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Abstract. In ranking as well as in classification problems, the Area un-
der the ROC Curve (AUC), or the equivalent Wilcoxon-Mann-Whitney
statistic, has recently attracted a lot of attention. We show that the
AUC can be lower bounded based on the hinge-rank-loss, which simply
is the rank-version of the standard (parametric) hinge loss. This bound
is asymptotically tight. Our experiments indicate that optimizing the
(standard) hinge loss typically is an accurate approximation to optimiz-
ing the hinge rank loss, especially when using affine transformations of
the data, like e.g. in ellipsoidal machines. This explains for the first time
why standard training of support vector machines approximately max-
imizes the AUC, which has indeed been observed in many experiments
in the literature.

1 Introduction

The equivalence of the Area under the Receiver Operating Characteristics Curve
(AUC) and the Wilcoxon-Mann-Whitney statistic has in recent years sparked a
lot of interesting work toward a better understanding of classification and rank-
ing problems. While the AUC is a valuable measure for assessing the quality of a
given classifier or ranking method, it was typically not used as an objective func-
tion when training / optimizing a classifier, mainly due to its high computational
cost or different preferences concerning performance measures in the past (e.g.,
0/1-loss). Only recently, computationally tractable optimization methods were
developed for the use of AUC during training. These approaches are reviewed in
Section

This paper aims to better understand the interrelationship among the per-
formance measures AUC (cf. Section B]), 0/1-loss, and our new hinge rank loss
(cf. Section Hl). It is not concerned with algorithms for optimizing these mea-
sures. In Section Bl we first show that the AUC is determined by the difference
between the hinge rank loss and the 0/1-loss; and secondly, that the hinge rank
loss provides an asymptotically-tight lower-bound on the AUC. Thirdly, Section
argues that the AUC is approximately maximized by the standard training of
support vector machines; this can be improved by using affine transformations
of the data, e.g., employing (kernel) PCA [I] or ellipsoidal machines [2]. This
is supported by our experiments in Section [1] as well as by many experimental
findings in the literature [3/4U56], as discussed in Section Bl
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2 Notation

This section introduces relevant notation concerning classifiers and their para-
metric (real-valued) vs. rank outputs. Like in much of the machine learning
literature, we consider binary classification in this paper. Assume we are given
data D = {(zi, ;) }i=1,...n with N examples, class labels y; € {—1,+1}, and
input vectors a;; the number of positive examples (i.e., where y; = +1) is N,
and the number of negative examples is N~ = N — NT.

Given a classifier C' with real-valued output ¢;, we have ¢; = C(x;) for each
input x;, ¢ = 1,..., N. For simplicity, we assume that there are no ties, i.e.,
c¢i # c; for all i # 711 Given the real-valued threshold 6, the classification rule is
sign(e; —0). The rank-version of this classifier is denoted as follows: let the values
¢; be ordered in ascending order, i.e., the smallest output-value gets assigned the
lowest rank. Let r; € {1,..., N} be the rank of example i = 1, ..., N. Moreover,
let r;' denote the ranks of the positive examples, j = 1,...,NT; and r, be
the ranks of the negative ones, k = 1,..., N™. As the counterpart of the real-
valued threshold 6, a natural definition of the rank-threshold is = max{r; :
¢ <0} +1/2 =min{r; : ¢; > 0} —1/2, as it is located half way between the
two neighboring ranks at the (real-valued) threshold @ The classification rule is
sign(r; — 5)7 so that the real-valued version and the rank-version of the classifier
yield identical classification results.

3 Area Under the Curve

This section briefly reviews the Area under the Receiver Operating Character-
istics (ROC) Curve (AUC). While the AUC, denoted by A, had been used as
a measure for assessing classifier performance in machine learning (e.g., see [7]
for an overview), in recent years it has also become popular as a quality mea-
sure in ranking problems. This is because of its well-known equivalence to the
Wilcoxon-Mann-Whitney (WMW) statistic [910]; it can be written in terms of
pairwise comparisons of ranks:

Nt N™

1
A= - 22 Lo M

j=1k=1

where 1 is the indicator function: 1, = 1 if a is true and 0 otherwise. Essentially,
it counts the number of pairs of examples that are ranked correctly, i.e., positive
examples are supposed to have a higher rank than negative ones. The AUC
takes values A € [0,1]; A = 1 indicates perfect classification/ranking, and a
random classification/ranking results in A = 0.5. The AUC is independent of
the threshold value € used in classification.

! Given continuous inputs, and assuming that the classifier does not discretize or use
a step-function internally, there are no ties in the outputs to be expected in general.
2 Again, no ties concerning the ¢;’s are assumed.
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Even though the computational cost of evaluating Eq.[Ilfor all pairs of positive
and negative examples (of which there are NN ™) seems to grow quadratically
with N at first glance, it is easy to see that the WMW statistic can be evaluated
in linear time in N given the ranks (if the continuous outputs ¢; are given, the
ranks can be determined by sorting them in time N log N) [78]:

1 3 1 Ol N* 41
_ + +
A_N+N72<Tj _])_N+N7 > _< 9 ) (2)
j=1 =1

4 Hinge Rank Loss

In this section, we define the hinge rank loss as a rank-version of the standard
(parametric) hinge loss, which is commonly used for learning support vector
machines (SVM). We show that it can be calculated by summing over the ranks
of the positive examples (or equivalently of the negative ones), similar to Eq.

While classification accuracy is often assessed in terms of the 0/1-loss, the
0/1-loss is computationally expensive to optimize when training the classifier.
For the optimization task, researchers thus typically resort to approximations or
bounds of the 0/1-loss. Among other loss functions, the (linear) hinge loss [11]
(plus a penalty for regularization) is commonly used as objective function when
learning SVMs. The hinge loss has several favorable properties, including: (1)
it is an upper bound on the 0/1-loss, (2) it is differentiable everywhere except
for one point, and (3) leads to a convex optimization problem. The hinge loss

[11] of the real-valued classifier-outputs ¢;, given the threshold 6 and the data

D, is typically defined as Ll = Zf\[:l [1—yi(ci —0)],, where [], denotes the

positive part, i.e., [a]+ = a if a > 0, and 0 otherwise. In analogy, we propose the
following rank-version of the standard hinge loss:

Definition 1 (Hinge Rank Loss). We define as the hinge rank loss, based on
the ranks r; w.r.t. the rank-threshold 0:

L?R:ii_v; B _yi(n_é)L . 3)

Note that r; — 0 € {£1/2,43/2,...}, cf. Section B so that [1/2 — y;(r; — 0)]4 €
{0,1,2,...}. Both L and LY share the same relevant properties: the loss in-
curred due to each misclassified example 7 is at least 1 (hence both are an upper
bound on the 0/1-loss), and it increases linearly in riﬁ Conversely, no loss LHE
is incurred for any correctly classified example, as desirable (in contrast to hinge
loss). Note that the ’hinge ranking loss’ defined in [12] is different from our
definition, as discussed in Section [8]

Next, we re-write the hinge rank loss in terms of the sum over the ranks
of the positive examples. For notational convenience, we will use the definition

3 If we had defined the hinge rank loss with 1 in place of 1/2, the results in this paper
would hold with only minor changes.
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6 =60—1/2 €N for the rank-threshold in place of the (equivalent) definition in
Section 2l Hence, the examplesﬁwith ranks r; < 6 get classified as negatives, and
the examples with ranks r; > 0 + 1 as positives. Now we can present

Proposition 1. For the hinge rank loss from Deﬁnition 1 holds
. N — 1
LR N+9+< 0+ ) Zr 7 )

+
with the number of false negatives Ngn = Zjvzl lr;rgé'

Proof: Decomposing the sum in the definition in Eq. [B] into one for either
class, and summing only over the non-zero arguments, one obtains Li/F =
+ 5 - = . .

Z;V:M;rgg (1 — r;r + 9) + Zg:hr;w— (r,; — 9). Concerning the right-most sum,
we use the following identity regarding all the ranks greater than 6,
NT ) N~— - 7 N—0+1 .
ijlzr;r>§(rj —0) + Xpmrs oty —0) = ( , " 1). Now the former equation
can be rewritten in terms of sums over the positive examples only (or equiv-
alently over the negative ones only). Merging the two sums over the positive

. . HR _ Nt Nt N—0+1
examples into one, it follows L7 = Zj:hr;rge’l -> ( -0)+ (",

Jj=1
which yields Eq. @ O

5 Hinge Rank Loss and AUC

In this section, we decompose the AUC or Wilcoxon-Mann-Whitney-statistic
used in ranking problems in terms of the hinge rank loss and the 0/1-loss used
in classification tasks. From Eqs. Bl and [ it follows immediately:

Proposition 2. The AUC is related to the hinge rank loss and the number of
false negatives as follows:

LER — constp, g — Nin LR — constp, 4

_1_ "o D0 0 _ T D,d
A=1 N- and A>1 N+N- . (5
where constp g = (N7;0_+1) if N > 0 and constp g = (éfévi) otherwise;

constp g is a constant giwen the data D (and thus Nt and N~ ) and the rank-
threshold 0, i.e., it is independent of the classifier C.

Not only is the hinge rank loss L?R an upper bound on the 0/1-loss (as discussed
earlier), but also it is the decisive term in the lower bound on the AUC, as
apparent from the non-negativity of NI in Eq.

Proposition 3. The lower bound in Eq.[3is tight in the asymptotic limit N — oo
under the mild assumption that NT/N — const} b Where 0 < constjg <lisa
constant.

Proof: It has to be shown that Ng“/(N*N*) — 0 as N — o0, as this is the only
term omitted from Eq. [l as to obtain the bound in Eq. [ This is trivial because
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0< N < N,and N/(NTN~) — 0as N — oo under the assumption N*/N —
constg > 0. Hence, in the non-separable case, we have 1 — A > const > 0, while
N, gn /(NTN7) — 0, which hence becomes negligible for large N. In the separable
case, we have A = 1 and from Eq. B thus Lf® — constp, ; = NI, so that the
bound indeed approaches 1 in the asymptotic limit and thus becomes tight. O
The asymptotic tightness of this bound implies that the minimum of the hinge
rank loss indeed coincides with the maximum of the AUC in the asymptotic limit
(our experiments in Section [ indicate that this holds already for rather small
data sets in excellent approximation). This desirable property is not guaranteed
for the loose bounds on the AUC used in the literature, cf. Section Bl

Apart from that, Eq. @ relates the AUC, which is independent of threshold 6,
with the terms LgR, constp g and Ng“, which all depend on 6. The validity of
Eq.Blimplies that the effect of different values @ cancels out among those terms.

An interesting special case of Eq. [l is obtained for the natural choice of the
threshold §# = N, so that the predicted number of positive (negative) examples
equals the true number of positives (negatives); or equivalently, the number of
false positives equals the number of false negatives. This choice has two effects:
(1) it minimizes the constant constp, 5, namely it vanishes; (2) it holds that

N = L[])\ﬁ /2, where the latter is the 0/1-loss. We thus obtain the

Corollary: For the choice § = N~ , the relation among AUC, hinge rank loss
and 0/1-loss reads:

LER — 115! LHR
A=1-— NN+N—N and Azl—NJrAij_. (6)

6 Hinge Loss as a Parametric Approximation

In this section, we argue that minimizing the (standard) hinge loss—as it is the
parametric counterpart of the hinge rank loss—can be expected to be a good ap-
proximation to maximizing the AUC, especially after pre-processing the data by
an affine transformation, like (kernel-) PCA (principal component analysis) [I]
with subsequent rescaling along each principal component, or the ellipsoidal
machine [2].

While minimizing the hinge rank loss during training would provide an asymp-
totically tight bound on the AUC (as shown in the previous section), this is
computationally expensive due to its discrete nature. For computational rea-
sons, a standard approach is to approximate a discrete function by a continuous
(and possibly differentiable or convex) one, which then can be optimized more
efficiently. For instance, the Wilcoxon-Mann-Whitney-statistic has been approx-
imated by various differentiable functions in [I4I15] for efficient optimization
by means of gradient descent (but then suffered from quadratic computational
complexity due to the gradient).

Our propositions suggest an alternative approximation for efficient optimiza-
tion: as the asymptotically-tight lower bound on the AUC is maximized by
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minimizing the hinge rank loss, the latter may simply be approximated by its para-
metric counterpart: the standard hinge loss, which is computationally less costly
to minimize (as done e.g. in standard SVM training). The rank-threshold 6 is ac-
cordingly replaced by (real-valued) threshold 6, cf. Sections 2] and [l

Note that there exist rank and parametric versions of many commonly-used
statistics, like the Pearson correlation coefficient and the Spearman rank cor-
relation; or the paired Student’s t-test and the Wilcoxon signed-rank test. In
general, the ranked and the parametric versions of a statistic were found to yield
similar results in experiments, even though no theoretical proofs exist in general.
Further experimental insights include that there can also be some differences; in
particular, rank statistics are independent of an (assumed) distribution of the
examples, and are typically less affected by outliers in the data.

Even though the validity of the approximation of the hinge rank loss by the
(standard) hinge loss cannot be proven theoretically, it is strongly supported not
only by our experiments in Section [ but also by many experimental findings
in the literature, where standard SVM training yielded surprisingly high AUC
values [BIAIEIG], cf. also Section 8

Given a linear classifier (in feature space), consider an arbitrary orientation of
its hyperplane: regarding the hinge rank loss, the contribution of an individual
misclassified example grows monotonically with its distance from the hyperplane
for both the parametric hinge loss and the hinge rank loss, however at possibly
different rates. Note that the maximum possible contribution of a misclassified
example to the hinge rank loss is a constant (determined by the number of exam-
ples) for any orientation of the hyperplane; this does not hold for the standard
hinge loss, especially if the examples are squished along some dimensions. This
suggests a necessary condition for the hinge loss to be a good approximation to
the hinge rank loss: rescaling the (feature) space such that the examples have the
same spread in every direction. This can be achieved by the ellipsoidal machine
[2], which determines the bounding ellipsoid of the examples (possibly allowing
for outliers for robustness) and transforms the examples such that they lie within
a sphere. Alternatively, a similar affine transformation can be obtained by using
principal component analysis and rescaling / normalizing along every principal
component j by a factor N/std; (where std; is the standard deviation along
principal component j, cf. Section [ for an example), or using its kernelized ver-
sion [I]. The resulting improvement is illustrated in Section [T which also shows
that such an affine transformation can make the hinge loss more robust against
outliers. Moreover, note that such an affine transformation is independent of
and has a different effect than the (standard) penalty term for regularization;
for instance, the latter would not solve the issue in the third example in Fig. [l

7 Experiments

In this section, we experimentally evaluated how the hinge rank loss, the (stan-
dard) hinge loss and the 0/1-loss are related to the AUC. We assessed this in
two different ways, as outlined in the following, using artificial data as well as 8
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Table 1. This table shows the AUC values obtained after optimizing the following
measures: AUC, hinge rank loss (L"), (standard) hinge loss (L™),(standard) hinge
loss after affine transformation of data (aff. L™), and 0/1-loss (L°/') on artificial data
(cf. Fig. ) and 8 data sets from the UCI repository

data set dim. examples AUC L'® LB aff, LB 191
artificial data 1 2 1000 0.998 0.998 0.998 0.998 0.998
artificial data 2 2 1000 0.848 0.848 0.848 (0.848 0.848
artif. with outliers 2 1000 0.796 0.796 0.574 0.796 0.796
Sonar 60 208 0.996 0.996 0.973 0.996 0.950
Glass 10 214 0.992 0.992 0.987 0.988 0.957
Tonosphere 33 351 0.983 0.983 0.976 0.981 0.958
SPECTF 44 267 0.956 0.952 0.930 0.937 0.910
Pima 8 768 0.841 0.841 0.819 0.837 0.835
Hayes-Roth 4 129 0.730 0.730 0.704 0.710 0.703
Hepatitis 19 80 1.000 1.000 1.000 1.000 0.972
Echocardiogram 7 107 0.826 0.826 0.724 0.798 0.793

data sets from the UCI machine learning repositoryH In a pre-processing step,
we discarded the examples with missing values for simplicity, as the remaining
examples still provide a 'real-world distribution’ for comparing the measures.

As a linear classifier, we used a hyperplane. When learning this classifier
w.r.t. the various measures, only the hinge loss is not invariant under re-scaling
of the data. We thus re-scaled the data in two different ways, as to illustrate
the improvements due to the affine transformation discussed in Section [6 In
the first version, we re-scaled each dimension k by the factor N/stdy, where
stdy is the standard deviation of the examples regarding dimension k. In the
second version, we applied PCA and re-scaled along each principal component
analogously (called the affine transformation in the remainder).

Tab. [ summarizes the AUC-values achieved after optimizing the various per-
formance measures 3 As expected, direct maximization of the AUC resulted
in the highest AUC-values, but the difference to minimizing the hinge rank loss
appeared negligible, as expected due to the asymptotic tightness of our bounds
in Egs. Bland @l Moreover, minimizing the standard hinge loss also yielded quite
good AUC-scores. As expected, the affine transformation leads to a notable im-
provement. In comparison, optimizing the 0/1-loss was clearly inferior to mini-
mizing the hinge rank loss, as expected. Moreover, the 0/1-loss was also slightly
worse than the (standard) hinge loss applied to the data after the affine trans-
formation. This suggests that the latter can indeed serve as a useful parametric

4 http://www.ics.uci.edu/ mlearn/MLRepository.html

5 We omitted the standard penalty term here, as regularization is an important but
different problem. It can simply be included when classifying unseen examples, after
the preprocessing step regarding the affine transformation.

5 For ease of implementation, we used a simulated annealing scheme with random
distortions of the hyperplane as to optimize the 'discrete’ measures directly.
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Fig. 1. Two-dimensional artificial data: either class (4, o) is represented by 500 ex-
amples, sampled from a standard normal distribution. The first two experiments differ
in the distance between the centroids of the two classes. In the third experiment, both
classes contain 10% of outliers. The two leftmost columns show the results for the hinge
loss without the affine transformation, and the two rightmost columns show the results
(in the original space) when using the affine transformation. The column in the center
applies to both cases. The dashed line is the optimal hyperplane based on the hinge
rank loss, while the dotted line is optimal w.r.t. the (standard) hinge loss.

approximation to the hinge rank loss, as it is computationally less expensive to
optimize.

While the previous evaluation is only concerned with the optimum AUC-
value, in our second assessment we evaluated the relationship between the hinge
loss and the AUC for all possible AUC-values. For each data set, we randomly
sampled various orientations of the hyperplane. We chose the rank-threshold
§ = N—, as in the Corollary, and determined the corresponding (paramet-
ric) threshold as the average parametric classifier-output for the two examples
with ranks N~ and N~ + 119 Then we calculated—for each orientation of the
hyperplane—the parametric hinge loss, the hinge rank loss and the AUC; the
scatter-plots in Figs. [l and 2 illustrate the relationship between these measures
(each point corresponds to a different random orientation of the hyperplane).
The vertical dashed line indicates the largest possible value of the hinge rank loss
given NT positive and N~ negative examples: it equals NT N~ +min{ Nt N~}
but its value may not be attained for a given data set due to the configuration
of the examples.

Concerning the first two artificial data sets in Fig.[Il the scatter-plots indicate
a clear monotonic relationship between the parametric hinge loss (with and

7 As long as the parametric and rank thresholds correspond to each other, any other
choice may have been used as well.
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Fig. 2. The scatter-plots show the relationship of our hinge rank loss with the hinge
loss on 8 data sets from the UCI machine learning repository

without the affine transformation) and the hinge rank loss, and between the
hinge rank loss and the AUC. Hence, minimizing the hinge loss is an excellent
approximation to minimizing the hinge rank loss, and to maximizing the AUC.
Only in the third experiment, where many outliers are present, the optimal hy-
perplane w.r.t. the hinge loss (without affine transformation) differs significantly
from the result based on the hinge rank loss, as expected (cf. Section [B); the cor-
responding scatter-plot shows a non-monotonic relationship, illustrating that the
minima of the two loss functions are vastly different. The graphs on the lower
right in Fig.[[Ishow the benefit of the affine transformation: when the (standard)
hinge loss is applied to the data after the affine transformation, the scatter-plot
shows a monotonic relationship, as desired, and the optimal hyperplanes w.r.t.
either loss function are very similar. Apart from that, note that the relationship
of the hinge rank loss and the AUC is well approximated by a linear function,
as expected from the asymptotic tightness of the lower bounds in Eqs. [0l and

Fig. 2 shows the relationship of the hinge rank loss and the (standard) hinge
loss applied to 8 data sets from the UCI repository after the affine transforma-
tion: also here, it is notably monotonic. The fact that this relationship is different
for each data set is irrelevant for minimization as long as it is monotonic. Apart
from that, this relationship is much more 'noisy’ for these real-world data sets
than for our artificial data sets. Interestingly, the 'noise level’ typically decreases
as the hinge loss decreases, so that minimizing the hinge loss appears to be
a good approximation to optimizing the hinge rank loss, and hence the AUC.
Only for the data set 'Echocardiogram’, the noise level is large for small values
of the hinge loss, and thus the optimal hyperplanes with respect to the two loss
functions are notably different, possibly due to dominating outliers.

Like in Fig.[Il, we also found for these real-world data sets that the relationship
between the hinge rank loss and the AUC is linear in excellent approximation
(the plots have to be omitted due to lack of space), as expected.
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8 Related Work

This section describes related work concerning boosting and SVMs in the context
of ranking, and points out differences to our approach. A "hinge ranking loss’ was
first defined in [12]. Its main difference to our Definition 1 is that they measure
the difference in the ranks among all incorrectly ordered pairs of examples, so
their measure is essentially quadratic in the rank-differences, while our measure
is linear. As our hinge rank loss provides an asymptotically tight bound on the
AUC, it is clear that the "hinge ranking loss’ does not.

Boosting can be understood as gradient descent, and the various flavors of
boosting essentially differ in the objective function or in the (heuristic) mini-
mization method, e.g., [I6]. The objective function minimized by RankBoost [17],
LRBeost provides a lower bound on the AUC [I3], namely 1—LEBeost /(NTN—) <
A. Tt has essentially the same form as our bounds in Eqgs. [l or [@ involving the
hinge rank loss. While our bounds are asymptotically tight, RankBoost opti-

i Nt N~ ep —cF Nt N~
mizes a loose bound, as LRPost =370 570 e 7 > 370 S0 1y o =
- - = —11let<c;

NTN~—(1—A), cf. [13], where each c;r (or ¢, ) denotes the weighted sum over the
weak learners’ outputs for the positive (or negative) example j (or k). In [I3],
it was also shown that AdaBoost’s loss function equals the one of RankBoost
in the case where the positive and negative examples contribute equally to the
loss.

The average and the variance of the AUC statistic were derived in [18], reveal-
ing interesting relations to the misclassification rate, among other properties. In
[19], confidence intervals for the AUC were obtained from these results by apply-
ing Chebyshev’s inequality. The average and variance of the AUC was calculated
with respect to all possible rankings with fixed misclassification rate, where each
ranking got implicitly assigned the same probability /weight. This average-case
analysis of a combinatorial problem may only be of limited use in practice: given
fixed data, it is unlikely that all possible rankings occur with the same prob-
ability; in fact, many rankings may not occur at all in a given data set (e.g.,
cf. the scatter-plots in Section [, where the extreme (small and large) values
are actually not reached in many data sets). A different kind of generalization
bounds were derived in [20].

It was mentioned in [3] that optimizing standard SVMs leads to maximizing
the AUC in the special (trivial) case when the given data is separable. As a
perfect separation implies an AUC of 1 (which is maximal), the more interesting
case is non-separable data. Our results are derived without any assumptions on
the kind of classifier used or the (non-)separability of the given data.

Apart from that, it was experimentally observed in [3] that there was no
significant difference in AUC-scores between SVMs trained in the standard way
and other approaches tailored to directly maximize the AUC, like RankBoost
[1I7], AUCsplit (local optimization of AUC) [2I], or ROC-SVM [3]. This provides
additional support for the point made in this paper, namely that the hinge rank
loss can indeed be accurately approximated by its parametric counterpart, the
standard hinge loss.
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In [4], the objective was to directly maximize the AUC when learning SVMs,
which led to slight experimental improvements over the standard SVM train-
ing. This approach may be considered a special case of the SVM-approach to
ordinal regression [22]. Both gradient-descent methods suffered from quadratic
computational complexity, which made additional approximations necessary for
computational reasons.

In [5], a generalized SVM approach was developed that is able to optimize mul-
tivariate non-linear performance measures in polynomial time, including AUC
among others. The experiments focused on 4 data sets with unbalanced class dis-
tributions: in this scenario, their new approach was superior to standard SVMs
when assessed with respect to the Fij-score or the precision/recall breakeven
area. However, when assessed with respect to the AUC, the superiority of their
new approach over standard SVMs appeared less convincing on the 4 data sets
presented.

Among the many performance measures compared experimentally in [6], it
was found that ’... maximum margin methods such as boosting and SVMs ...
surprisingly ... also yield excellent performance on the ordering metrics.’

In summary, the experimental observations in the literature, e.g., [BI4I56],
suggest that—despite the various sophisticated methods tailored to directly max-
imize the AUC—standard SVMs could not be consistently outperformed when
assessed with respect to the AUC. This paper provides a simple explanation:
minimizing the (standard) hinge loss typically is an accurate approximation to
maximizing the AUC.

9 Conclusions

We have derived a simple equation that relates the Area under the ROC Curve
(AUC) with the hinge-rank-loss and the number of false negatives. This imme-
diately yields an asymptotically-tight lower bound on the AUC, based on the
hinge rank loss. While the surprisingly high AUC-scores after standard SVM
training in the literature provide indirect evidence, our experiments corroborate
directly that minimization of the (standard) hinge loss typically is an accu-
rate approximation to minimizing the hinge rank loss, especially after applying
affine transformations like in ellipsoidal machines. In summary, this suggests that
standard SVM training typically is a simple, yet effective and computationally
efficient way of approximately maximizing the AUC.
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