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Abstract. Robustly estimating the state-transition probabilities of
high-order Markov processes is an essential task in many applications
such as natural language modeling or protein sequence modeling. We pro-
pose a novel estimation algorithm called Hierarchical Separated Dirichlet
Smoothing (HSDS), where Dirichlet distributions are hierarchically as-
sumed to be the prior distributions of the state-transition probabilities.
The key idea in HSDS is to separate the parameters of a Dirichlet distri-
bution into the precision and mean, so that the precision depends on the
context while the mean is given by the lower-order distribution. HSDS is
designed to outperform Kneser-Ney smoothing especially when the num-
ber of states is small, where Kneser-Ney smoothing is currently known
as the state-of-the-art technique for N-gram natural language models.
Our experiments in protein sequence modeling showed the superiority of
HSDS both in perplexity evaluation and classification tasks.

1 Introduction

To precisely predict or detect time-series sequences of discrete symbols, we de-
sire robust inference techniques to estimate the state-transition probabilities in
high-order Markov processes. Using state-transition probabilities for N -grams, a
high-order Markov process is often used to model natural language [1], protein se-
quences [2], or the dynamics of consumers [3], where one state is assigned to each
word, amino acid, or customer type, respectively. In these applications, the sta-
tistical robustness of the estimated state-transition probabilities often becomes a
crucial issue for the predictive accuracy of the model, because the training data
of the state-transition frequencies are limited. For example, word error rates in
automatic speech recognition become high if we use N -gram language models
trained with limited corpora.

In prior work, the state-of-the-art estimation techniques are not effective for
cases when the number of states is small, such as a protein sequence, unless we use
Markov Chain Monte Carlo (MCMC) methods. Generally, a standard strategy
to robustly estimate the state-transition probabilities is to properly interpolate
the probabilities of the N -grams, (N−1)-grams, and lower order distributions. In
natural language modeling, the most advanced smoothing techniques currently
used are Kneser-Ney smoothing [4] and its derivative versions [1]. The essence of
Kneser-Ney smoothing and its derivatives is a modification of the state-transition
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frequencies in calculating the lower order distributions, so that any frequency
of a state-transition larger than one is reduced to one while the zero-frequency
remains at zero. Such modifications of the frequencies are derived as a fast ap-
proximated inference of a hierarchical Poisson-Dirichlet (Pitman-Yor) process
[5,6,7,8]. If we do not use that approximation, precisely estimating the param-
eters of hierarchical Pitman-Yor processes requires Gibbs sampling, which is a
computationally intensive MCMC method. In addition, since the approximation
is adequate only when the number of states is unbounded or sufficiently large,
we are seeking another advanced estimation technique for when the number of
states is bounded and small.

In this paper, we propose a novel technique to smooth the state-transition prob-
abilities more effectively than Kneser-Ney smoothing when the number of states is
small, and which does not require MCMC algorithms. We call our method Hierar-
chical Separated Dirichlet Smoothing (HSDS), because Dirichlet distributions are
hierarchically assumed to be prior distributions of the state-transition probabili-
ties. Our main idea is to separate the parameters of a Dirichlet distribution into a
context-dependent precision and a mean given by the lower order distribution, and
to estimate them alternately. Using the Dirichlet precision, we can quantify the ef-
fective frequency. Since the modified frequency adopted in Kneser-Ney smoothing
is a special case of our effective frequency when the number of states is sufficiently
large, HSDS can work flexibly when the number of states is small or large. In addi-
tion, since optimizing the parameters of a Dirichlet distribution does not require
MCMC methods, HSDS runs relatively fast.

The rest of the paper is organized as follows. Section 2 introduces the hi-
erarchical Dirichlet distributions that we use. Section 3 describes procedures
to estimate the parameters of Dirichlet distributions and discusses when HSDS
outperforms Kneser-Ney smoothing. Section 4 shows experimental results in the
tasks of perplexity evaluation and classification, using natural language and pro-
tein sequence data. Section 5 concludes the paper.

2 Hierarchical Dirichlet Distributions for Prior

In this section, we introduce our custom Dirichlet distributions as the prior dis-
tributions of the state-transition probabilities, where our key idea is to impose
different constraints on the precision and mean of the Dirichlet distribution.
We hierarchically calculate the expectation of the state-transition probability
on the posterior distribution, which is determined by the training data and the
prior distribution. The mean of the Dirichlet distribution is given by lower-order
distributions such as the (N−1)-gram models, which are more robust than the
higher-order distributions. The precision of the Dirichlet distribution is a spe-
cific parameter for each context, to incorporate the numbers of unique states
depending on that context. Our model is an extension of the hierarchical Dirich-
let language model [9].

For a given discrete-state space S whose size is |S|, assume we want to predict
a prospective state sN that will follow a state sequence s1, s2, · · · , sN−1 with
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bounded length N ≥ 1. Since sN is a random variable, we need a model of
Pr(s|h), the probability with which a state s ∈ S follows a (N−1)-length context
h ∈ SN−1 ≡ S × S × · · ·× S. We aim to estimate precise values of phs ≡ Pr(s|h)
for each s and h from limited training data D =

{
nhs; s ∈ S, h ∈ SN−1

}
, where

nhs is the frequency of state s that follows context h. A vector of estimated
probabilities ph, whose i-th element phi is the probability with which the i-th
state follows h, is defined as a random variable, because the estimated probability
fluctuates around the true probability. For simplicity, hereinafter when a vector
is defined with a bold face, such as x, it is assumed that we simultaneously define
its elements with a normal typeface of the same letter, such as xs, where the
element with the subscript s is a variable related to the state s.

Our aim is to estimate the expectation of ph on the posterior distribution
P (ph|D). To compute a relevant posterior distribution, we need to specify a
proper prior distribution P (ph) for applying Bayes theorem. The expectation of
the state-transition probability and the posterior distribution is given as

〈phs|D〉 =
∫

ph

phsP (ph|D)dph (1)

P (ph|D) =
P (D|ph)P (ph)∫

ph
P (D|ph)P (ph)dph

, (2)

where 〈·|D〉 is the expectation on the posterior distribution.
We assume a Dirichlet distribution in P (ph) because its probability density

function and its likelihood function are analytically tractable, and in order to
avoid MCMC methods. This is contrast to adopting hierarchical Pitman-Yor
processes that are more general stochastic processes but which require MCMC
methods. With the parameters of the Dirichlet distribution φh and the observed
frequencies nh, the prior and posterior distributions are given as follows:

P (ph) = Dir (ph; φh) ≡
Γ

(∑
s∈S φhs

)
∏

s∈S Γ (φhs)
·
∏

s∈S
pφhs−1

hs (3)

P (ph|D) = Dir (ph; nh + φh) ≡
Γ

(∑
s∈S nhs + φhs

)
∏

s∈S Γ (nhs + φhs)
·
∏

s∈S
pnhs+φhs−1

hs (4)

Here we introduce the main idea of separating the parameters of the Dirichlet
distribution into a precision and a mean that have different constraints from
each other. We denote a truncated context, which is generated by removing the
earliest state from h, by π(h). We parameterize φh as a product of the coefficient
αh =

∑
s∈S φhs and the normalized vector θπ(h). The expectation of the state

transition probability phs on the posterior distribution is given as

〈phs|D〉 =
nhs + αhθπ(h)s

nh + αh
. (5)

Following Minka in [10], we call αh the “Dirichlet precision” and θπ(h) the
“Dirichlet mean”.
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Fig. 1. Distributions of the states controlled by the Dirichlet precision α

The Dirichlet mean is hierarchically given by the expectation of the lower-
order distribution, making use of the robustness of the lower-order distribu-
tions. We give θπ(h) = 〈pπ(h)|D〉, assuming the prior P (pπ(h)) by a Dirichlet
distribution which has a precision απ(h) and a mean θπ(π(h)). Analogously, for
each lower-order distribution from the (N − 2)-gram to the 1-gram, the Dirich-
let distribution is hierarchically assumed as its prior distribution. For the 1-
gram, where h is empty, we define its Dirichlet mean by the 0-gram distribution
θ0 = (1/|S|, · · · , 1/|S|)T .

The Dirichlet precision depends on the context after which the different num-
bers of unique states will appear. Fig. 1 shows the multinomial distributions
sorted in rank of probability with a log-log scale, where their parameters obey the
10,000-dimension symmetric Dirichlet distribution Dir(α/10000, · · · , α/10000).
In Fig. 1, we see power-law distributions except when the states are extremely
sporadic and that the higher Dirichlet precision α will yield larger numbers of
unique states. Since a different number of unique states can follow from a dif-
ferent context h, we define the Dirichlet precision αh for each context h. For
example, in the 2-gram natural language model, αh will be high if h is an article
which does not strongly limit the following word, and αh will be low if h is some
specific verb such as “quantify”, which tends to limit the following word.

HSDS can be regarded as an extension of the smoothing used in the hierarchical
Dirichlet language model [9]. We believe MacKay and Peto were the first to use a
Dirichlet distribution to smooth the probabilities of the 2-grams, where the prior
distribution is given by P (ph) = Dir(ph; αθπ(h)h). Yet the original MacKay and
Peto hierarchical Dirichlet language model was shown to be non-competitive with
other smoothing techniques [8]. Since they discuss extensions to have the Dirichlet
precision be context-dependent with classifying the contexts, HSDS is the first
competitive method to extend the hierarchical Dirichlet language model.

3 Variational Inference by Effective Frequency

In this section, we present an algorithm to estimate the optimal Dirichlet preci-
sion and mean, and discuss when HSDS will outperform Kneser-Ney smoothing.
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Our inference scheme is based on a variational approximation, where the in-
fimum of the likelihood in a Dirichlet-multinomial distribution is maximized.
The Dirichlet precision is optimized by a kind of Newton-Raphson method and
the Dirichlet mean is calculated with the effective frequency, which is a fre-
quency controlled by the Dirichlet precision. We explain when HSDS outper-
forms Kneser-Ney smoothing based on the meaning of the effective frequency.

First, we introduce the concept of the effective frequency by deriving the
infimum of the likelihood of the training data. Since the observed frequencies nh

obey a Dirichlet-multinomial (Polya) distribution, Eq. (6) gives the likelihood of
D under the set of hyperparameters Φ =

{
αh, θπ(h); h ∈ SN−1

}
. We referred to

[10] in deriving Inequality (7).

P (D|Φ) ∝
∏

h

Γ (αh)
Γ (nh + αh)

∏

s:nhs>0

Γ
(
nhs + αhθπ(h)s

)

Γ
(
αhθπ(h)s

) (6)

≥
∏

h

Γ (ᾱh)
Γ (nh + ᾱh)

exp [(Ψ (nh + ᾱh) − Ψ (ᾱh)) (ᾱh − αh)]

∏

s:nhs>0

[
Γ

(
nhs + ᾱhθ̄π(h)s

)

Γ
(
ᾱhθ̄π(h)s

)
(
ᾱhθ̄π(h)s

)−ñhs

]
(
αhθπ(h)s

)ñhs , (7)

where Ψ(·) denotes a digamma function such that Ψ(x) ≡ ∂
∂x log Γ (x), and

ñhs = ᾱhθ̄π(h)s
(
Ψ

(
nhs + ᾱhθ̄π(h)s

)
− Ψ

(
ᾱhθ̄π(h)s

))
. (8)

We call ñhs the “effective frequency”, because the infimum of the likelihood
has the same formulation as a multinomial distribution for context h where the
observed frequency of state s is ñhs. Minka also discusses the effective frequency
in [10], by differentiating the likelihood of the Polya distribution with respect to
the Dirichlet mean. We explain the meaning of the effective frequency in Section
3.2. For convenience, we also define ñh ≡

∑
s∈S ñhs, ñπ(h)s ≡

∑
u ñhs where u

is the earliest state in context h and thus h ≡ uπ(h), and ñπ(h) ≡
∑

s∈S ñπ(h)s.

3.1 Estimating the Dirichlet Precision

Next, we estimate the Dirichlet precision as the expectation of αh on an approx-
imated posterior distribution. The procedure for estimation is divided into the
following two cases. First, when nhs = 1 for all s such that nhs > 0, we initially
set αh = ∞, which is equivalent to using only the state-transition probability
of the (N−1)-gram1. Second, in all other cases, αh is given by the expectation
of a gamma distribution that approximates the posterior distribution of αh. We
assume the prior for αh is a non-informative uniform distribution. Since the part
of the likelihood related to αh can be expressed as

P (D|αh) ∝ exp [− (Ψ (nh + ᾱh) − Ψ (ᾱh))αh] αñh

h , (9)
1 If ∀s, nhs = 1, then the exact likelihood expressed by Eq. (6) becomes a function

of the Dirichlet mean alone. Therefore, the posterior distribution of αh becomes the
non-informative uniform distribution U [0, ∞], whose expectation is infinity.
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we can derive the approximated posterior Q(αh|D) as

Q(αh|D) ∝ P (D|αh)P (αh)
∝ Ga (αh; ñh + 1, Ψ (nh + ᾱh) − Ψ (ᾱh)) , (10)

where we denote a gamma distribution by Ga(·, ·). The expectation of αh on the
approximated posterior Q(αh|D) is given as

〈αh|D〉 =
ñh + 1

Ψ (nh + ᾱh) − Ψ (ᾱh)
. (11)

To calculate the optimal Dirichlet precision α∗
h, we assume 〈αh|D〉 = ᾱh,

which means that the likelihood of the Polya distribution is approximated by
the gamma distribution that has the same expectation. We can immediately
derive the following equation, which we can solve quickly with the modified
Newton-Raphson method proposed in [11].

Ψ (nh + α∗
h) − Ψ (α∗

h) =
1

α∗
h

+
∑

s:nhs>0

θπ(h)s
[
Ψ

(
nhs + α∗

hθπ(h)s
)

− Ψ
(
α∗

hθπ(h)s
)]

(12)
Note that the estimated α∗

h values tend to be underestimated when nh is small,
because the true posterior distribution of αh has a heavier-tail than the gamma
distribution. Based on several earlier experiments, we decided to multiply α∗

h by
2 if α∗

h > 10. This is a simple heuristic rule, but it works for many datasets. A
better estimation technique should be developed.

3.2 Estimating the Dirichlet Mean

The optimal Dirichlet mean θ∗π(h)s is calculated from the effective frequency and
the Dirichlet precision of the lower-order distributions. The terms related to
θπ(h)s in the infimum of the represented likelihood are also given by multinomial
distributions that have effective frequencies as

Q(D|Φ) ∝
∏

π(h)

∏

s:nhs>0

θ
ñπ(h)s

π(h)s . (13)

Since we also assume a Dirichlet distribution in P (pπ(h)), the optimal Dirichlet
mean θ∗π(h)s is given as

θ∗π(h)s =
ñπ(h)s + απ(h)θπ(π(h))s

ñπ(h) + απ(h)
. (14)

Because the optimal Dirichlet precision and Dirichlet mean must be estimated
iteratively, we summarized the computational procedure in Algorithm 1, except
for the last heuristic multiplication for the Dirichlet precision.
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Algorithm 1. Estimating the Dirichlet precision and Dirichlet mean
Initialize all the parameters

{
αh, θπ(h)

}
.

repeat
for n = N downto 1 do

for all h ∈ Sn−1 do
if ∃s, nhs > 1 then

αh ⇐ α∗
h by solving Eq. (12).

end if
for all s ∈ S do

Calculate ñhs by Eq. (8).
end for

end for
if n ≥ 2 then

for all h ∈ Sn−1 do
Update θπ(h) by Eq. (14).

end for
end if

end for
until all the parameters have converged.

3.3 Effects of the Effective Frequency

Finally, we discuss the cases when HSDS outperforms Kneser-Ney smoothing, by
clarifying the meaning of the effective frequency. Fig. 2 shows the relationships
between the effective frequency ñ and the raw frequency n, as functions of the
Dirichlet precision α where ñ = α (Ψ(α + n) − Ψ(α)). When α → 0, the effective
frequency converges to an indicator function of the raw frequency: ñ = 1 if
n > 0 and ñ = 0 if n = 0 and it is the same as the modified frequency adopted
in Kneser-Ney smoothing.

Fig. 2 and the actual effective frequency defined by Eq. (8) suggest that ap-
proximating the effective frequency by the modified frequency of Kneser-Ney
smoothing is adequate only for s and h such that αhθπ(h)s is low. When the
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Fig. 2. Effective frequencies with various values of the Dirichlet precision α
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number of states is large, which is true for natural language modeling, the ap-
proximation is adequate because most of the values of θπ(h)s are very low.

HSDS will outperform Kneser-Ney smoothing in two cases: when the number
of states is small, or when the order of the Markov processes is high, in that
αhθπ(h)s is not too low in either case. First, if the number of states is small,
some of the

{
θπ(h)s

}
are not low. Second, if N is high and nh is too small,

αh becomes a high value in estimating the Dirichlet precision. At such times,
the effective frequency approaches the raw frequency. Intuitively, if the observed
frequency of N -grams is too low, we should ignore the frequency of that N -grams
and should just use the raw frequency of the (N−1)-grams.

4 Experiments

In this section, we experimentally show that HSDS outperforms Kneser-Ney
smoothing when the number of states is small, by comparing the results for
two different types of datasets: a natural language corpus and some protein
sequence data. A natural language is chosen as a sequence with large number of
states, because natural languages have large and potentially infinite vocabularies.
Protein sequences are chosen as sequences with small number of states, because
any protein sequence consists of only 20 types of amino acids, which means the
number of states in a protein sequence N -gram is also limited to 20.

To evaluate the performance of each model, we focused on calculating the test-
set perplexity, where its low values usually mean better predictive accuracies.
In addition, we checked the results of classification tests for protein sequence
modeling. For a K-length sequence sK

1 ≡ s1s2 · · · sK , its perplexity evaluated by
the N -gram model Θ =

{
Pr(s|h), s ∈ S, h ∈ S0, S1 ∪ · · · ∪ SN−1

}
is given as

PP
(
sK
1 |Θ

)
= exp

[

− 1
K

K∑

k=1

log Pr
(
sk|smax{1,k−N+1}, · · · , sk−1

)
]

. (15)

The other experimental conditions, which are common in natural language
modeling and protein sequence modeling, are given below. After studying the
numbers of unique N -grams in the training data, we decided to train the 2-,
3-, 4-, and 5-gram models. The 6-gram models were also trained for the pro-
tein sequence data. To compare the smoothing methods, we tested Hierarchi-
cal Separated Dirichlet Smoothing (HSDS), Interpolated Kneser-Ney Smooth-
ing (IKNS), Modified Kneser-Ney Smoothing (MKNS), Absolute Discounting
(ABSD) [12], and Witten-Bell smoothing (WBS) [13]. The smoothing methods
except for IKNS and MKNS were selected to compare the performances broadly.
The formulas used in IKNS and MKNS are described in [1], where we adopted
the versions without cross-validation in estimating the discounting factors.

4.1 Natural Language Modeling

As natural language data, we used the Reuters-21578 text categorization test
collection [14], which is a popular English corpus mainly used for text
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Fig. 3. Test-set perplexity in Reuters-21578 dataset

categorization research. By extracting all of the text, we prepared 172,900 sen-
tences that consisted of a total of 2,804,960 words, and divided them into 162,900
training sentences and 10,000 test sentences. The training data had 118,602
unique words that appeared at least once, and we chose the most frequent 20,000
words as the vocabulary set. We calculated test-set perplexity both when out-
of-vocabulary (OOV) words were included and excluded. When the OOV words
were included, we replaced all of the OOV words with the same special token.

Fig. 3 shows each model’s test-set perplexity and HSDS is inferior to both
IKNS and MKNS. We think that the relatively weak performance of HSDS is
because the Dirichlet distribution cannot precisely capture the power-law in the
frequencies of the words. As shown in Fig. 1, the Dirichlet distribution cannot
represent the heavy-tail of the frequencies of the words, while the Pitman-Yor
process and Kneser-Ney smoothing can control the exponent of the power-law [8],
which is important for the distribution within a potentially infinite vocabulary.

Still, HSDS outperformed the other smoothing techniques except for IKNS
and MKNS. We think that the effective frequency in HSDS worked more effec-
tively than the raw-frequencies, in calculating the lower-order distributions.

4.2 Protein Sequence Modeling

For protein sequence data, we performed classification tests as well as a perplex-
ity evaluation, using the DBsubloc dataset [15]. Though DBsubloc is a protein
database mainly used for protein subcellular localization, because of the amount
of available data, we only classified the unlabeled data into one of 4 types of
organisms: viruses, archaea, bacteria, and eukaryotes. After dividing the non-
redundant dataset into training data and test data, we independently trained 4
types of N -gram models. In the training data, the numbers of unique sequences
were 1,082 for the viruses, 1,131 for the archaea, 9,701 for the bacteria, and
18,043 for the eukaryotes. The test data consisted of 100 unique sequences for
each organism, where their numbers of amino acids were 43,990 for the viruses,
26,455 for the archaea, 29,075 for the bacteria, and 62,286 for the eukaryotes.
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Fig. 4. Test-set perplexity in DBsubloc dataset

Perplexity Evaluation. In the perplexity evaluation task, each test-set was
evaluated by a model of the same organism. i.e. The viruses test data was evalu-
ated with viruses model. Fig. 4 shows the test-set perplexity for each organism.

HSDS achieved the lowest test-set perplexity, and its performance was slightly
improved even when N became larger, while the other smoothing techniques had
worse performances. As mentioned in Section 3.3, in protein sequence modeling,
the effective frequency seemed to work more effectively than the modified fre-
quency adopted in Kneser-Ney smoothing.

Classification. In the classification task, we made unlabeled data by removing
the labels from all of the test data, and classified the unlabeled data into one
of the 4 organism types using a naive Bayes classifier. Let ci be one of the 4
organism types. For a sequence sK

1 , the organism type of the sequence c(sK
1 )

was determined as

c(sK
1 ) = argmax

ci

P (sN
1 |ci)P (ci), (16)

where P (sN
1 |ci) was calculated by the trained N -gram model of the organism

type ci, and ∀ci, P (ci) = 0.25. For each organism, we calculated the recall,
precision, and F1-measure. We used the arithmetic average of the 4 organism
types as a performance metric of our multi-class classification.
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Fig. 5. Performances in classifying 4 organism-types

The results also show that HSDS is stable as N increases. Fig. 5 shows the
averages of the recall, precision, and F1-measure for the 4 organism types when
the order of the N -gram changes. As in the perplexity evaluation, the perfor-
mance of HSDS was stable even as N increased, while the performances of the
other methods peaked for the 2-gram models. If we only look at the absolute
performance, the 2-gram model with ABSD recorded the highest F1-measure,
but the other methods also recorded almost the same performances in 2-gram
models.

5 Conclusion

We proposed a smoothing method for probabilistic N -gram models, which we
named Hierarchical Separated Dirichlet Smoothing (HSDS). We hierarchically
assumed a Dirichlet distribution to be a prior distribution of the state-transition
probabilities, and separated the parameters of a Dirichlet distribution into
precision and mean. The context-specific Dirichlet precision can reflect the
context-dependent number of unique states, and the Dirichlet mean based on
the effective frequencies gives appropriate lower-order distributions. Theoreti-
cally and experimentally, HSDS was shown to outperform Kneser-Ney smoothing
when the number of states is small and N increases.
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In the future, we will extend our context-specific formulation for more general
stochastic process models such as the hierarchical Pitman-Yor processes, to more
precisely incorporate the effects of the power-law in the observed frequencies.

Acknowledgment

The author wishes to thank Gakuto Kurata and Hisashi Kashima for many
fruitful discussions about Kneser-Ney smoothing and other related topics.

References

1. Chen, S., Goodman, J.: An empirical study of smoothing techniques for language
modeling. Technical Report TR-10-98, Harvard Computer Science (1998)

2. Ganapathiraju, M., Manoharan, V., Klein-Seetharaman, J.: BLMT: Statistical se-
quence analysis using n-grams. Applied Bioinformatics 3 (November 2004)

3. Netzer, O., Lattin, J.M., Srinivasan, V.: A Hidden Markov Model of Customer
Relationship Dynamics. Stanford GSB Research Paper (July 2005)

4. Kneser, R., Ney, H.: Improved backing-off for m-gram language modeling. In: Pro-
ceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing, vol. 1, pp. 181–184 (May 1995)

5. Pitman, J., Yor, M.: The two-parameter Poisson-Dirichlet distribution derived from
a stable subordinator. The Annals of Probability 25(2), 855–900 (1997)

6. Goldwater, S., Griffiths, T., Johnson, M.: Interpolating between types and tokens
by estimating power-law generators. In: Advances in Neural Information Processing
Systems (NIPS), vol. 18 (2006)

7. Teh, Y.W.: A Bayesian interpretation of interpolated Kneser-Ney. Technical Report
TRA2/06, School of Computing, National University of Singapore (2006)

8. Teh, Y.W.: A hierarchical Bayesian language model based on Pitman-Yor pro-
cesses. In: Proceedings of the Annual Meeting of the Association for Computational
Linguistics, vol. 44 (2006)

9. MacKay, D.J.C., Peto, L.: A hierarchical Dirichlet language model. Natural Lan-
guage Engineering 1(3), 1–19 (1994)

10. Minka, T.: Estimating a Dirichlet distribution. Technical report, Microsoft Re-
search (2003)

11. Minka, T.: Beyond Newton’s method. Technical report, Microsoft Research (2000)
12. Ney, H., Essen, U., Kneser, R.: On structuring probabilistic dependences in stochas-

tic language modeling. Computer, Speech, and Language 8, 1–38 (1994)
13. Witten, I.H., Bell, T.C.: The zero-frequency problem: Estimating the probabilities

of novel events in adaptive text compression. IEEE Transactions on Information
Theory 37(4), 1085–1094 (1991)

14. Lewis, D.D.: Reuters-21578 text categorization test collection distribution 1.0
(1997) Available at
http://www.daviddlewis.com/resources/testcollections/reuters21578/

15. Guo, T., Sun, Z.: Dbsubloc: Database of protein subcellular localization (2005)
Available at http://www.bioinfo.tsinghua.edu.cn/∼guotao/

http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://www.bioinfo.tsinghua.edu.cn/~guotao/

	Separating Precision and Mean in Dirichlet-Enhanced High-Order Markov Models
	Introduction
	Hierarchical Dirichlet Distributions for Prior
	Variational Inference by Effective Frequency
	Estimating the Dirichlet Precision
	Estimating the Dirichlet Mean
	Effects of the Effective Frequency

	Experiments
	Natural Language Modeling
	Protein Sequence Modeling

	Conclusion



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




