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Abstract. Multi-target model trees are trees which predict the values
of several target continuous variables simultaneously. Each leaf of such a
tree contains several linear models, each predicting the value of a different
target variable. We propose an algorithm for inducing such trees in a
stepwise fashion. Experiments show that multi-target model trees are
much smaller than the corresponding sets of single-target model trees
and are induced much faster, while achieving comparable accuracies.

1 Introduction

Many problems encountered in ecological applications involve the prediction of
several targets associated with a case. More formally, given a set of observed data
(x,¥) € X x Y, where X consists of m explanatory (or independent) variables
X, the goal is to predict several target (or dependent) variables Yi,..., Y.
The range of each Y; can be either a finite set of unordered category labels for
classification or a subset of real number R for regression.

The problem of predicting several target variables simultaneously has been
approached in the predictive clustering framework [I], where now methods exist
to construct clusters of examples which are similar to each other and simul-
taneously associate a predictive model (classification or regression) with each
constructed cluster. Several systems have been developed to induce decision and
regression trees [TI9I5] or rules [§] within the predictive clustering framework,
but to the best of our knowledge there is no attempt of inducing a model tree to
predict the values of several continuous target variables simultaneously.

Model trees [BITOIGUTI] are decision trees whose leaves contain linear regres-
sion models that predict the value of a single continuous target variable. In this
paper, we address the task of inducing multi-target model trees that predict the
values of several target continuous variables simultaneously. We propose an algo-
rithm named MTSMOTI (Multi Target Stepwise Model Tree Induction) that
induces the multi-target trees in a stepwise fashion [2]. The tree is induced top-
down by choosing at each step to either partition the training space (split nodes)
or introduce a regression variable in the set of linear models to be associated
with leaves (regression nodes).
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The paper is organized as follows. The stepwise induction of multi-target
model trees is presented in Section 2l Experimental results are reported in Sec-
tion Bl and some conclusions are drawn in Section [l

2 The Algorithm

Our system for the induction of multi-target model trees employs the basic
stepwise construction of a regression model as it is implemented in SMOTI [4].

To explain the stepwise procedure, let us consider an example: suppose we
are interested in analyzing a target variable Y in a region R described by two
continuous explanatory variables X; and Xs when R can be partitioned into two
regions R; and Re and two linear regression models involving both X; and X5
can be built independently for each region R;. It may be found that the Y value
is proportional to X; and this behavior is independent of any partitioning of R.
In this case, the effect of X7 on Y is global, since it can be reliably predicted for
the whole region R. The initial regression model is approximated by regressing
on X, for the whole region R : Y =ao+ BoXl. The effect of another variable in
the partially constructed regression model is introduced by eliminating the effect
of Xi: we have to compute the regression model for the whole region R, that is,
Xy = Qo0 + b21X1, as well as the residuals X} = X5 — Xoand Y =Y -V =
Y — (ao + boXl). The partitioning of R into R; and Ry leads to building two
independent regression models to capture the effect of the variable X5 locally in
the subregions R; and Rq, respectively. Obviously, a straight-line regression now
involves the residual variables Y’ and X/, but can be automatically translated
into a multiple linear function involving Y, X7 and Xs.

This stepwise procedure corresponds to a tree structure with split nodes that
produce binary partitions of the training data and regression nodes that perform
straight-line regressions. Similarly to SMOTI, MTSMOTTI induce such trees.
However, MTSMOTTI differs from SMOTI in several ways. First, MTSMOTI
predicts several target variables simultaneously, assuming there is some (linear)
dependence among target variables. Second, it resorts to a MAUVE [7]-based
heuristic function to reduce the SMOTI time complexity of evaluating a node,
yielding trees with better accuracy. Finally, it adopts some different stopping
criteria and a post-pruning method. We discuss these topics below.

2.1 Model Tree Construction

The top-level description of the model tree construction performed by MTSMOTI
is sketched in Algorithm 1.

A split node ¢ on a variable X; performs a binary test. If X; is continuous,
the split test is in the form X; < a vs X; > a. Possible values of a are found
by sorting the distinct values of X; in the training sample falling in ¢, then
identifying one threshold for each distinct value. If X; is discrete, a discrete split
partitions attribute values into two complementary sets, so that a binary tree is
always built. To determine discrete split thresholds, we use the same criterion
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applied in CART. If Sx, = {z;,,..., 2, } is the set of distinct values of X; in ¢,
Sx, is sorted according to the bample mean of the target variable Y (or residual
of Y) over all training cases falling in ¢, that is, Yl, .. Yk In the multi-target
case, the set of distinct values of X is sorted accordmg to the “average” of the
sample means for each target variable Y; from Y. Since the range of different
target variables may differ by several orders of magnitude, the sample means are

scaled within the range [0, 1]. The scaled value of Y;, is Yj, = Y5, —min,|

| —[0,1] — (mazj—min;)’
where min; = min k{Yjé} and max; = | ax { Y

PR

Algorithm 1. MTSMOTTI top-level description.

function build-MTSMOTI-tree(X,Y, R, E) return T

X — set of m continuous (X¢) and discrete (Xp) explanatory variables
Y — set of n continuous target variables

R — set of residuals of continuous variables; initially R = Xc UY

E — {(zj,y;)[j =1... N} a training sample

T — a multi-target model tree with regression and split nodes

begin

RegList=regressionCandidates(X,Y, R, E);

if stopping criteria then

10: ¢ is the best regression node on RegList; T =leaf(best:);

11: else

12:  SplitList=splitCandidates(X, Y, R, F); t is the best node on RegListUSplit List;
13:  if t is a regression node on variable X; then

©

14: R’ is a copy of R; Rx; is residual of X; in R';

15: for each R; € R’ do

16: if R; represents either a target variable or a continuous explanatory variable
not yet included in the current model then

17: replace R; in R’ with its new residual by removing effect of Rx;;

18: end if

19: end for

20: T’ =build-MTSMOTI-tree(X,Y, R, E); T = tree with root in ¢t and child T";

21:  end if

22: if t is a split node on variable X; then

23: T, =build-MTSMOTI-tree(X, Y, R, {(z;, y;) € E| test in t is true});

24: Tr =build-MTSMOTI-tree(X, Y, R, {(z;, y;) € E| test in t is false});

25: T is the tree with root in ¢, left branch T, right branch Tg;

26:  end if

27: end if

28: end

A regression node performs a set of straight-line regressions on a continuous
variable X;, one for each target variable Y;. Straight-line regressions in the sub-
tree rooted in a regression node will involve residuals of both the target variables
and the continuous explanatory variables not yet included in the model.
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2.2 Split and Regression Node Evaluation

The choice of either a split test or a regression step at a node ¢ is based on the
evaluation measures s(¢, Y) and r(t, Y), respectively.

Let t be asplit on X; then s;(¢,Y;) is computed as s;(t;Y;) = N((t))RE(tL, i)+

]J\\f,((tt’;) RE(tr;Yj), where N (t) is the number of cases reaching t, N(tr) (N(tr)) is
the number of cases passed down to the left (right) child, and RE(ty,) (RE(tr)) is

the resubstitution error of the left (right) child. The resubstitution error is com-

puted as RE(¢;Y;) \/N yh 7;,)2. For the left(right) child of a split

t, the estimate 3j; combines the btralght—hne regressions associated with regression
nodes along the path from the root to ¢y, (tg) with the straight-line regression on
X; computed on t7, (tg). In case X is a discrete variable, straight-line regression
onty, (tr) is replaced with the sample mean of Y; (or residual of Y;) values falling
in t;, (tg). This evaluation function is derived by MAUVE [7] as an alternative
to consider no regression (M5’)[10], simple regression on all continuous variables
(SMOTT) or multiple regression on all continuous variables together (RETIS) [3].
The motivation in favor of the MAUVE measure is in its lower computational com-
plexity. In fact, similarly to M5, MAUVE is linear in the number of variables, but
the MAUVE split evaluation avoids some pathological behaviors of M5’ [7]. The
evaluation of a regression step Y; = a; + 3;X; at node ¢ is based on the resub-
stitution error RE(t;Y;). In this way, the selection of the best regression step re-
quires the computation of a straight-line regression with complexity linear by num-
ber of examples falling in ¢, for each of the m target variables. Measures obtained
at ¢ for separate target variables are scaled to the interval [0, 1] and combined as

s(t,Y) = ! ZJ Lso01(:Y)) (r(t7 Y)= iz;‘:l REﬁ[oyl](t;Yj)). The most

promising split (regression) minimizes the evaluation measure s (r) on the set of
split (regression) candidates.

As pointed in [], a regression step on X; would result in values of r(t;Y;)
less than or equal to values of s(¢;Y) for some split test involving X,. Hence,
the split selection criterion in MTSMOTT is improved to consider the special
case of identical regression models associated with both children (left and right):
a useless split is replaced with a regression candidate. To check for this case,
MTSMOTTI compares pairs of lines associated with the children according to a
statistical test for coincident regression lines [T1] with linear time complexity.

2.3 Stopping Criteria

Three different stopping criteria are implemented. The first uses the partial
F-test to evaluate the actual contribution provided by a new explanatory variable
to the model [2]. The F-test is performed separately for each target variable.
Hence, stopping can operate at different tree depth for different target variables.
The second requires the number of examples in each node to be greater than
a minimum value. The third stops the induction process when all continuous
explanatory variables along the path from the root to the current node are used
in regression steps and there are no discrete variables in the training set.
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2.4 Pruning

MTSMOTTI adopts a pruning procedure to determine which nodes of the tree
should be taken as leaves and compute the set of linear models for each interior
node of the un-pruned tree. Linear models built in a stepwise fashion at each node
are expanded by sequentially adding variables, one at a time, on the basis of the
strength of the average resubstitution error. The models are built by using only
the continuous variables tested or regressed in the subtree below this node. For
each target variable, the contribution of an added term is immediately evaluated
according to the F-test and eventually dropped whenever it is not statistically
significant. Once a linear model is in place for an interior node, the tree is
pruned back from the leaves so long as the expected estimated error decreases.
The estimate of the expected error is the average of the resubstitution errors
(scaled in the range [0,1]) on the training cases reaching that node for each target
variable. To avoid the underestimation of the expected error on unseen cases, the
average resubstitution error is multiplied by the factor (N (t)—v(t))/(N(t)+v(t)),
where N (¢) is the number of training cases that reach ¢ an v(t) is the number of
variables in the linear model associated with the node.

3 Experimental Results

The performance of MTSMOTI is evaluated on both single-target and multi-
target datasets by 10-fold cross-validation. For each target variable Y;, we esti-
mate the basis of the average relative mean square error ( RRMSE(D,Y;) =

10 [N(Di) N(Di)
10 2G4 2 Wi = ﬂjh,(D/Di))Q/\/ 2. (Yjn — 4;(Di))?) ), where g, (D/D;)

is the value predicted for the j-th target variable of the h-th testing case by the
model tree induced on D/D; and g; is the mean value of y; on D;. RRMSE is
averaged on separate target variables. The complexity of trees is evaluated on
the basis of the number of leaves. All the multi-target datasets as well as the
results for PC-Tree reported in this Section are provided by Bernard Zenko [§].

3.1 Single-Target Datasets

MTSMOTT is tested on single-target datasets taken from the UCI Machine
Learning Repository (http://www.ics.uci.). MTSMOTT is run in two settings.
In the former setting (SR), model trees are built in a stepwise fashion, while
in the latter setting (S), model trees are built by partitioning the training sam-
ple and then associating leaves with multiple linear models by post-pruning the
tree. MTSMOTTI is compared with REGTREE, i.e., our implementation of a re-
gression tree learner, SMOTI, M5’ predictive clustering trees (PCT) and rules
(PCR). SMOTTI and M5’ are run with default stopping thresholds. The pruning
of M5’ is enabled, but no smoothing is used. Results are reported in Table [l
Several conclusions are drawn from these experimental results. First, model
trees outperform regression trees in accuracy and size. Second, our implementa-
tion of the stepwise tree construction generally improves performance of SMOTI
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Table 1. Single-target regression: comparison of the average RRMSE and average size

RRMSE Size
Dataset MT MT REGSMOM5 PCT MT MT REGSMOM5 PCT
(SR) (S) TR. TI (SR) (S) TR. TI

AutoHorse 0.38 0.43 0.47 049 035 0.41 38 42 68 6.6 24 23

AutoMpg 0.40 0.44 0.44 046 0.37 0.45 12.7 10.5 16,5 10 4.8 16
AutoPrice 0.48 0.46 0.60 0.53 0.40 0.49 7.2 45 102 66 74 9
Tumor 1.00 1.16 1.16 1.34 099 096 4.7 17 166 & 1.1 3
Cloud 0.53 0.68 0.82 0.70 0.52 0.58 3.2 42 69 5 24 9
CPU 0.17 0.34 0.65 0.80 0.20 0.33 83 39 13 731 12
Housing 0.45 047 049 045 044 043 45 185 21.1 11 135 32
Quake 099 1.12 1.03 2.38 1.01 099 23 29 288 23 33 3
Sensory 0.93 0.93 0.93 1.00 096 0.94 16.5 16.5 16.5 12 4.7 7
Servo 0.60 0.60 0.60 0.45 0.43 0.42 7 7 7 7T 56 11
Strike 0.94 091 096 1.88 1.24 0.98 3.9 187 187 12 6.5 12
Veteran 1.20 1.15 1.34 240 122 099 32 6.1 78 6 1 2

in accuracy. Third, the comparison between trees built in a stepwise fashion
(SR) and trees in classical mode (S) show that trees with split and regression
nodes achieve better (or at worst comparable) accuracy than trees with only
split nodes. No general conclusion can be drawn on the tree size. Fourth, the
comparison with M5 accuracy shows that MTSMOTI is sometime better, at
worst comparable, to M5’ but M5’ typically builds smaller trees. In any case,
MTSMOTT is able to detect the presence of global effects without significantly
affecting accuracy. Finally, the comparison with predictive clustering trees shows
that MTSMOTTI does not exhibit an irrefutable superiority with respect to PC-
TREE, although results are still good.

3.2 Multi-target Datasets
The multi-target datasets in this study are not public available. Only solar-

flare (SOLARF) is available in the UCI Machine Learning Repository. A brief
description of these datasets is reported in Table

Table 2. Properties of multi-target datasets used in our study

Dataset #Cases #Explan. #Target Dataset #Cases #Explan. #Target
Var. Var. Var. Var.
EDM 154 16 SOLARF 323 10 3

SIGMEAR 817 6 LANDSAT 60607 160 11

3
MICROA 1944 142 3 WATERQ 1060 16 14
2
SIGMEAS 10368 11 2
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Table 3. Multi-target regression: comparison of the average RRMSE and average size

RRMSE Size

Dataset MTSMOTI STSMOTI MTREG PC MTSMOTI STSMOTI MTREG PC

TREE T TREE T
EDM 0.86 0.86 0.83 0.72 4 5 7 11
MICROA 0.78 0.60 0.87 1.01 18 47 17 50
SIGMEAR 0.71 0.91 1.15 0.85 3 8 11 7
SIGMEAS 0.03 0.03 0.03  0.03 23 27 49 166
SOLARF 1.02 1.06 1.02 1 13 30 13 2
WATERQ 0.96 0.97 0.98 0.96 12 92 13 5
LANDSAT 0.67 0.64 0.69 0.62 21 238 31.9 518

For each dataset, multi-target model trees (MTSMOTTI) are first compared
with the set of single-target model trees (STSMOTI), induced one for each target
variable. The RRMSE is averaged over the target variables. The tree size for
STSMOTT is the sum of size for all separate trees. Secondly, multi-target model
trees are compared with multi-target regression trees (MTREGTREE) as well
as predictive clustering trees. Results are reported in Table

Results show that multi-target model trees are much smaller than the set of
single-target model trees, while achieving comparable (sometime better) accu-
racy. MICROA is the only dataset where the multi-target model tree performs
significantly worse than the set of single-target trees (0.78 vs. 0.60). A deeper
analysis reveals that the worst performance involves only the prediction of one
target variable (Shannon biodiversity: 0.7 vs. 0.28), while the accuracy estimates
are comparable for the remaining two target variables (mites: 0.85 vs 0.82 and
springehrtails: 0.78 vs 0.72). This negative result suggests the absence of a “lin-
ear” dependence between the Shannon biodiversity and the variables mites and
springertails. In any case, multi-target trees are always induced much faster than
the set of single-target ones (18 vs 25 (EDM), 202 vs 412 (MICROA), 5 vs 9
(SIGMEAR), 69 vs 84 (SIGMEAS), <1 vs 2 (SOLARF), 718 vs 1272 (WATERQ)
and 9214 vs 25372 (LANDSAT): running times are in secs.

The comparison between multi-target model trees and regression trees re-
veals that although model trees are typically smaller than regression trees, they
achieve comparable (or sometime better) accuracy than corresponding the re-
gression trees. MTSMOTTI is capable of detecting the presence of a global effect
of some explanatory variable on “all” of the target variables that no previous
study on these datasets have revealed. In this way, regression nodes implicitly
reveal the existence of some linear dependences among the target variables at
different depth of the tree hierarchy. Finally, the comparison with predictive
clustering trees confirms are sometime more accurate than model trees (EDM
and SIGMEA-REAL), but clustering trees can be significantly more complex.
Finally, clustering trees predict the same constant values (for each example cov-
ered by the same leaf), and they are not be able of capturing any linear pattern
in the data.



Stepwise Induction of Multi-target Model Trees 509

4 Conclusions

In this work, we present MTSMOTI, a system that induces multi-target model
trees and predict the values of several target variables simultaneously. Leaves of
such a tree contain several linear models, each predicting the value of a different
target variable. Multi-target model trees are built with two types of nodes: split
nodes and regression nodes. Experiments on single-target datasets shows that
MTSMOTTI is competitive with respect to regression tree learners, SMOTI and
M5’, as well as predictive clustering trees. Experiments on multi-target datasets
confirm that multi-target model trees are much smaller than the set of single-
target model trees, while achieving comparable accuracies. In addition, they are
induced much faster. As future work, we plan to combine decision trees and
model trees to predict continuous and discrete target variables, simultaneously.
A comparison to predictive clustering rules should be interesting. Finally, adding
linear regression models to predictive clustering rules is worth to be explored.
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