Clustering Trees with Instance Level Constraints

Jan Struyf' and Saso Dzeroski?

! Dept. of Computer Science, Katholieke Universiteit Leuven
Celestijnenlaan 200A, 3001 Leuven, Belgium
Jan.Struyf@cs.kuleuven.be
2 Dept. of Knowledge Technologies, Jozef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Saso.Dzeroski@ijs.si

Abstract. Constrained clustering investigates how to incorporate do-
main knowledge in the clustering process. The domain knowledge takes
the form of constraints that must hold on the set of clusters. We con-
sider instance level constraints, such as must-link and cannot-link. This
type of constraints has been successfully used in popular clustering algo-
rithms, such as k-means and hierarchical agglomerative clustering. This
paper shows how clustering trees can support instance level constraints.
Clustering trees are decision trees that partition the instances into ho-
mogeneous clusters. Clustering trees provide a symbolic description for
each cluster. To handle non-trivial constraint sets, we extend clustering
trees to support disjunctive descriptions. The paper’s main contribution
is ClusILC, an efficient algorithm for building such trees. We present
experiments comparing ClusILC to COP-k-means.

1 Introduction

Clustering methods partition a given set of instances into subsets (clusters) such
that the instances in a given cluster are similar [I]. Traditional clustering algo-
rithms, such as k-means and hierarchical agglomerative clustering (HAC), are
unsupervised, that is, they only have access to the attributes describing each in-
stance; no direct information about the actual assignment of instances to clusters
is available. This distinguishes clustering from supervised classification, where
the class of each instance is given.

Constrained clustering investigates how domain knowledge can improve clus-
tering performance. Domain knowledge is given as a set of constraints that must
hold on the clusters. We consider two common types of instance level (IL) con-
straints: must-link and cannot-link [2]. A must-link constraint ML(a,b) specifies
that instances a and b must belong to the same cluster, and a cannot-link con-
straint CL(a,b) specifies that a and b must not be placed in the same cluster. IL
constraints provide additional information about the assignment of instances to
clusters. Clustering with IL constraints is therefore considered to be a form of
semi-supervised learning.

IL constraints have been successfully incorporated in popular clustering algo-
rithms, such as k-means [BI456] and HAC [7§]. This paper shows how clustering

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 359 2007.
© Springer-Verlag Berlin Heidelberg 2007



360 J. Struyf and S. Dzeroski

(@) 250 (c) 250

200 | C1 : Gy % ] 200
150 | : ] 150
100 | % e %@ - 100
50 F A b 50
0 : 0

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200

“

yes no__ yes no__
Y >120.5] [39.9,75.2] X >113.5 C,
_yes” ~no__ _yes” TTno__ [104,55.8]
[154.1,172.6] [152.8,71.3] Cs C;
[160.1,155.9] [565.9,163.1]

(b)

Fig.1. (a) A simple data set with three clusters. (b) A clustering tree for (a). Each
leaf is labeled with the cluster’s centroid (the attribute-wise mean of the instances).
(c) Data with must-link (ML) and cannot-link (CL) constraints. (d) A disjunctive
clustering tree for (c), which takes the IL constraints into account.

trees can support IL constraints. Clustering trees are decision trees that are used
for clustering [9] (Fig.[dlb). Each leaf of a clustering tree corresponds to a clus-
ter and is labeled with the cluster’s centroid. Similar to regular decision trees,
the internal nodes of a clustering tree contain attribute-value tests. The main
advantage of clustering trees is that they provide a symbolic description for each
cluster (i.e., they perform conceptual clustering [10]). For example, cluster Cy
in Fig. [[la is the set of instances for which X > 95.5 and Y > 120.5.

A disadvantage of clustering trees is that they only allow conjunctive cluster
descriptions. This corresponds to rectangular clusters in the two-dimensional
case (Fig.[la). One of the main goals of constrained clustering is dealing with
non-trivial cluster shapes. In this paper, we therefore adapt clustering trees to
support disjunctive cluster descriptions. To this end, we introduce cluster labels
in the leaves of the clustering tree. All leaves that share the same label make up
one cluster. We call a clustering tree with such labels a disjunctive clustering tree.
For example, the L-shaped cluster Cs in Fig. [Tlc is represented by two leaves in
Fig.[Mld and its disjunctive description is Y <103.5V (Y > 103.5 A X > 113.5).
Note that this is similar to how classification trees represent disjunctive concepts,
but here the labels are not given in the data.

2 Top-Down Induction of Clustering Trees

Clustering tree learning algorithms, such as TILDE [9] or Clus [I1], are similar
to top-down induction (TDI) algorithms for regular decision trees, such as C4.5
[12]. A TDI algorithm builds a tree starting from the root node in a depth-
first manner. Given a set of instances, it considers all possible attribute-value
tests, and selects the test ¢* that maximizes a certain heuristic function. Next,
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it creates a new internal node, labels it t*, and calls itself recursively to create a
subtree for each subset in the partition induced by ¢* on the instances. If, at a
given point, no suitable test can be found, then it creates a leaf.

To induce a clustering tree, the TDI algorithm computes the heuristic value
of a test ¢ given instances I as H(t,I) = Var(l) = 3 cpqp ||If||Var(Ik), with
Var(I) the variance of I, and P(t, I) the partition induced by t on I. H (¢, I) takes
all attributes into account, that is, Var([) is the variance summed over all at-
tributes. H (¢, I) guides the algorithm to a tree with homogeneous (low variance)
leaves. If no test yields a significant reduction in variance, then the algorithm
creates a leaf and labels it with the attribute-wise mean of the instances.

3 ClusILC

This section presents ClusILC, the main contribution of this paper. ClusILC is
an algorithm that constructs a disjunctive clustering tree given a set of instances
and a set of IL constraints. ClusILC performs soft constrained clustering [4I516],
that is, the output is not guaranteed to satisfy all the given constraints.

3.1 ClusILC’s Heuristic

Decision tree learners that follow the TDI approach (Section [2) employ a local
heuristic: H(t,I) only depends on the instances local to the node that is being
constructed. ClusILC uses a global heuristic. Such a heuristic measures the qual-
ity of the entire tree and takes all instances into account. The heuristic that we
propose for ClusILC is

1 c € IL|violated(T, I, c
H(TT D) = (1) Var me y . fee |IL< o
lET

with T the disjunctive clustering tree for which the heuristic is to be computed,
I the set of instances, IL the set of IL constraints, and I; the instances in leaf [ of
T'. The first term of H (T, I, IL) measures the average variance in the leaves of the
tree, normalized by the data’s total variance. The second term is the proportion
of IL constraints that is violated by the tree. The heuristic trades off both terms
by means of a parameter . Note that it is not possible to convert this heuristic
into an equivalent local one because of the second term. This term cannot be
split into a term for each leaf that only depends on local instances because 1L
constraints may link these instances to instances in other leaves.

3.2 ClusILC’s Search Strategy

ClusILC (Fig. ) searches greedily for a tree that minimizes H (T, I, IL). It starts
with a tree that consists of only a single leaf covering all instances. In each main
loop iteration, it refines the current tree by replacing one of its leaves with a
subtree consisting of a new test node and two new leaves. The candidate refined
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procedure ClusILC(Z,IL) procedure Refine(T")

1: T = leaf(I,C1,mean(I)) 1 R=10

2: h=H(T,I,IL) 2: for each leaf [ € T' do

3: while true do 3 I, = instances(l)

4: (T*,h*) = (null, h) 4 for each attribute a do

5: for each T, € Refine(T) do  5: for each split point v do

6: hr = H(T», I, IL) 6: t=“a>v"

7 if h, < h™ then 7 (I1,12) = apply({,t)

8: (T*,h*) = (Tr, hr) 8: for each label pair (c1,c2) do

9:  if B < h then 9: li = leaf(I1,c1,mean(/1))

10: (T, h) = (T*,h*) 10: lo = leaf(I3,c2,mean(I2))

11: else 11: n = node(t,l1,l2)

12: return T 12: T, = replace l by nin T’
13: R =RU{T,}
14: return R

Fig. 2. The ClusILC algorithm

trees are constructed by the procedure Refine. ClusILC computes for each such
tree its heuristic value and selects the one with the smallest heuristic value (7).
If T is better than the current tree, then 7™ becomes the current tree and the
search continues. If, on the other hand, no refined tree is able to improve on the
heuristic value of the current tree, then the search ends and the current tree is
returned.

Refine computes the set of candidate refined trees R. It consists of four nested
loops. The first loop iterates over all leaves of the current tree. For each such leaf,
Refine considers all attributes that can be used to construct an attribute-value
test. For each attribute, it considers all possible split points and constructs a
test of the form a > x. This test introduces two new leaves in the tree, where
each should be assigned a cluster label (Fig.[Ild). The label can be either a label
that already appears in the tree, or it can be a new label. For each pair of such
labels (one for each leaf), Refine creates an internal node with the test and the
two leaves, and then uses this node to create a new refined tree.

Note that ClusILC does not follow the depth-first approach of most TDI al-
gorithms. The reason is that such a search strategy is not suitable for optimizing
a global heuristic. (For a local heuristic, both methods produce the same tree
and TDI algorithms use depth-first construction because it is more efficient and
easier to implement.)

The efficiency of the algorithm in Fig. [2] can be improved in several ways.
The most obvious optimization is that the candidate generation and the evalu-
ation part of the algorithm can be integrated. Instead of storing all candidate
refined trees, ClusILC only stores the current best refinement. Each time a new
refinement is generated, ClusILC immediately computes its heuristic value and
updates the current best refinement if the new refinement is better. The next
two sections discuss how to efficiently assign cluster labels and how to find the
best split point for a numerical attribute.
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Fig. 3. We distinguish two constraint groups when refining the leaf marked “X”: («)
constraints either local to one of the new leaves, or connecting the two new leaves, and
(B) constraints connecting one of the two new leaves to another leaf already in the tree

3.3 Assigning Cluster Labels

The second optimization is that ClusILC does not consider all pairs of cluster
labels when generating refined trees. The reason is that the choices (select a
label for each leaf) are mostly independent. We distinguish two groups of con-
straints when refining a leaf: « and 8 (defined in Fig. ). The number of violated
constraints in group « does not depend on the actual labels (¢1,c2) of the new
leaves (ClusILC only considers splits with ¢; # ¢2). The heuristic value therefore
only changes if v¥ (¢1) +v5 () changes, with v,f (¢) the number of violated group
[ constraints when labeling leaf k£ with c. Because the two leaves have disjoint
sets of constraints in group 3, the two terms in the sum can be optimized sepa-
rately, that is, the optimal labels can be assigned sequentially to the leaves. The
optimal label ¢} for leaf [, is the label that minimizes vf (¢). There is, however,
one problem with this approach: the constraint ¢; # ¢o introduces a dependency
between the two labels. Therefore, two cases must be considered. The first case
is to first select the optimal label ¢} for leaf [;, then select the label co # ¢} for

leaf [y that minimizes vg (c2). The second case is symmetrical, but starts with

labeling l5. ClusILC picks the case that minimizes v/ (¢;)+ v (¢2). The resulting
labeling is the same as when the labeling would be obtained by considering all
pairs (c1,c¢2). This optimization makes the labeling step linear in the number of

possible cluster labels (instead of quadratic).

3.4 Selecting a Split Point

When refining a given leaf, ClusILC considers for each attribute all possible split
points in one pass over the leaf’s instances. This is similar to how TDI algorithms
such as C4.5 select the best split point for a numerical attribute. The main dif-
ference is that ClusILC computes a number of additional statistics to be able to
efficiently compute, for each candidate split, the number of violated constraints.
We first discuss the basic algorithm and then the required modifications.
BestSplit (Fig. ) considers all possible tests a > z in one iteration over the
instances. It first sorts the instances by their value for a from large to small.
Each value x in the middle of two subsequent values in this sorted list is a
candidate split point (line [7). To compute the corresponding heuristic value,
the algorithm needs to compute the variance in the two subsets induced by
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procedure BestSplit(l,a,ho)

1: initialize S1, Sa2, h*", r”

2: initialize v, ML?, MLS, CL?, and CL%

3! Qprev = 00
4: for each i € instances(l) sorted by a from large to small do
5: if i[a] # aprev A Gprev # 00 then
6: Tr = (’L[a] + aprev)/2

7
8

t= “a>a"
: v? = AssignLabels(MLY, MLY, CL?, CLY)
9: h = Heuristic(ho,S1,52,0% + v?)
10: if h < h™ then
11: h* = h; r* = “refine [ using t”
12: Gprev = i[a]

13: Update(S1, i, +1); Update(Se, i, -1)
14: for each il € IL* (i) do

15: Update(v®, il)
16: for each il € IL°(i) do
17: Update(MLY, CL? | il, +1); Update(MLy, CL5, il, -1)

Fig. 4. Selecting the split point for an attribute

the split on the instances. This can be done in constant time if appropriate
statistics for the two subsets are available (S; and Sz in the algorithm). Subset
1 contains the instances for which the test succeeds; subset 2 the instances for
which it fails. Sy summarizes the instances in subset k; it counts the number
of instances, and for each attribute, the sum of its values and the sum of its
squared values. Based on these numbers, the variances of the attributes can
be computed (Var(a) = a2 — (a)?). The algorithm starts with all instances in
subset 2 (test a > 00). Sz is therefore initialized to represent all instances and
S1 is initialized to all zeros. Each iteration of the loop decreases the value of the
split point x (assuming no identical attribute values) and correspondingly moves
one instance from subset 2 to subset 1. This is reflected in line [[3] which adds
the instance to S; and removes it from S;. These updates simply correspond
to adding (subtracting) the (squared) attribute values of the given instance to
(from) the corresponding components of Sy (S2).

The first modification is required to be able to assign cluster labels for the two
new leaves in O(|C|) time with C' the set of cluster labels already in the tree. To
this end, the algorithm uses the arrays ML’Z and CLf . Similar to the S statis-
tics, there is one array of a given type for each of the two subsets. The arrays are
used to count, for each cluster label, the number of ML and CL constraints in
group 3 (Fig.Bl). For example, MLQ [¢] counts the number of ML constraints that
connect the instances in subset k& to one of the label ¢ leaves already in the tree.
The number of group [ constraints vf (c) that are violated by assigning label ¢

to subset k& can now be computed as vg(c) = CL’Z [ + 22, 4 ML’,? [¢;]; the num-

ber of constraints violated by assigning a new label is v} (new) = D oc;ec ML [¢;]
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(all ML constraints violated). The former can be rewritten as vf (c) = CLQ [c] +
(vf(new) - MLQ [c]). By first computing vf(new) and then computing for each
ceC, v,f (¢) using the second formula, all vf values can be computed in O(|C)
time. The vf values are used to assign optimal labels (Section B3]). Line [I7]

updates the CLf arrays based on the group [ constraints in which instance
i participates. Such an update consists of retrieving the cluster label of the
other instance participating in the constraint and updating the corresponding
component of the ML or CL array (depending on the constraint’s type). To make
this step efficient, each instance stores its current cluster label and associated
set of group 3 constraints IL” (7).

To be able to compute the heuristic value BestSplit needs, in addition to the
optimal labeling and its corresponding number of violated group 3 constraints
(v”, line {), also the number of violated group a constraints. It counts this
number in the variable v®. Initially, all instances are in subset 2. As a result,
all ML constraints of group « are satisfied and all CL constraints are violated.
v® is initialized to the latter. Each time an instance moves from subset 2 to
subset 1, v® is updated to take into account the group « constraints in which
it participates. v® is increased by one for each such constraint that becomes
violated by moving the instance; it is decreased by one for each constraint that
was violated before and becomes satisfied by moving the instance. Note that
group « constraints change state (from violated to satisfied and the other way
around) if one of their associated instances changes subset.

Based on the above statistics, BestSplit computes the heuristic value of a split
a > x and the optimal labeling of the corresponding new leaves (line []). It uses
S1 and S5 to compute the first term of the heuristic (the variance part) and
the number of violated constraints v® +v” for the second term. Note that these
statistics only account for the variance in the new leaves and the constraints
associated to their instances. To compute the heuristic of the entire tree (T" with
[ replaced by node(t,l1,l2)), the algorithm adds the offset hg. ho is computed as
H(T — {1},I,IL — IL;); hg takes the variance in the other leaves of T' and the
violated constraints that do not have a participating instance in [ into account.

3.5 Algorithm Complexity

BestSplit(l,a,hg) sorts the instances, which takes O(|I;|log|I;|) time, with I; leaf
I’s instances. Its main loop iterates over I;. The main loop’s most expensive
steps are the call to AssignLabels, which takes O(|C|) time (C is the set of
cluster labels), and updating the Sy, which takes O(|A|) time (A is the attribute
set). BestSplit also processes the constraints in which the instances participate.
Each such constraint is processed at most once (3) or twice («). As a result, the
total cost of BestSplit is O(|I;|log || + || - (|C] + |A|) + |ILi|), with IL; the
constraints in which [ participates.

To iterate over all refinements of T, ClusILC calls BestSplit for each of T"s
leaves and for each attribute in the data set. For a given attribute, the cost of
calling BestSplit for all leaves is O(|I|log |I|+ |I|- (|C|+ |A|)+|IL|) because each
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instance occurs in at most one leaf and each constraint is included for at most
two leaves. Each such iteration yields two additional nodes. As a result, the cost
of building a tree with N nodes is O(N - |A| - (|I|1og |I| +|I|- (|C]+ |A]) + |IL])).
This is more expensive than the TDI algorithm. The complexity of the latter is
O(D - |A| - ([I|log |I| + |I| - |A])), with D the depth of the tree (D < N).

4 Experimental Evaluation

4.1 Setup

We present preliminary experiments with ClusILC, which has been implemented
in the Clus systenﬂ. ClusILC has two parameters. The parameter « trades off
the relative variance and the proportion of violated constraints in the heuristic.
The parameter m lower bounds the number of instances in each leaf. We set
both parameters (ad-hoc) to their default values v = 0.5 and m = 2.

We compare ClusILC to COP-k-means [3]. COP-k-means is a version of k-
means that takes IL constraints into account. During each iteration, k-means
assigns each instance in turn to its closest cluster. COP-k-means instead assigns
each instance to the closest cluster center such that none of the constraints in
which it participates are violated. If a given instance can’t be assigned to one of
the clusters without violating constraints, then COP-k-means fails (it performs
hard constrained clustering).

The experimental setup is similar to that of Wagstaff et al. [3]. We use classi-
fication data sets from the UCI [I3] repository as input (Table[I]). The clustering
algorithms only use the descriptive attributes. The class attribute is used to gen-
erate constraints. To generate a constraint, two instances are picked at random.
If they belong to the same class, then the constraint becomes a ML constraint;
if they belong to different classes then it becomes a CL constraint. We augment
the IL constraints by adding all entailed constraints (during the initialization of
the learners) [3]. The ML constraints represent an equivalence relation over the
instances. We therefore add all constraints in the transitive closure of the original
ML constraints. Assuming consistency, a CL constraint between two instances
can be extended to their ML equivalence classes. That is, for each pair of ML
equivalence classes A and B that are linked by at least one CL constraint, we
add a CL constraint between every pair of instances (a,b),a € A,b € B.

The number of classes k is given in each classification task. We use this number
to set the parameter k (number of clusters) of COP-k-means. We also introduce
an upper bound on the number of cluster labels in ClusILC. This can be accom-
plished by changing the AssignLabels procedure so that it does not introduce a
new cluster label if there are already k labels in the tree.

We compare the result of the clustering algorithms to the correct labels in
terms of the Rand index. Given two clusterings C; and Co, Rand(Cy,Cs) =
|I|-(|(J}TE1)/27 with a the number of instance pairs (i1,i2) where ¢; and iy are in

! Available at http://www.cs.kuleuven.be/~dtai/clus|
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Table 1. Data set properties: number of instances |I|, attributes |A|, and classes k

Name Il A & Name Il Ak
1 iris 150 4 3 7 liver-disorders 345 6 2
2 hayes-roth 160 4 4 8 ionosphere 351 34 2
3 wine 178 13 3 9 balance 625 4 3
4 glass 214 9 6 10  yeast 1484 8 10
5 heart-statlog 270 13 2 11  image 2310 19 7
6 ecoli 336 7 8 12 pendig 7494 16 10

the same cluster in both C and Cs, and b the number of pairs where i; and iz
are assigned to different clusters by both C; and Cs.

We report, besides the Rand index for all instances (i.e., cluster all instances
and compute the Rand index for that clustering), also the cross-validated Rand
index. The latter indicates how the algorithms perform on unconstrained in-
stances. We use 10 fold cross-validation. In each iteration, constraints are gen-
erated for nine folds. The tenth fold is used to compute the Rand index. (The
algorithms cluster the data in all folds.) The cross-validated Rand index is the
average of the values computed for each of the folds. The results (both all data
and cross-validated) are averages over 60 random sets of constraintsd.

4.2 Results

Fig. B presents the results. Consider first the curves for the clustering of all in-
stances (labeled “All”). The Rand index of COP-k-means increases with the num-
ber of constraints and, in 8 out of 12 data sets, clearly surpasses that of ClusILC for
a sufficiently large number of generated constraints. This was to be expected be-
cause COP-k-means only returns a clustering if it can satisfy all constraints: given
enough constraints, the Rand index will become 1.0. (For the large data sets im-
age and pendig COP-k-means requires many constraints.) ClusILC, on the other
hand, may also return a solution that does not satisfy all constraints. This can
happen either because, even if a solution exists, the greedy search fails to find it,
or because the target concept cannot be expressed as a clustering tree with the
given set of features. The result in both cases is a lower Rand index.

Next consider the cross-validation results (labeled “CV”). For these results,
ClusILC does better for wine, ecoli, ionosphere, balance, image, and pendig
(6 out of 12 data sets). It only does clearly worse for one data set (yeast).
For the other 5 data sets it performs comparable to COP-k-means. One reason
for the good generalization performance of ClusILC is that it can represent

2 For wine, heart-statlog, liver-disorders, and ionosphere, COP-k-means was, for large
constraints sets, unable to find a consistent clustering. To obtain results for these
data sets, we generated in each trial different random constraint sets until it found a
solution (up to 10°). The probability of finding a consistent solution strongly depends
on the number of constraints. E.g., for wine, the peak was at 300 constraints and
required on average 1087 sets before a consistent solution was found.
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Fig. 5. Results for ClusILC and COP-k-means

more complex clusters than COP-k-means, which essentially assumes spherical
clusters (i.e., a strong bias). Note also that not all constraints are useful and the
possibility to ignore constraints can be beneficial [14].
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We also measure the execution times and clustering tree sizes of ClusILC.
The maximum execution time (over all sets of constraints) for one run ranges
from 1.4 seconds (on balance) to 9 minutes (on heart-statlog). The maximum
tree size ranges from 23 nodes (iris) to 773 nodes (yeast). Typically, the more
constraints, the larger the tree. Note that this may yield to overfitting as can be
seen, for example, from the graphs for iris and ecoli. The experiments were run
on a cluster of AMD Opteron processors (1.8 - 2.4GHz, >2GB RAM) running
Linux.

5 Conclusion and Further Work

Clustering trees are decision trees used for clustering tasks. The main advan-
tage of such trees over other clustering methods is that they provide a symbolic
description for each cluster. This paper shows how clustering trees can support
instance level (IL) constraints. We extend clustering trees to be able to represent
disjunctive descriptions by assigning cluster labels to the leaves. This modifica-
tion is required to handle non-trivial constraint sets.

The main contribution is ClusILC, an algorithm that builds a disjunctive
clustering tree given a set of instances and a set of IL constraints. ClusILC
is a greedy algorithm guided by a global heuristic that takes the constraints
into account. We discuss two important optimizations that are implemented in
ClusILC: an algorithm for efficiently assigning cluster labels, and an algorithm
for efficiently finding the optimal split point for a numeric attribute.

The experimental evaluation compares ClusILC to COP-k-means. While COP-
k-means performs better on all data (its solution satisfies all constraints if it finds
one), ClusILC has a better or comparable generalization performance.

We consider data sets with numeric attributes only. In future work, we plan
to extend ClusILC to support data with mixed numeric and nominal attributes.
The main modification that is required to this end is to redefine the variance
metric used in the heuristic (e.g., to use the Gini index for nominal attributes
[15]). ClusILC uses greedy hill-climbing search. We plan to investigate alternative
search strategies, such as beam search, for which we have shown that it improves
the performance of predictive clustering trees [16]. We also consider experiments
comparing ClusILC to other constrained clustering algorithms, such as k-means
algorithms that implement soft constrained clustering [45lJ6], metric learning
approaches (e.g., [4l5]), and HAC [78]. Finally, we plan to investigate how other
constraint types, such as constraints on the size of the tree [I1], can be integrated
in ClusILC.
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