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Abstract. Classifiers that are deployed in the field can be used and eval-
uated in ways that were not anticipated when the model was trained. The
final evaluation metric may not have been known at training time, addi-
tional performance criteria may have been added, the evaluation metric
may have changed over time, or the real-world evaluation procedure may
have been impossible to simulate. Unforeseen ways of measuring model
utility can degrade performance. Our objective is to provide experimental
support for modelers who face potential “cross-metric” performance dete-
rioration. First, to identify model-selection metrics that lead to stronger
cross-metric performance, we characterize the expected loss where the
selection metric is held fixed and the evaluation metric is varied. Sec-
ond, we show that the number of data points evaluated by a selection
metric has substantial impact on the optimal evaluation. While address-
ing these issues, we consider the effect of calibrating the classifiers to
output probabilities influences. Our experiments show that if models are
well calibrated, cross-entropy is the highest-performing selection metric
if little data is available for model selection. With these experiments,
modelers may be in a better position to choose selection metrics that are
robust where it is uncertain what evaluation metric will be applied.

Keywords: performance metric, evaluation, calibration, cross-metric.

1 Introduction

Most machine learning research on classification has assumed that it is best to
train and select a classifier according to the metric upon which it ultimately will
be evaluated. However, this characterization makes several assumptions that we
question here. What if we don’t know the metric upon which the classifier will
be judged? What if the classification objective is not optimal performance, but
simply robust performance across several metrics? Does it make any difference
how much data is available on which to base model performance estimates? What
if we want at least to avoid the worst-performing selection metrics?

In this paper we give experimental results to begin to answer questions like
the ones we have just posed. The results show that the choice of selection metric
depends to a large degree on how much data is available to measure perfor-
mance and depends also on whether the underlying models produce accurate
probabilities.
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It is not so far-fetched that we may not have as much knowledge of — and
access to — the ultimate evaluation metric as is usually assumed. In some sit-
uations a modeler may have the discretion to build models that optimize one
of several metrics but not have access to a classification algorithm that directly
optimizes the evaluation metric. For example, the modeler may decide between
optimizing cross-entropy or root-mean-squared error through the choice of model
class and training algorithm. But if these models are evaluated with respect to
the F-score metric, it would be important to compare expected performance
losses in going from cross-entropy to F-score and from root-mean-squared er-
ror to F-score. These considerations arise in natural language processing (NLP)
tasks, such as noun phrase coreference resolution, where classification models
may be built to maximize accuracy, but where F-score or average precision pro-
vides the ultimate measure of success [I]. In fact, NLP tasks are often evaluated
on multiple reporting metrics, compounding the cross-metric problem.

The complex data processing required for NLP systems often places NLP
classifiers in a pipeline where they are judged according to the performance they
enable in downstream modules that receive the class predictions. Embedded
classifiers may be subjected to evaluation(s) that cannot easily be tested and
that may change according to evolving criteria of the entire system.

A marketing group in a large organization may request a model that maxi-
mizes response lift at 10% of the universe of customers. After the model has been
built, the marketing budget for the campaign is cut, but the marketing group
has the campaign ready to roll out and so not have the time to commission an-
other model. In that case the database marketing group may decide to contact
only 5% of the customers. The model that optimized response at the 10% level
will now be judged in the field according to a different criterion: response from
5% of the customers. (Alternatively, the marketing group may not even specify
its performance criterion, but may request a model that “simply” yields opti-
mal profits, accuracy, and lift.) What model should be selected to be robust to
changes such as these?

The availability of multiple performance metrics also poses questions for ma-
chine learning research. For example, an author may want to use a test metric
that would be most acceptable to a wide readership. An author might also want
to apply a second test metric under which performance is most likely to vary
meaningfully from the first, and therefore provide complementary guidance.

Thus real-world considerations make evaluation more complicated than might
be generally assumed. Performance metrics may change over time, may not be
known, may be difficult to simulate, or may be numerous. In this paper we ex-
amine uncertain evaluation by providing experimental answers to two questions:

1. What selection metrics yield the highest performance across commonly ap-
plied evaluation metrics?

2. What is the effect of the number of data points available for making model
selection judgments where the ultimate evaluation metric may be unknown?

In our experiments, we show one important factor is whether a classifier has
been calibrated to output accurate probabilities. Context for all these results is
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provided by a brief survey of closely related research (Section[2]) and a discussion
of the characteristic shape of distributions gleaned from plotting selection metric
performance against evaluation metric performance (Section [6).

2 Related Research

As part of an extensive set of experiments, Huang and Ling defined a model
selection ability measure called MSA to reflect the relative abilities of eight met-
rics to optimize one of three target metrics: accuracy, area under the ROC curve
(“AUC”) and lift [2]. Given one of these three “goal” metrics, MSA measures
the probability that one of the eight metrics correctly identifies which member
of all pairs of models will be better on the goal metric. While this is an attrac-
tive summary approach, our experiments hew more closely to how we see model
selection done in practice. Our experiments measure how one metric’s best per-
forming models perform when measured by a second metric. Since practitioners
tend to focus on superior models only, our methodology also reflects that bias.
Our empirical study below also evaluates all our metrics as reporting methods
rather than limiting the study to a proper subset of three goal metrics. The roles
of probability calibration and classifier combination in reducing performance loss
are also studied additionally here.

Several related efforts to develop algorithms to handle multiple performance
criteria have also been made [3J4lJ5]. Additionally, Ting and Zheng [6] have pro-
vided an approach to deal with changes in costs over time.

In 2004 as part of a statistical study of AUC, Rosset showed empirically that,
even where the goal is to maximize accuracy, optimizing AUC can be a superior
strategy for Naive Bayes and k-nearest neighbor classifiers [7]. Joachims has ex-
tended support vector methodology to optimize directly non-linear performance
measures that cannot be decomposed into measures over individual examples,
and any measure derived from a contingency table [8]. Cortes and Mohri give a
statistical analysis of accuracy and AUC and show that classifiers with the same
accuracy can yield different AUC values when accuracy is low [9].

3 Experimental Design

3.1 Performance Metrics

The performance metrics we study are accuracy (ACC), lift at the 25th per-
centile (LFT), F-score (FSC), area under the ROC curve (ROC), average pre-
cision (APR), precision-recall break-even point (BEP), root-mean squared error
(RMS), and mean cross-entropy (MXE). We also synthesize a hybrid metric that
is defined as the equally-weighted mean performance under RMS, ROC and ACC
(called “ALL”). We follow the definitions of these performance metrics found in
Caruana and Niculescu [10], since they are implemented in the PERF code that
was made available by Caruana in connection with the KDD Cup 2004.
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We have also adopted the same conventions as to the normalization of classifier
performance with respect to various metrics. Unfortunately, normalization is
necessary in order to compare directly metrics with different measurement scales.
Metrics have been normalized to values in [0, 1] where 0 represents the baseline
performance of classifying all instances with the most frequent class in the data,
and 1 corresponds to the best performance of any model developed in our lab
on that data%l.

3.2 Problems

Eleven binary classification problems were used in these experiments. ADULT,
COV TYPE and LETTER are from the UCI Repository [T1]. COV TYPE has
been converted to a binary problem by treating the largest class as the posi-
tive and the rest as negative. We converted LETTER to boolean in two ways.
LETTER.pl treats “O” as positive and the remaining 25 letters as negative,
yielding a an unbalanced problem. LETTER.p2 uses letters A-M as positives
and the rest as negatives, yielding a well-balanced problem. HS is the Indi-
anPine92 data set [12] where the difficult class Soybean-mintill is the positive
class. SLAC is a problem from the Stanford Linear Accelerator. MEDIS and MG
are medical data sets. COD, BACT, and CALHOUS are three of the datasets
used in [I3]. ADULT, COD, and BACT contain nominal attributes. For neu-
ral networks, SVMs, KNNs, and logistic regression we transform nominal at-
tributes to boolean (one boolean per value). Each decision tree, bagged deci-
sion tree, boosted tree, boosted stump, random forest and naive Bayes model
is trained twice, once with transformed attributes and once with the original
ones.

3.3 Mbodel Types

The 10 model types that we used in this experiment were: back-propagation
neural networks, bagging of decision trees, boosting of decision trees, k-nearest
neighbor, logistic regression, Naive Bayes, random forests, decision trees, boost-
ing decision stumps and support vector machines. We create a library of ap-
proximately 2,000 models trained on training sets of size 4,000. We train each of
these models on each of the 11 problems to yield approximately 22,000 models.
The models are all as described in [14].

The output of such learning methods as boosted decision trees, boosted de-
cision stumps, SVMs and Naive Bayes cannot be interpreted as well-calibrated
posterior probabilities [I5]. This has a negative impact on the metrics that in-
terpret predictions as probabilities: RMS, MXE and ALL (which invokes RMS).
To address this problem, we use post-training calibration to transform the pre-
dictions of all the methods into well-calibrated probabilities. In this paper cali-
bration is done via Platt scaling [16].

! The performance upper bounds are available to interested researchers.
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To fit the calibrated model we use a set of 1000 points reserved solely for
calibration (i.e. they are not part of the training, validation or final test set)H
While in practice one would use the same set of points both for calibration and
for model selection, here we use separate sets in order to separate the effects
of calibration from the effects of model selection on performance. The effect of
calibration is further discussed in Section

4 The Effect of Sample Size on Selection Metric Choice

In this section we discuss the effect of small data sample size on the decision
of which selection metrics to use. Our primary objective in this section is to
quantify the loss in selecting on one metric but reporting on another. To obtain
the results in this section, we use the following methodology. For each prob-
lem, we train each of the approximately 2000 models on a 4000 points training
set, and calibrate it using the extra 1000 points calibration set. All the trained
models are then evaluated on a validation (selection) set, and the model with
the best performance on the selection metric is found. Finally, we report the
evaluation (reporting) metric performance of the best model on a final indepen-
dent test set. To ensure that the results are not dependent on the particular
train/validation/test set split, we repeat the experiment five times and report
the average performance over the five trials.

To investigate how the size of the selection set affects the performance of
model selection for different selection metrics, we consider selection sets of 100,
200, 500 and 1000 points. For comparison we also show results for “optimal”
selection, where the final test set is used as the selection set.

We use the following experimental procedure. We are given a problem, a
selection metric, s, and a reporting metric, 7. We choose from our library the
classifier C's that has the highest normalized score under the selection metric s.
We then measure the score of that classifier Cs under the reporting metric 7.
Call that score r(Cs).

Next we identify the classifier C* that has the highest performance on the
reporting metric. Call that score r(C*) . The difference r(C*) — r(Cs) is the
loss we report. The selection of Cy is done on a validation set and the reporting
metric performance of both classifiers is computed on an independent test set.

Figure [Il shows the loss in performance due to model selection for nine selec-
tion metrics averaged across the nine reporting metrics. The tenth line, ORM
(Optimize to the Right Metric), shows the loss of always selecting using the
evaluation metric (i.e. select using ACC when the evaluation metric is ACC,
ROC when the evaluation metric is ROC, etc.). On the X axis we vary the size
of the selection set on a log scale. The right-most point on the graph, labeled

2 This approach could give metrics affected by calibration (e.g., RMS and MXE) an
advantage for model selection over metrics not affected by calibration (e.g., ACC,
ROC, and LFT). To verify that this is not a problem we repeated the experiments
with well-calibrated models that do not require post-training calibration (and thus
do not use extra calibration data) and obtained similar results.
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Fig. 1. Average across all nine reporting metrics

OPT, shows the loss when selection is done “optimally” (by cheating) using the
final test set. This represents the best achievable performance for any selection
metric, and can be viewed as a bias, or mismatch between the selection metric
and the evaluation metric

The most striking result is the good performance of selecting on mean cross-
entropy (MXE) for small sizes of the selection set. When the selection set has
only 100 or 200 points, using cross-entropy as the selection metric incurs the
lowest loss. In fact, at 100 and 200 points, selecting on MXE has the lowest
loss for every individual reporting metric, not only on average! This may be a
surprising result in that it undermines the common belief that it is always better
to optimize to the metric on which the classifier will be evaluated.

We propose two hypotheses that would account for the superior performance
of MXE for small data sets, but we do not yet have support for these possible
explanations. MXE provides the maximum likelihood probability estimation of
the binary targets. Under this hypothesis, MXE reflects the “correct” prior for
target values as a binomial distribution [I7]. Priors are particularly important
where data are scarce. The second hypothesis recognizes that (of the metrics
we consider) MXE assesses the largest penalty for large errors, which may be
desirable where not much data is available.

For larger selection sets, MXE continues to be competitive, but ROC and ALL
catch up when the selection set has 500 points. At 1000 points all metrics except
BEP, ACC, FSC, and LFT have similar performance (on average across reporting
metrics). This result suggests that, when the evaluation metric is uncertain, cross

3 Of course, this bias/mismatch depends on the underlying set of classifiers to select
among.



316 D.B. Skalak, A. Niculescu-Mizil, and R. Caruana

Loss in normalized score
Loss in normalized score

=

L
100 200 500 1000

100 200 500 1000 OPT
Selection set size Selection set size
Fig. 2. Loss when reporting on ACC Fig. 3. Loss when reporting on RMS
0.35 7 T T 0.35 rr T T
APR ©x- i APR ©xo-
fer fer
o3 MXE +-1 | 08 MXE o1 ]
ROC '+ o ROC '+

Loss in normalized score
Loss in normalized score
-

1 0.15 |- 1
b 0.1 4
1 005 TRl -1
i ;
100 200 500 1000 100 200 500 1000 OPT
Selection set size Selection set size
Fig. 4. Loss when reporting on APR Fig. 5. Loss when reporting on FSC

entropy should be used as a selection metric, especially when validation data is
scarce. When the validation set is larger, ROC, RMS and ALL also are robust
selection metrics. LF'T and FSC seem to be the least robust metrics, followed by
BEP and ACC. Contrary to common belief, directly optimizing the evaluation
metric (the ORM line) actually yields worse performance than both using MXE
and RMS as a selection metric. Even for larger validation set sizes optimizing to
the right metric does not yield a benefit on average.

Figure 2 shows the performance for a few selection metrics when ACC is the
evaluation metric. The figure shows ROC is superior as a selection metric to
ACC even when the evaluation metric is ACC. ROC-based selection yields lower
loss across all selection set sizes (except of course OPT, where ACC has zero
loss by definition). This confirms the observation made by Rosset [7], which was
discussed in Section Bl Although at low selection set sizes MXE has the best
performance (followed by RMS), looking at the OPT point, we see that MXE
has the largest bias (followed by RMS). Of all metrics ALL has the smallest bias.

In the Information Retrieval (IR) community, APR is often preferred to ROC
as a ranking evaluation metric because it is more sensitive to the high end of the
ranking and less sensitive to the low end. Figure [ shows the loss in normalized
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score when the evaluation metric is APR. Besides APR and ROC, we also show
the selection performance of MXE and two other IR metrics: BEP and FSC.
The results suggest that selection based on ROC performs the same, or slightly
better than selecting on APR directly. In fact ROC has a very low bias relative
to APR, as shown by the OPT point in the graph. The other two IR metrics
have lower performance, with FSC incurring a significantly higher loss.

Figure[Bldepicts the loss in normalized score when using FSC as an evaluation
metric. This figure may also be of interest to IR practitioners, since FSC is often
relied upon in that field. The figure shows that, except for small validation set
sizes, if FSC is the metric of interest, then FSC should also be used as a selection
metric. For small validation sets, MXE again provides significantly lower loss.
One other interesting observation is the large mismatch between FSC and the
other metrics (the OPT point in the graph). This mismatch is one reason why,
given enough validation data, FSC is the preferred selection metric when one is
interested in optimizing FSC.

One other interesting case is shown in Figure [l for LEF'T as the evaluation
metric. The figure shows that even if one is interested in lift, one should not
select based on it. MXE, RMS and ROC all lead to selecting better models.

Figure [0 shows the case when the performance is evaluated using a combina-
tion of multiple metrics. For the figure, the reporting metric is ALL which is an
equally weighed average of ACC, RMS and ROC. Selecting on the more robust
RMS or ROC metrics performs as well as selecting on the evaluation metric ALL.
This is not the case for ACC, which is a less robust metric. For small validation
sets, cross-entropy is again the best selection metric.

5 The Effect of Model Probability Calibration on
Selection Metric Choice

In this section we investigate how cross-metric optimization performance is af-
fected by models with poor calibration such as boosted trees, boosted stumps,
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SVMs and Naive Bayes. To this end, we repeat the experiments in Section Ml
but use the original uncalibrated models instead of the Platt-calibrated ones.

As expected, having a mix of well calibrated and poorly calibrated models
hurts cross-metric optimization. The effect of poorly calibrated models is two-
fold. On one hand, when selecting on a metric such as ROC, APR or ACC that
does not interpret predictions as probabilities, and evaluating on a metric such
as RMS, MXE or ALL that is sensitive to probability calibration, the selected
model, while performing well on the “non-probability” measures, may be poorly
calibrated, thus incurring a high loss on the “probability” measures.

This effect can be clearly seen in Figure[8 The figure shows the loss in normal-
ized score when the reporting metric is MXE, and the selection metric is MXE,
ROC or ACC. For each selection metric, two lines are shown: one for select-
ing from uncalibrated models, and the other for selecting from Platt-calibrated
models. When selecting from uncalibrated models, using either ROC or ACC as
selection metrics (the top two lines) incurs a very large loss in performance (note
the scale). In fact, quite often, the MXE performance of the selected models is
worse than that of the baseline model (the model that predicts, for each instance,
the ratio of the positive examples in the training set). Using calibrated models
eliminates this problem driving down the loss.

On the other hand, when selecting on one of the “probability” measures (RMS,
MXE or ALL), the poorly calibrated models will not be selected because of their
low performance on such metrics. Some of these models, however, do perform
very well on “non-probability” measures such as ROC, APR or ACC. This leads
to increased loss when selecting on probability measures and evaluating on non-
probability ones because, in a sense, selection is denied access to some of the
best models.

Figure[@shows the loss in normalized score when the reporting metric is APR,
and the selection metric is MXE, ROC or ACC. Looking at MXE as a selection
metric we see that, as expected, the loss from model selection is higher when
using uncalibrated models than when using calibrated ones. Since calibration
does not affect ROC or APR, selecting on ROC and evaluating on APR yields
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the same results no matter if the models were calibrated or not. The same is not
true when selecting using ACC because calibration can affect threshold metrics
by effectively changing the threshold.

6 Visualizing the Joint Distribution of Selection and
Evaluation Metric Performance

One way to gain further insight is to graph for each pair of metrics the distri-
bution of performances for a large set of classifiers. For this experiment we rely
on the pool of classifiers trained for the previous experiments. Recall that these
classifiers came from 10 model classes. A variety of parameter settings for each
model class yielded 8,910 classifiers, each of which may be evaluated according to
its test-set performance for pairs of metrics. With 9 performance metrics, there
are 36 plots of pairs of metrics to examine for each problem. Figures [I0, [T
and [[3] show four of these that illustrate a variety of behaviors.

Figure is a scatterplot of the ROC vs. RMS performance of the models
on the Covertype problem. In this figure boosted decision trees (purple boxes)
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clearly dominate all other model types on both ROC and MXE. Bagged decision
trees (blue stars) are the second best model. At the better-performing end of the
spectrum (upper left of the plot) there is a strong correlation between perfor-
mance on the two metrics. This correlation is reduced as performance worsens,
leading to the broadening of the “funnel”.

Figure [[1] shows a scatterplot for the same two metrics (ROC vs. RMS) but
on the Medis problem. The shape of the funnel differs somewhat from that of
Figure[IQ On this problem, there is no one model type that dominates the other
model types on both metrics. Calibrated boosted stumps have the best RMS,
but neural nets and logistic regression yield somewhat better ROC. Also, there
is less correlation between the two performance measures for different families
of algorithms — the thread for each family is more distinguishable in this plot.

Figure [[2] shows RMS vs. MXE performance for the Adult data set. As one
might expect for two measures such as RMS and MXE that are so similar, this
scatterplot shows a remarkably strong linear correlation between the two mea-
sures, with the best-performing models being neural nets and SVMs. Figure [I3]
shows MXE vs. LFT for Covertype. In this scatterplot there is a reasonably
strong correlation between the two measures for most algorithms, but SVMs
(green Xs) form a cloud of outliers with overall worse MXE.

One general feature of these “funnel” plots is that there is a narrowing at
the high-performing end of the graph because it is difficult with most metrics
to achieve near-optimal performance on one metric while achieving poorer per-
formance on the other metric. When performance is poorer, however, often the
funnel widens because when performance is poor on one metric it is possible to
achieve a wide range of performances on other metrics. When performance is
not optimal, it makes a larger difference what metric is used for selection.

The shape of the distribution of scores is seen many times for pairs of metrics.
Often a wedge-shaped distribution can be seen reflecting the relatively wide
variance in performance for classifiers that do not perform well along one or
both of the two metrics. But we see a much tighter distribution at the vertex of
the wedge for classifiers that do perform well under both metrics.

These distinctive distributions may provide a clue as to why calibrated clas-
sifiers suffer less cross-metric loss. Ensemble classifiers and calibrated classifiers
both tend to yield higher-performing classifiers for a variety of metrics. In many
graphs, they fall towards the narrow, extreme vertex of the wedge. At this thin
edge of the plot, little variance in performance from metric to metric is seen. Con-
sequently, cross-metric loss is lower in that region of the plot, which is inhabited
by superior classifiers.

7 Conclusion

Our experiments have shown that when only a small amount of data is available,
cross-entropy yields the strongest cross-metric performance. The experiments
have also shown that calibration can affect the performance of selection metrics
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in general, and of cross-entropy in particular. In general, MXE and ROC per-
formed strongly as selection metrics and FSC, LFT, ACC, and BEP performed
poorly. The next step in our research is to go beyond the empirical results pre-
sented in this paper and try to create a formal decomposition of cross-metric loss.
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