SEZL2zpRRYE g 5T TLA

FO B RmRPBBBUOEARATISCGE S

TEMPORAL-AWARENESS ON TERMS

GP/NP / v vV vV vV vV V VARVARVERVERSEESIRS
GP/P

GP/ND vV vV vV vV VvV V VARVARVERVARS R
GP/D

LP/NP / ~ o~ o~

Lp/P NVARVARVARV

LP/ND ./ NEVAVA ~ o~

LP/D
PREFERENCES
DoS Y ~ o~
UF v - o~

D=Disjoint, ND=Non-Disjoint, P=Periodical, NP=Non-Periodical
DoS=Degree of Similarity, UF=Utility Functions.

/=feature included, ~=feature identified as future work.

preferences. EWSDL, UDDIe, and METEOR-S have based their preferences on
the degree of similarity, whereas other proposals have only mentioned their inter-
est. Regarding utility functions, Gonzalez et al., WSMO/WSML, and METEOR-
S are currently working on incorporating this feature to their proposals.

6 Conclusions and Future Work

In this paper, we have shown how a temporal domain-specific language (DSL)
can be used to incorporate validity periods into WS-Ag descriptions, such as
qualifying conditions associated to SLOs, template creation constraints during
agreement creation process, or preferences over service properties. In order to ex-
press these validity periods, we have define a schema which includes several kinds
of temporal intervals, from disjoint to periodical. Our temporal DSL would have
a very large domain of applications, apart from WS-Ag. In addition we propose
another schema which allows the definition of preferences over service proper-
ties using any utility function instead of constant float functions as described in
WS-Ag. Currently, we abstain from defining a specific language for describing
the utility functions.

Improving Temporal-Awareness of WS-Agreement 205

For future work, we are considering several open issues. First, our temporal
DSL should be validated in different scenarios to prove its soundness. In order
to do so, it would be needed to develop a proof-of-concept prototype from op-
erational semantics on temporal-aware matchmaking defined in previous works
[18122]. Another future improvement would be defining a concrete DSL to spec-
ify advanced utility functions, in order to complete our improvement for the
preferences description in WS-Ag.

Acknowledgements

The authors would like to thank the reviewers of the 5" International Conference
on Service Oriented Computing, whose comments and suggestions improved the
presentation substantially.

References

1. Aiello, M., Frankova, G., Malfatti, D.: What’s in an Agreement? An Analysis and
an Extension of WS-Agreement. In: Benatallah, B., Casati, F., Traverso, P. (eds.)
ICSOC 2005. LNCS, vol. 3826, pp. 424-436. Springer, Heidelberg (2005)

2. Ali, A.S., Al-Ali, R., Rana, O., Walker, D.: UDDIe: An Extended Registry for Web
Services. In: Proc. of the IEEE Int’l Workshop on Service Oriented Computing:
Models, Architectures and Applications at SAINT Conference, IEEE Press, Los
Alamitos (2003)

3. Allen, J.F.: Maintaining Knowledge about Temporal Intervals. Communications of
the ACM 26(11) (1983)

4. Balaziska, M., Balakrishnan, H., Stonebraker, M.: Contract-Based Load Manage-
ment in Federated Distributed Systems. In: Proc. of the ACM Symposium on
Networked Systems Design and Implementation, San Francisco, California, ACM
Press, New York (2004)

5. Bernauer, M., Kappel, G., Kramler, G.: Representing XML Schema in UML - A
Comparison of Approaches. In: Koch, N., Fraternali, P., Wirsing, M. (eds.) ICWE
2004. LNCS, vol. 3140, pp. 440-444. Springer, Heidelberg (2004)

6. Chen, Y., Li, Z., Jin, Q., Wang, C.: Study on QoS Driven Web Services Composi-
tion. In: Zhou, X., Li, J., Shen, H.T., Kitsuregawa, M., Zhang, Y. (eds.) APWeb
2006. LNCS, vol. 3841, pp. 702-707. Springer, Heidelberg (2006)

7. Chen, Z., Liang-Tien, C., Bu-Sung, L.: Semantics in Service Discovery and QoS
Measurement. In: IT Pro - IEEE Computer Society, pp. 29-34 (2005)

8. de Bruijn, J., Feier, C., Keller, U., Lara, R., Polleres, A., Predoiu, L.: WSML
Reasoning Survey (November 2005)

9. Dobson, G., Sdnchez-Macién, A.: Towards Unified QoS/SLA Ontologies. In: Proc.
of the 3" IEEE International ICWS/SCC Workshop on Semantic and Dynamic
Web Processes, Chicago, IL, pp. 169-174. IEEE Press, Los Alamitos (2006)

10. Gonzélez-Castillo, J., Trastour, D., Bartolini, C.: Description Logics for Match-
making of Services. Technical Report HPL-2001-265, Hewlett-Packard (2001)

11. Gouscos, D., Kalikakis, M., Georgiadis, P.: An Approach to Modeling Web Ser-
vice QoS and Provision Price. In: Proc. of the IEEE Int’l Web Services Quality
Workshop (at WISE’03), pp. 121-130. IEEE Computer Society Press, Los Alamitos
(2003)

206

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

C. Miiller et al.

OGF Grid Resource Allocation Agreement Protocol WG (GRAAP-WG): Web
Services Agreement Specification (WS-Agreement) (v. gfd.107) (2007)

IBM: Web Service Level Agreement (WSLA) Language Specification (2003)

Li, L., Horrocks, I.: A Software Framework for Matchmaking based on Semantic
Web Technology. In: Proc. of the 12" ACM Intl. Conf. on WWW, pp. 331-339.
ACM Press, New York (2003)

Lodi, G., Panzieri, F., Rossi, D., Turrini, E.: SLA-Driven Clustering of QoS-Aware
Application Servers. IEEE Transactions on Software Engineering 33(3), 186-196
(2007)

Ludwig, H., Keller, A., Dan, A., King, R.P.: A Service Level Agreement Language
for Dynamic Electronic Services. Technical Report 22316 W0201-112, IBM (2002)
Marcos, E., de Castro, V., Vela, B.: Representing Web Services with UML: A Case
Study. In: Orlowska, M.E., Weerawarana, S., Papazoglou, M.M.P., Yang, J. (eds.)
ICSOC 2003. LNCS, vol. 2910, pp. 17-27. Springer, Heidelberg (2003)
Martin-Diaz, O., Ruiz-Cortés, A., Durédn, A., Miiller, C.: An approach to temporal-
aware procurement of web services. In: Benatallah, B., Casati, F., Traverso, P.
(eds.) ICSOC 2005. LNCS, vol. 3826, pp. 170-184. Springer, Heidelberg (2005)
Miiller, C., Martin-Diaz, O., Resinas, M., Fernandez, P., Ruiz-Cortés, A.: A WS-
Agreement Extension for Specifying Temporal Properties in SLAs. In: Proc. of the
37 Jornadas Cientifico-Técnicas en Servicios Web y SOA (2007)

OASIS and UN/CEFAT: Electronic business using XML (ebXML) (2007)
Oldham, N.,; Verma, K., Sheth, A., Hakimpour, F.: Semantic WS-Agreement Part-
ner Selection. In: 15" International WWW Conf., ACM Press, New York (2006)
Ruiz-Cortés, A., Martin-Diaz, O., Durdn, A., Toro, M.: Improving the Automatic
Procurement of Web Services using Constraint Programming. Int. Journal on Co-
operative Information Systems 14(4), 439-467 (2005)

Sahai, A., Machiraju, V., Sayal, M., Jin, L.J., Casati, F.: Automated SLA Moni-
toring for Web Services. Research Report HPL-2002-191, HP Laboratories (2002)
The Internet Society: Policy Core Information Model - v1 Specification (2001)
Tian, M., Gramm, A., Naumowicz, T., Ritter, H., Schiller, J.: A Concept for QoS
Integration in Web Services. In: Proc. of the IEEE Int’l Web Services Quality
Workshop (at WISE’03), pp. 149-155. IEEE Computer Society Press, Los Alamitos
(2003)

Tosic, V., Pagurek, B., Patel, K., Esfandiari, B.: Management Applications of the
Web Service Offering Language (WSOL). In: I. Systems, pp. 564-586 (2005)
Trastour, D., Bartolini, C., Gonzéalez-Castillo, J.: A Semantic Web Approach to
Service Description for Matchmaking of Services. Technical Report HPL-2001-183.

	Improving Temporal-Awareness of WS-Agreement
	Introduction
	A Case Study
	WS-Agreement in a Nutshell
	Basic Description of WS-Agreement
	Temporal-Awareness of WS-Agreement

	Our Proposal
	Temporal Schema
	Temporality on Terms and Creation Constraints
	Temporality on Preferences

	Related Work
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

