
User Oriented Hierarchical Information
Organization and Retrieval

Korinna Bade, Marcel Hermkes, and Andreas Nürnberger

Otto-von-Guericke-University, D-39106 Magdeburg, Germany
{kbade,nuernb}@iws.cs.uni-magdeburg.de, marcel.hermkes@googlemail.com

Abstract. In order to organize huge document collections, labeled hi-
erarchical structures are used frequently. Users are most efficient in nav-
igating such hierarchies, if they reflect their personal interests. Thus, we
propose in this article an approach that is able to derive a personalized
hierarchical structure from a document collection. The approach is based
on a semi-supervised hierarchical clustering approach, which is combined
with a biased cluster extraction process. Furthermore, we label the clus-
ters for efficient navigation. Besides the algorithms itself, we describe an
evaluation of our approach using benchmark datasets.

1 Introduction

With the increasing number of data publicly available also the personal collec-
tions of documents have become larger. A useful personal organization of these
files is necessary to allow efficient re-finding of information. Hierarchical folder
structures have proven to be useful in the past, e.g. in personal file folders or
library catalogs. These structures have the advantage that they provide at the
same time a (categorized) overview of the collection and direct access to all doc-
uments therein. However, users are most efficient in navigating such hierarchies
if they reflect their personal interests instead some generally applicable criteria.

The goal of the work presented in the following is to provide the user a tool for
building and maintaining such a personal hierarchy. We consider the following
scenario. A starting point for the user can be a completely unstructured col-
lection. At this point, the system can provide the user with an initial although
unpersonalized structure purely based on standard document similarities. Once
the user starts with explicitly filing documents in his own personal structure,
either by himself or assisted by the system, this information is used to adapt the
structuring of the still unstructured part of the collection towards user specific
structuring preferences. Furthermore, these preferences can be applied to other,
external collections, which the user is viewing. This allows the user faster access
to interesting information therein.

In this paper, we present and evaluate an approach that is capable of ex-
tracting such a personal structure, while having different amounts of previously
structured data available. The approach consists of three main steps: hierarchical
clustering, extraction of clusters from the obtained dendrogram, and labeling.
Each step is presented in an own section, also including important related work.

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 518–526, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

User Oriented Hierarchical Information Organization and Retrieval 519

2 Personalized Hierarchical Clustering

Our considered task is a two-fold semi-supervised hierarchical learning problem
with having unlabeled documents as well as unknown classes. The predominant
classes C in the collection are split into the set of known classes Ck and a set
of unknown classes Cu. As a consequence, the given labeled documents Dk are
only mapped to classes in Ck. The task of the algorithm is to map the unlabeled
documents Du to classes in C = Ck

⋃
Cu. This means that the algorithm either

derives a mapping to a known class or extracts new classes by grouping similar
documents and assigning a class label to this group. Furthermore, we assume
hierarchical relations RH between the classes in form of a tree structure. When
structuring a collection into classes, the algorithm should preserve the existing
structure RHk and extract the relations of discovered classes in CU to each other
and to the classes in Ck. Considering our user scenario, Ck and RHk are defined
by the hierarchical filing system of the user. Dk are the documents, which were
filed in the past. Du consists of the documents, which are still unstructured.

Considering related work, semi-supervised clustering is often performed by
constraint based clustering. Here, the supervised information is used to generate
Must-Link and Cannot-Link constraint sets [9], which influence the clustering.
Several approaches exist that either change the underlying similarity space or
directly modify the clustering process itself, e.g. [9,6,10,2]. All these approaches
search for a flat partitioning of the data, while we want to find a hierarchical
structure. In principle, these algorithms could be applied recursively to create
a hierarchy. However, partitioning algorithms require the number of clusters as
input parameter, which is not known in our scenario and hard to determine
automatically. Additionally, it needs to be determined on each hierarchy level.
Therefore, we decided to use Hierarchical Agglomerative Clustering (HAC) that
directly produces a hierarchical representation of the data by a dendrogram.
Furthermore, hierarchical approaches produce more stable and more accurate
results, especially if the data of the used collection is naturally hierarchical.

In our approach, labeled data is used to change the underlying similarity space
of a HAC algorithm to express personal structuring preferences. We assume
that the extracted features are sufficient to describe these preferences. In our
current work, we restricted ourselves to content features, i.e. occurring terms in
text documents. For each feature fi, a weight wi is computed that expresses its
influence in the clustering. These weights are integrated in the cosine similarity
measure: sim(fv1, fv2, w) =

∑
i wi · fv1,i · fv2,i. In [1], we present a method

to learn and apply these weights in detail. Its evaluation showed that feature
weighting improves the initial clustering towards a user specific structure.

3 Cluster Extraction

The goal of cluster extraction is to compress the dendrogram representation to
the most ”meaningful” nested clusters, i.e. to the clusters describing classes in
C = Ck

⋃
Cu. In our setting, ”meaningful” is partially defined by the given

520 K. Bade, M. Hermkes, and A. Nürnberger

labeled data. However, it is usually rare, does not cover all classes and might be
erroneous. Therefore, we first develop an unsupervised algorithm, which is then
enhanced with labeled data.

An Unsupervised Approach. In published research, there is a common under-
standing that clusters could be extracted by two basic approaches. The dendro-
gram is either recursively cut with similarity thresholds or clusters are extracted
on a node to node basis (e.g. by looking for significant changes in the merging
similarity between a node (i.e. the similarity of its two child clusters) and its
parent node). Both algorithm need a threshold as parameter. While the second
approach can better handle different densities of sibling clusters, the first ap-
proach allows the use of a ”global” criterion that helps in the extraction of less
obvious clusters by using more obvious sibling clusters. Furthermore, it can also
be used to always reduce the dendrogram, even without obvious sub-clusters.
Nevertheless, cluster extraction is not widely discussed in the literature. To our
knowledge, no work was published that dealt with this problem more thoroughly.
Some work was done on extracting clusters from reachability plots produced by
density based clustering (see [7,3]). The authors of [7] also show the similarities
between reachability plots and dendrograms making it possible to apply their
algorithms to dendrograms. However, these algorithms require specific assump-
tions that do not necessarily hold in our setting. The work in [7] works best with
sharp cluster distinctions usually obtained, when data points are only assigned
to leaf-clusters, which violates our problem definition. The work in [3] focused
on extraction of narrowing sub-clusters. However, their approach requires a very
smooth reachability plot, which is not produced in our application.

In this paper, we used a threshold approach. A recursive procedure is applied
that starts at the root of the dendrogram and is repeated for each top node
of an extracted cluster. A threshold t is computed in each iteration depending
on the standard deviation σ of merging similarities in the considered sub-tree.
The idea is to skip a top fraction of nodes with merging similarities that are
”outstanding” from the others. As reference value the merging similarity of the
current top node is used, which is also the minimum merging similarity of the
whole sub-tree simmin. t is computed by simmin +p ·σ. While simmin and σ are
computed from the dendrogram, p is a parameter to determine the size of the
fraction of minimal merging similarities to skip. Further parameters can restrict
the cluster extraction, which are useful from the application point of view, i.e.
the minimum number of items per cluster (preventing the extraction of too small
clusters), the minimum difference in item size between a cluster and its parent
cluster (preventing narrowing sub-clusters of being too similar to their parents),
a minimum standard deviation (underneath it, merging similarities are supposed
to be indistinguishable). Appropriate values for these are highly dependent on
personal preference. Their values are not very crucial for the extraction process
and adaptations to them can be made during interaction with the collection.

Using Supervision. The labeled data is used locally to make known class
extraction more robust, i.e. avoiding the split of such a class. However, one has

User Oriented Hierarchical Information Organization and Retrieval 521

to be cautious in doing so, as this ”robustness” should not overextend onto
unknown classes. Due to this, we use the labeled data in a post-processing step
after the unsupervised extraction rather than integrating it directly. First, the
extracted clusters are labeled with known classes, if possible, as described in
Sec. 4. We then merge sibling clusters labeled equally. As simple merge, we
create intermediary clusters for groups of at least two equally labeled siblings.
More interesting is what we call a deep merge based on the original dendrogram.
Here, the sibling nodes are merged by extracting the common ancestor node from
the dendrogram. The idea is that other items that also belong to the common
ancestor node, but were not extracted or labeled as such, also belong to the same
class. This combines more items of one class. However, it only works correctly,
if the initial clustering represents the desired cluster structure appropriately.
This can be detected, if integrated clusters are labeled differently, in which case
the merge is not performed. However, this can especially not be detected for
unknown classes, making it vulnerable for mislabeling.

Additionally and maybe more important is the use of the labeled data for
estimating initial parameter values. Especially if the user starts interacting with
the collection, he might not know how to set the parameters appropriately. Once
he has a first result, it is easier to adapt parameters according to preference. For
estimation, we label the clusters in the dendrogram. For each labeled cluster,
we use the distance in merging similarity between this cluster and the cluster
labeled with the parent class to estimate p. The mean value of all estimates is
the final estimate. Minimum cluster size and standard deviation could be set to
the maximum value that still allows the extraction of all labeled clusters.

4 Cluster Labeling

Labeling extracted clusters is crucial for the effectiveness of the hierarchy as it
guides the user in browsing it. A good label must be capable of summarizing
the content of a cluster. At the same time, it must be very short. In a hierarchy,
the label must also be able to distinguish a cluster from its sibling clusters.
Furthermore, it must show the differences between the cluster and its parent
cluster. Although there are different approaches to automatically extract good
cluster labels, a label given by the user himself is most descriptive. Therefore, we
try to reuse known labels, if possible, before computing user independent labels.

Labeling Clusters as Known Classes. Known classes can be identified with
the labeled data. As it is rare and possibly erroneous, we cannot trust every
single instance but can also not assume high support or confidence of a labeling
decision. In our work, we use two parameters to deal with this problem and
constrain the labeling. We require to have a minimum precision for one class in
all labeled items of the cluster and a minimum number of items labeled as such.
The higher we set the thresholds of these parameters the less errors we make.
However, this also means labeling less data. Good parameter values depend on
the available amount of labeled data and on the clustering quality.

522 K. Bade, M. Hermkes, and A. Nürnberger

The clusters are labeled in a recursive procedure starting from the root of the
cluster tree. If a label following the defined criteria is found, it is assigned to the
cluster. All sub-clusters of it are then restricted to be labeled with sub-labels.
This ensures the consistency of the hierarchy of known classes. Furthermore,
labels are propagated upwards during cluster merges.

Labeling Clusters of Unknown Classes. The basis for most existing ap-
proaches are term statistics. Unfortunately, most related work only considers a
flat cluster environment, which makes them not necessarily applicable to a hi-
erarchical structure. [5] dealt with hierarchies by distinguishing three different
concepts: terms describing the cluster itself, terms that are more general and
thus better describe the parent cluster, and terms that are more specific, de-
scribing a child cluster. The distinction between these three concepts is made by
predefined thresholds on term frequencies. However, these thresholds are hard
to determine. Furthermore, it is questionable, whether one threshold works for
different hierarchy levels as the distribution of term frequencies might vary. [4]
uses a linear function that combines different statistical features that include hi-
erarchical labeling criteria. In contrast to our work, they try to learn weights for
different features by using linear regression on the basis of a set of labeled data.
Our approach also uses statistical measures. As [5] and [4], we integrate parent
and child clusters to avoid several occurrences of the same label along pathes
in the hierarchy. A score of descriptiveness Dest,C is computed for each term t
and each cluster C mainly based on the (absolute) document frequencies dft,C ,
i.e. the number of documents that contain t (see (1), (2)). Here, each cluster is
handled as containing all documents assigned to it and its child clusters.

Dest,C = log
(

rankP (dft,P)
rankC(dft,C)

)

· (1 − SIt,P + SIt,C)/2 (1)

SIt,C =

{
1 if Child(C) = ∅(∑

ci∈Child(C) − dft,ci

dft,C
log2

dft,ci

dft,C

)
/ log2 |Child(C)| else

(2)
The first factor measures the boost in document frequency ranking of t in

comparison to the parent cluster P (as rankC(dft,C) is the rank of t in an
descending order according to the document frequency of t in C, as in [4]). This
assures that terms get higher scores that were not already good descriptors for
the parent cluster and are therefore too general for the current cluster. The
second factor considers information on how the term is distributed in sibling
and child nodes, expressed by SI, which is bound to [0; 1]. Terms occurring in
several child clusters are favored by SIt,C , while terms that are also descriptors of
sibling clusters are penalized by 1−SIt,P . For each cluster, n terms with highest
descriptiveness are used as label. Unfortunately, our score cannot completely
avoid that a term occurs several times along pathes through the cluster hierarchy
(i.e. pathes from the root cluster to all leaf nodes). Therefore, we go through all
such pathes in a post-processing step. If we encounter a term in the selected n
descriptive labels occurring several times in a path, we remove it from the set of

User Oriented Hierarchical Information Organization and Retrieval 523

descriptive labels in all clusters except the one with highest Dest,C . All clusters
now having less than n terms as label get added new terms by taking the next
best descriptive terms from the initially computed list.

5 Evaluation

In this evaluation, the general performance of the algorithms is evaluated using
two different datasets of web pages that simulate the problem. The first is the
banksearch dataset [8] (see Fig. 1). The second was created by us by downloading
parts of the open directory (www.dmoz.org). The properties can be summarized
as: hierarchy depth 4, 3 to 16 direct child nodes per inner node, about 50 doc-
uments directly in each node, 2119 documents in total. All documents were
represented with standard tfidf document vectors.

We evaluated different settings to simulate different user data. For both
datasets, we evaluated a setting with 10 labeled documents per class, i.e. a
classification scenario (settings (1), (5)). For the banksearch data, we also eval-
uated settings with unknown classes: (2) Motor Sport, (3) Science, (4) Science
and Sport. As measure, we used the f-score gained in accordance to the given
dataset, which is supposed to be the true user defined class structure that shall
be recovered. For its computation in an unlabeled cluster tree, we followed a
common approach that selects for each class in the dataset the cluster gaining
the highest f-score on it. When evaluating cluster labeling, the f-score of known
classes is determined based on all documents labeled as such. The unknown
classes are again extracted as best f-score clusters, however only in hierarchy
consistent unlabeled parts of the cluster tree.

As we already evaluated the baseline performance of the clustering algorithm
in [1], we focus here on evaluating cluster extraction and labeling. The compet-
itiveness of our approach for classification can briefly be shown by comparison
with SVM. For the banksearch data, the SVM reaches a mean F-score of 0.6892,
while our approach reaches 0.7570 on the dendrogram. For the open directory
data, the SVM reaches 0.6198, while our approach reaches 0.6100. Hence, our
algorithm has a good baseline performance.

In Tables 1 and 2, we evaluate our cluster extraction methods (CE - unsu-
pervised extraction, SM - simple merge, DM - deep merge) in comparison to the
baseline given by the dendrogram (DG). As we consider here only a single cluster
per class, this evaluation shows how good the algorithms are in preserving the
best cluster. We only varied p for cluster extraction as the other parameters only
do pruning of the cluster tree. We set the minimum cluster size and the minimum

• Finance (0)
◦ Commercial Banks (100)
◦ Building Societies (100)
◦ Insurance Agencies (100)

• Programming (0)
◦ C/C++ (100)
◦ Java (100)
◦ Visual Basic (100)

• Science (0)
◦ Astronomy
(100)

◦ Biology (100)

• Sport (100)
◦ Soccer (100)
◦ Motor

Sport (100)

Fig. 1. Class structure of the banksearch dataset

524 K. Bade, M. Hermkes, and A. Nürnberger

Table 1. F-Score for different cluster extraction methods using the banksearch data

p = 0.1 p = 0.05 p = 0.03 p = 0.01
Setting DG CE SM DM CE SM DM CE SM DM CE SM DM

(1) 0.757 0.693 0.733 0.723 0.735 0.737 0.735 0.718 0.760 0.745 0.754 0.754 0.754
(2) 0.771 0.699 0.727 0.752 0.713 0.724 0.724 0.762 0.762 0.762 0.767 0.767 0.767
(3) 0.734 0.582 0.654 0.667 0.676 0.705 0.709 0.717 0.729 0.731 0.732 0.732 0.732
(4) 0.697 0.542 0.585 0.583 0.575 0.622 0.617 0.641 0.653 0.643 0.694 0.694 0.694

Table 2. F-Score open direc-
tory data for CE/SM/DM

Setting (5)
DG 0.610
p = 0.2 0.551/0.581/0.568
p = 0.1 0.577/0.587/0.585
p = 0.01 0.586/0.590/0.587

Table 3. Estimation p

Setting p
(1) 0.196
(2) 0.072
(3) 0.047
(4) 0.030
(5) 0.212

Table 4. F-Score after labeling

Setting SM DM SM-l DM-l
(1) 0.760 0.745 0.696 0.696
(2) 0.762 0.762 0.728 0.728
(3) 0.729 0.731 0.692 0.694
(4) 0.653 0.643 0.624 0.519
(5) 0.587 0.585 0.525 0.521

Table 5. Example labeling for the banksearch data

Class Five selected terms
Banking mortgage, savings, payments, debit, income
Commercial Banks bank, depositor, internet, abbey, advert
Building Societies society, interest, building, telegraphic, superseeded
Insurance Agencies insurance, cover, claims, wording, policy

difference in cluster size between parent and child cluster to 10. The minimum
standard deviation was set to 0. Increasing p leads in general to broader cluster
trees and a fewer number of extracted clusters. A too high value for p therefore
will split a ”class cluster” into several clusters, causing a decrease in the f-score.
There is always a value for p that can (almost) recover the best f-score clusters
from the dendrogram, while highly condensing the dendrogram representation,
shrinking the number of clusters from over 2000 to about 100 or less for the
banksearch data and from over 4000 to 200 or less. Furthermore, it seems that
good values for p are quite stable for different data. Its order of magnitude, which
is quite low, is in our opinion given by the fact that we cluster high dimensional
text data. Both merging methods are useful for getting back lost performance
due to splits in the cluster tree with similar results. Although hypothesized dif-
ferently by us, the deep merge seems not to be better. This suggest that a simple
merge, which also requires less computation time, is a sufficient and therefore
better choice. Table 3 shows the estimations for p as computed based on the
labeled data. Although these values are not perfect, they provide a good initial
starting point for the exploration of the cluster tree.

User Oriented Hierarchical Information Organization and Retrieval 525

Table 4 evaluates the identification of given classes using a minimum precision
of 0.6 and a minimum number of labeled items of 2. We used a fixed p of 0.03
for the banksearch settings and 0.1 for the open directory setting. Both merges
are considered. Labeling f-score is always less than the best cluster f-score as the
given labeled data is not sufficient to always identify the best clusters. In setting
(4), the deep merge performs a lot worse than the simple merge as it overextends
the label of the known class Programming onto the unknown Science class. This
suggests that the deep merge might be problematic in the case of unknown
classes. Nevertheless, the identification of existing classes works well in general.

Table 5 gives an inside on how the labeling of unknown classes works with
a small example. The labeling algorithm was directly applied to the dataset
hierarchies to compute class labels. In general, the manually chosen labels are
in about 70% of the classes among the five selected terms. The computed terms
seem quite descriptive for the classes. Nevertheless, a more thorough evaluation
of the labeling method is still necessary.

6 Conclusion

In this paper, we presented an integrated approach that provides a personalized
hierarchical cluster structure for a certain collection. The algorithm comprises
of several steps, i.e. (1) do personalized HAC, (2) extract clusters unsupervised,
(3) label clusters according to known classes, (4) merge clusters, and (5) label
still unlabeled clusters. We evaluated each step and showed the validity of our
approach. The algorithms presented as solutions to certain steps can also be
applied in different settings and are not necessarily restricted to our application.

References

1. Bade, K., Nürnberger, A.: Personalized hierarchical clustering. In: Proceedings
of the 2006 IEEE/WIC/ACM Int. Conference on Web Intelligence, pp. 181–187
(2006)

2. Basu, S., Banerjee, A., Mooney, R.: Active semi-supervision for pairwise con-
strained clustering. In: Proc. of SIAM Int. Conf. on Data Mining, pp. 333–344
(2004)

3. Brecheisen, S., Kriegel, H.P., Kröger, P., Pfeifle, M.: Visually mining through clus-
ter hierarchies. In: Proc. of SIAM Int. Conf. on Data Mining, pp. 400–412 (2004)

4. Callan, J., Treeratpituk, P.: Automatically labeling hierarchical clusters. In: Pro-
ceedings of the 2006 International Conference on Digital Government Research.
ACM International Conference Proceeding Series, vol. 151, pp. 167–176. ACM
Press, New York (2006)

5. Glover, E., Pennock, D., Lawrence, S., Krovetz, R.: Inferring hierarchical descrip-
tions. In: Proceedings of 11th International Conference on Information and Knowl-
edge Management, pp. 507–514 (2002)

6. Kim, H., Lee, S.: An effective document clustering method using user-adaptable
distance metrics. In: Proceedings of the 2002 ACM symposium on Applied com-
puting, pp. 16–20. ACM Press, New York (2002)

526 K. Bade, M. Hermkes, and A. Nürnberger

7. Sander, J., Qin, X., Lu, Z., Niu, N., Kovarsky, A.: Automatic extraction of clusters
from hierarchical clustering representations. In: Advances in Knowledge Discovery
and Data Mining: 7 th Pacific-Asia Conference (Proc.), pp. 75–87 (2003)

8. Sinka, M., Corne, D.: A large benchmark dataset for web document clustering.
In: Soft Computing Systems: Design, Management and Applications, Frontiers in
Artificial Intelligence and Applications, vol. 87, pp. 881–890 (2002)

9. Wagstaff, K., Cardie, C., Rogers, S., Schroedl, S.: Constrained k-means clustering
with background knowledge. In: Proceedings of 18 th International Conference on
Machine Learning, pp. 577–584 (2001)

10. Xing, E., Ng, A., Jordan, M., Russell, S.: Distance metric learning, with application
to clustering with side-information. Advances in Neural Information Processing
Systems 15, 505–512 (2003)

	User Oriented Hierarchical Information Organization and Retrieval
	Introduction
	Personalized Hierarchical Clustering
	Cluster Extraction
	Cluster Labeling
	Evaluation
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

