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Multiple Sequence Alignment

5.1 Pairwise Alignment Among Multiple Sequences

In previous chapters, the structural features of pairwise sequence alignment
and the features of mutations were discussed. Based on these features, dy-
namic programming-based algorithms and the statistical decision-based algo-
rithm (SPA) were presented. These algorithms are restricted to performing
alignments for a pair of sequences. However, to apply these alignment meth-
ods to bioinformatics, they must be able to process a family of sequences
(many more than two sequences) simultaneously. The alignment algorithms
that can accomplish this are called multiple sequence alignment, or simply
MA. When studying these alignments, pairwise alignment are the best refer-
ence. Therefore, we begin this chapter by discussing the structure resulting
from mutations, as well as the structure by alignment of multiple sequences.
As we attempt to develop MA, we discuss how to use pairwise alignment
to process multiple sequences, and we consider what types of problems this
raises.

5.1.1 Using Pairwise Alignment to Process Multiple Sequences

Both dynamic programming-based algorithms and statistical decision-based
algorithms for pairs of sequences are fast and programmable. Until true
MA are developed, researchers must use pairwise alignment methods to
process multiple sequences. Many current MA software packages, such as
Clustal-W [102] etc., are in fact based on pairwise alignment. That is, the
pairwise alignment is an important component of these software packages.
The use of pairwise alignment methods to process multiple sequences is im-
portant for a rough analysis of the common structure of multiple sequences.
For example, we can analyze affinity relationships and evolution between each
pair of sequences, based on pairwise alignment methods. This demonstrates
that pairwise alignment of multiple sequences is important enough to consider
specifically.
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Let m be the number of sequences in a multiple sequence set; the compu-
tational complexity then ranges from O(m2n) to O(m2n2) if we use pairwise
alignment methods to process the set of sequences. For example, if we use
the SPA, then the complexity is O(m2n), while the computational complexity
is O(m2n2) for a dynamic programming-based algorithm such as the Smith–
Waterman algorithm. Therefore, if the size of the benchmark set is not overly
large, pairwise alignment is acceptable in the sense of complexity. Of course,
the use of pairwise alignment methods to build the homologous family of
a sequence is only a stopgap measure, not the final goal.

5.1.2 Topological Space Induced by Pairwise Alignment
of Multiple Sequences

We maintain the notations in (1.1) and (1.2) such that

A = {As = (as,1, as,2, · · · , as,ns) , s = 1, 2, · · · ,m} (5.1)

is a multiple sequence in which As is the sth gene sequence whose length is
ns, and as,j ∈ V4 = {0, 1, 2, 3} is the state space of nucleotides in the gene
sequence, and m is its multiplicity. In addition, we still must introduce the
following notations and point out some problems.

The Matrices Induced by Pairwise Alignment
of Multiple Sequences

If A is a multiple sequence defined in (5.1), then for any s, t ∈ M =
{1, 2, · · · ,m}, we find the result of pairwise alignment of (As, At) as follows:

(Cs,t, Ct,s) = ((cs,t;1, cs,t;2, · · · , cs,t;ns,t), (ct,s;1, ct,s;2, · · · , ct,s;nt,s)) . (5.2)

Then, Cs,t, Ct,s is the expansion of (As, At) in which, cs,t;j , ct,s;j ∈ V5 and
ns,t = nt,s is the common length of the sequences (Cs,t and Ct,s).

We then obtain a matrix induced by pairwise alignment of multiple se-
quences as:

C̄ = (Cs,t)s,t=1,2,··· ,m , (5.3)

in which Cs,t is defined by (5.2). For simplicity, we refer to C̄ as the alignment
matrix induced by multiple sequences A, or the simpler alignment matrix.
It is easy to find that changing the order of the pairwise alignments for the
multiple sequences will result in a different matrix.

Definition 25. Let C̄ be the alignment matrix induced by the multiple se-
quences A. Let Ts,t be the shifting mutation mode from At to As, and let
W = {w(a, b), a, b ∈ V5} be the penalty function on V5. Then:

1. C̄ is the minimum penalty alignment matrix if the expansion (Cs,t, Ct,s)
of (As, At) has the minimum penalty score.
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2. C̄ is the uniform alignment matrix if (Cs,t, Ct,s) is the uniform alignment
of (As, At) based on the mode Ts,t for every pair s, t ∈M = {1, 2, · · · ,m}.

The definitions of the minimum penalty alignment and uniform alignment, as
well as the relationship between these two kinds of pairwise alignments, are
outlined in Chaps. 1 and 4, respectively. In this chapter, we focus on the case
of minimum penalty alignment. We will discuss the uniform alignment case
in Chap. 7.

Penalty Matrix Induced by Pairwise Alignment
of Multiple Sequences

Let C̄ be the alignment matrix induced by the multiple sequence A. If the
penalty function W = w(a, b) defined on V5 is given, then for any s, t ∈ M ,
we have two expansions Cs,t andCt,s based on the pair of sequencesAs and At.
The penalty score for the pair Cs,t and Ct,s is defined by:

ws,t(C̄) = w(Cs,t, Ct,s) =
ns,t∑

j=1

w(cs,t;j , ct,s;j) . (5.4)

Definition 26. Let C̄ be the alignment matrix induced by multiple sequences A,
and let W be the penalty function defined on V5. The matrix

W̄ (C̄) = [ws,t(C̄)]s,t=1,2,··· ,m (5.5)

is then the penalty matrix induced by pairwise alignment of multiple se-
quences A, where ws,t(C̄) is defined by (5.4). It is acceptable to simply call
this the penalty matrix.

A fixed penalty matrix W̄ o = (wos,t)s,t=1,2,··· ,m, is the minimum penalty ma-
trix if each wos,t is the score of the minimum penalty alignment of (As, At).

For the sake of simplicity, we use W̄ (C̄) to replace

W̄ = (ws,t)s,t=1,2,··· ,m .

Theorem 22. If the multiple sequence A and the penalty function W on V5

are given, then the minimum penalty matrix W̄ o is uniquely determined, and
denoted by W̄ o = W̄ o(A).

Proof. It is sufficient to prove that the score wos,t of the minimum penalty
alignment is uniquely determined for any sequence pair (As, At). To do this,
we check the definition

wos,t = min{ws,t = w(Cs,t, Ct,s) : (Cs,t, Ct,s) is the alignment of (As, At)}
(5.6)

in which the set at the right-hand side of expression (5.6) has a lower bound.
It follows that the minimum value is unique. Hence, the minimum penalty
matrix W̄ o is also unique.
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We then have the relationship

M = {A, W̄ o} .

This is called the minimum penalty representation of pairwise alignment of
multiple sequences. We will prove later that M forms a metric space.

Metric Space Defined on a Finite Set

The metric space is a fundamental concept in mathematics. To show that
M = {A, W̄ o} is a finite metric space, we present the general definition of
a metric space defined on a finite set.

Let M = {1, 2, · · · ,m} be a finite set, and let ws,t be a function defined
on M ×M = {(s, t) : s, t ∈M}.
Definition 27. A function ws,t defined on M ×M is a measure (or metric
or distance), if the following conditions hold:

1. Nonnegative property: ws,t ≥ 0 holds all s, t ∈ M and ws,t = 0 if and
only if s = t.

2. Symmetry property: ws,t = wt,s holds for all s, t ∈M .
3. Triangle inequality: ws,r ≤ ws,t + wt,r holds for all s, t, r ∈M .

If the distance function ws,t defined on a finite set M is given, then the M
endowed with this distance forms a metric space, and it is called a finite metric
space, or finite distance space.

The Fundamental Theorem of Minimum Penalty Alignment

Let M be the minimum penalty representation of pairwise alignment of mul-
tiple sequences defined as above. It is a finite metric space under the natural
distance induced by the minimum penalty matrix W̄ o, although this is not
obvious. In fact, we can not build the relationship among

w(Cs,t, Ct,s) , w(Cs,r , Cr,s) , w(Ct,r , Cr,t)

directly because the expansions Cs,t and Cs,r based on As and At, Ar are not
unique. The fundamental theorem of the minimum penalty alignment is that
the minimum penalty representation M is a finite metric space if the penalty
matrix W̄ o = [wos,t]s,t∈M satisfies the three conditions defined above.

Theorem 23. (Fundamental theorem of minimum penalty alignment.)
Let A be a multiple sequence and W̄ o = (wos,t)s,t∈M be the minimum penalty
matrix of the multiple sequences A defined by (5.5) under a given penalty
function W = w(a, b), a, b ∈ V5. Then, the M endowed with the natural
distance induced by W̄ o = (wos,t)s,t∈M is a finite metric space.
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Proof. For simplicity, let the penalty function w(a, b) be the Hamming matrix
on V5. Then, let W̄ o = (wos,t)s,t∈M be the minimum penalty matrix based on
the multiple sequences A defined by (5.5). We consider the natural distance
induced by this minimum penalty matrix as follows: d(As, At) = wo(s, t).
Using the definitions of the Hamming matrix and C̄, we find that d(·) sat-
isfies both the nonnegative and symmetry properties. Therefore, we need
only prove that d(·) satisfies the triangle inequality. Alternatively, we prove
that wos,r ≤ wos,t + wot,r holds for all s, t, r ∈ M . For an arbitrary three
s, t, r ∈ {1, 2, · · · ,M}, we may assume that these three subscripts are dif-
ferent from each other. For simplicity, we also omit the subscripts of the three
vectors As, At, Ar. Let

Z = (z1, z2, · · · , znz) , Z = A,B,C , z = a, b, c (5.7)

be the uniform representation of the three sequences, and let
(
A′

B′

)
,

(
A∗

C∗

)
,

(
Bo

Co

)
(5.8)

be the minimum penalty alignments of all possible combined pairs in A, B, C.
Thus, we alternatively prove that

w(Bo, Co) ≤ w(A′, B′) + w(A∗, C∗) (5.9)

holds, by using the steps outlined below:

1. Following from the definition in (5.7), we know that the sequences A′, A∗

are the expansions of A, B′, Bo are the expansions of B, and C∗, Co are
the expansions of C, with the corresponding expanded modes given as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H ′
a =

(
γ′a,1, γ

′
a,2, · · · , γ′a,na

)
=
{(
i′a,k, �

′
a,k

)
, k = 1, 2, · · · , k′a

}
,

H∗
a =

(
γ∗a,1, γ

∗
a,2, · · · , γ∗a,na

)
=
{(
i∗a,k, �

∗
a,k

)
, k = 1, 2, · · · , k∗a

}
,

H ′
b =

(
γ′b,1, γ

′
b,2, · · · , γ′b,nb

)
=
{(
i′b,k, �

′
b,k

)
, k = 1, 2, · · · , k′b

}
,

Ho
b =

(
γob,1, γ

o
b,2, · · · , γob,nb

)
=
{(
iob,k, �

o
b,k

)
, k = 1, 2, · · · , kob

}
,

H∗
c =

(
γ∗c,1, γ

∗
c,2, · · · , γ∗c,nc

)
=
{(
i∗c,k, �

∗
c,k

)
, k = 1, 2, · · · , k∗c

}
,

Ho
c =

(
γoc,1, γ

o
c,2, · · · , γoc,nc

)
=
{(
ioc,k, �

o
c,k

)
, k = 1, 2, · · · , koc

}
,

(5.10)
where na, nb, nc are the lengths of sequences A,B,C, respectively.

2. Let n′
a, n

∗
a, n

′
b, n

o
b , n

∗
c and noc be the lengths of the sequences A′, A∗, B′,

Bo, C∗ and Co respectively, where n′
a = n′

b, n
∗
a = n∗

c , n
o
b = noc. Then,

following from (H ′
a, H

∗
a , H

′
b, H

o
b , H

∗
c , H

o
c ), the decompositions of N ′

a, N
∗
a ,
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N ′
b, N

o
b , N

∗
c and No

c are as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N ′
a =

{
δ′a,1, δ′a,2, · · · , δ′a,2k′a+1

}
,

N∗
a =

{
δ∗a,1, δ∗a,2, · · · , δ∗a,2k∗a+1

}
,

N ′
b =

{
δ′b,1, δ

′
b,2, · · · , δ′b,2k′b+1

}
,

No
b =

{
δob,1, δ

o
b,2, · · · , δob,2ko

b+1

}
,

N∗
c =

{
δ∗c,1, δ∗c,2, · · · , δ∗c,2k∗c +1

}
,

No
c =

{
δoc,1, δ

o
c,2, · · · , δoc,2ko

c+1

}
,

(5.11)

where the intervals δ′.s are connected in order. If we let

Δ′
a,1 =

{
δ′a,1, δ′a,3, · · · , δ′a,2k′a+1

}
Δ′
a,2 =

{
δ′a,2, δ′a,4, · · · , δ′a,2k′a

}

Δ∗
a,1 =

{
δ∗a,1, δ∗a,3, · · · , δ∗a,2k∗a+1

}
Δ∗
a,2 =

{
δ∗a,2, δ∗a,4, · · · , δ∗a,2k∗a

}

Δ′
b,1 =

{
δ′b,1, δ

′
b,3, · · · , δ′b,2k′b+1

}
Δ′
b,2 =

{
δ′b,2, δ

′
b,4, · · · , δ′b,2k′b

}

Δo
b,1 =

{
δob,1, δ

o
b,3, · · · , δob,2ko

b+1

}
Δo
b,2 =

{
δob,2, δ

o
b,4, · · · , δob,2ko

b

}

Δ∗
c,1 =

{
δ∗c,1, δ∗c,3, · · · , δ∗c,2k∗c +1

}
Δ∗
c,2 =

{
δ∗c,2, δ∗c,4, · · · , δ∗c,2k∗c

}

Δo
c,1 =

{
δoc,1, δ

o
c,3, · · · , δoc,2ko

c+1

}
Δo
c,2 =

{
δoc,2, δ

o
c,4, · · · , δoc,2ko

c

}

(5.12)
then we have

a′Δ′
a,1

= a∗Δ∗
a,1

= A , b′Δ′
b,1

= boΔo
b,1

= B , c∗Δ∗
c,1

= coΔo
c,1

= C , (5.13)

and all components in the following vectors

a′Δ′
a,2
, a∗Δ∗

a,2
, b′Δ′

b,2
, boΔo

b,2
, c∗Δ∗

c,2
, coΔo

c,2

are the inserted symbol “−”.
3. Following from the union H ′′

a = H ′
a ∨H∗

a of the expanded modes H ′
a, H

∗
a ,

we may expand sequenceA toA′′ under the modeH ′′
a . Then, A′′ is actually

the virtual expansion of both A′ and A∗, whose extra regions are H ′′
a −H ′

a

and H ′′
a −H∗

a , respectively. Therefore, we get the expanded modes on A′

and A∗ as (H ′′
a −H ′

a)a′ and (H ′′
a −H∗

a)a∗ , respectively. (H ′′
a −H ′

a)a′ , (H ′′
a −

H∗
a)a∗ are then two different quadratic expansions of sequence A, whose

evolution process is given as:

A
H′

a−→ A′ (H′′
a −H′

a)a′−→ A′′ , A
H∗

a−→ A∗ (H′′
a −H∗

a)a∗−→ A′′ . (5.14)
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4. Since the lengths of sequences B′, C∗ are equal to the lengths of sequences
A′, A∗, respectively, the expansions of B′, C∗ under the expanded mode
(H ′′

a − H ′
a)a′ , (H ′′

a − H∗
a)a∗ are denoted by B′′, C′′, respectively. Then,

(H ′′
a −H ′

a)a′ , (H ′′
a −H∗

a)a∗ are the common expanded regions of pair A′′

and B′′ and pair A′′ and C′′ respectively. Hence, we find that

w(A′′, B′′) = w(A′, B′) , w(A′′, C′′) = w(A∗, C∗) . (5.15)

On the other hand, based on the definition of w(A′′, B′′) =
∑n′′

a

j=1 w(a′′j , b
′′
j ), we derive the following relationships:

w(A′′, B′′) + w(A′′, C′′) =
n′′

a∑

j=1

[
w
(
a′′j , b

′′
j

)
+ w

(
a′′j , c

′′
j

)]

≥
n′′

a∑

j=1

w
(
b′′j , c

′′
j

)
= w(B′′, C′′) , (5.16)

where the inequality holds due to the following expression:

w
(
a′′j , b

′′
j

)
+ w

(
a′′j , c

′′
j

) ≥ w
(
b′′j , c

′′
j

) ∀j = 1, 2, · · · , n′′
a ,

where w(a, b) is a measurement defined on V5, and n′′
a is the length of the

sequence A′′.
5. In view of (5.15) and (5.16), we have the following inequality:

w(Bo, Co) ≤ w(B′′, C′′) ≤ w(A′′, B′′) + w(A′′, C′′)
= w(A′, B′) + w(A∗, C∗) . (5.17)

Similarly, we can prove that

w(A∗, C∗) ≤ w(A′, B′) + w(Bo, Co) ,
w(A′, B′) ≤ w(A∗, C∗) + w(Bo, Co) .

Hence, the required triangle inequality relationship of W̄ o = (wos,t)s,t∈M
holds. This is equivalent to saying that W̄ is a distance function defined
on A. This ends the proof.

Next, we denote the finite metric space with a minimum penalty matrix
by M = {M,W}, and we may call it the metric space of pairwise
alignment for short, where M = {1, 2, · · · ,m} is the subscript of A, and
W = (ws,t)s,t=1,2,··· ,m is the minimum penalty matrix induced by the pair-
wise alignment of the multiple sequences A under a given penalty function.
This metric space M is useful in the clustering of multiple sequences, and
in the analysis of the evolution of multiple sequences. Clustering analysis is
useful in many aspects of sequence analysis. We will discuss this further in
later sections.
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5.2 Optimization Criteria of MA

5.2.1 The Definition of MA

Using pairwise alignment to process multiple sequences is not a true multiple
alignment approach, as several problems cannot be solved through use of this
strategy. For example:

1. To search for common stable regions of a family of sequences.
In other words, in determining the common region of many biological
sequences, the pairwise alignment methods do not work.

2. For an overview of the characteristics and trends of multiple
sequences. The stable regions of multiple sequences do not perfectly
coincide. Frequently, there are sequences in a multiple sequence set such
that the stable regions are different. This difference often cannot be found
through pairwise alignment, only by MA.

3. Analyze these types of mutation comprehensively. Structure of
the sequence before mutation and prediction problems. In the mutating
processes, many important mutation types will occur, for example, inde-
pendent mutation and transitional mutation, etc. To analyze these types
of mutation comprehensively, and to predict the trend of changes, we must
involve MA.

In conclusion, MA are vitally important tools in the analysis of the common
structure of a family of sequences, and their usefulness is not limited to the
research on mutations in and evolution of biological sequences. It is used
comprehensively to solve bioinformatics problems, for example, as a main
tool for predicting the secondary structure of proteins.

To create MA, we begin by building the optimization criteria of MA meth-
ods, and then attempt the optimization of MA.

5.2.2 Uniform Alignment Criteria and SP-Optimization Criteria
for Multiple Sequences

Definition of Uniform Alignment of Multiple Sequences

Uniform alignment of a pair of sequences was addressed when we discussed
mutation and pairwise alignment. We now generalize this concept to fit mul-
tiple sequences.

Let A = {A1, A2, · · · , An} be a multiple sequence and C = {C1,
C2, · · · , Cm} be the alignment of A. Typically,

As = (as,1, as,2, · · · , as,ns) , Ct = (ct,1, ct,2, · · · , ct,n′
t
) , s, t ∈M ,

as,j , ct,j are elements of V4, V5, respectively, and each Cs is virtual expansion
of As.
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Within the multiple sequence A, every pair As, At are mutated sequences
acted on by shifting and nonshifting mutations. Let Ts,t be the mutation mode
for As, At mutating to Cs, Ct, respectively, and let (C′

s, C
′
t) be the compressed

sequences of (Cs, Ct). If (csj , ctj) = (4, 4), then delete these two components
from Cs, Ct, respectively, so that the rest of (C′

s, C
′
t) is still the expansion of

(As, At).

Definition 28. Let C be the multiple expansion of A. Then C is the uniform
alignment of A, if for every s �= t ∈M, the following conditions are satisfied:

1. For every expansion C′
s of As, the added part just consists of the regions

resulting from type-III mutation so that As to At.
2. For every expansion C′

t of At, the added part just consists of the regions
resulting from type-III mutation so that At to As.

Calculation of Uniform Alignment of Multiple Sequences

In Sects. 3.1 and 3.2, we mentioned the mutation mode of multiple sequences
and their envelope. If a multiple sequence A has only shifting mutations, then
the uniform alignment C of A can be computed by the following steps:

1. Calculate the minimum envelope C0 of A.
2. For each s, since C0 is the expansion of As, we compare C0 and As. For

the extra coordinates of C0 relative to As, we replace them with “−”,
and then renew the sequence denoted by Cs. The collection of all renewed
sequences C = {Cs, s ∈ M} is the uniform alignment of the multiple
sequence.

3. If A is a multiple sequence involving both shifting and nonshifting muta-
tions, then the minimum envelope C0 involves type-I and type-II muta-
tions, and C0 relative to As can be divided into two parts, namely, the
expansion and nonexpansion parts as follows:

C0 =
(
cΔ′

s,0
, cΔ′

s,1

)
,

where cΔ′
s,0

is the expansion part and cΔ′
s,1

is the nonexpansion part of As.
4. The uniform alignment of a multiple sequence A is the result processed

the following way: replace the corresponding coordinates in the region of
cΔ′

s,0
by the elements of As, and replace the coordinates in the region of

cΔ′
s,1

by the virtual symbol “−”. The renewed multiple sequence is then
the uniform alignment of A.

Example 19. Let A be a triple of sequences given by:
⎧
⎪⎨

⎪⎩

A1 = aactg()ggga[tagat]gguuuaacgta{aauau}accgt ,
A2 = aactg(gta)ggga[]gguuuaacgta{aauau}accgt ,
A3 = aactg(gta)ggga[tagat]gguuuaacgta{}accgt .
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Comparing these three sequences, we find the following mutation relation-
ships:

Based on A1, we insert gta after position 5 and delete tagat after position 9,
so that A1 mutates to A2.

Also based on A1, we insert gta after spot 5 and delete aauau after posi-
tion 25, so that A1 mutates to A3.

Based on A2, we insert tagat after position 12 and delete aauau after
position 23, so that A2 mutates to A3.

Obviously, the triple sequence A has shifting mutations only. Therefore,
each sequence in A can be mutated from another sequence in A by type-III
and type-IV mutations.

The minimum envelope and maximum core are given by:
{
C0 = aactg(gta)ggga[tagat]gguuuaacgta{aauau}accgt ,
D0 = aactg()ggga[]gguuuaacgta{}accgt ,

in which the data in parentheses, brackets, or braces are the deleted segments
in A1, A2, A3, respectively. We set

⎧
⎪⎨

⎪⎩

C1 = aactg(- - - -)ggga[tagat]gguuuaacgta{aauau}accgt ,
C2 = aactg(gta)ggga[- - - - - - -]gguuuaacgta{aauau}accgt ,
C3 = aactg(gta)ggga[tagat]gguuuaacgta{- - - - - - -} accgt .

This renewed triple sequence is the uniform alignment of the triple se-
quence A.

IfA1, A2, A3 have nonshifting mutations, they have no unified envelope and
core. We construct an envelope and core with type-I and type-II mutations,
and then construct the corresponding uniform alignment. For example, if

⎧
⎪⎨

⎪⎩

A′
1 = aaatg()ggga[tagat]gguuuaacgta{aauau}accgt ,

A′
2 = aactg(gta)ggga[]gguaauucgta{aauau}accgt ,

A′
3 = aactg(gta)ggga[tagat]gguuuaacgtaaccgg .

then besides the shifting mutation like the one in A1, A2, A3, there are also
type-I and type-II mutations in A′

1, A
′
2, A

′
3.

At position 3 of A′
1, c was mutated to a, relative to A2. This is a type-I

mutation. At positions 16–19 of A′
2, aauu was mutated to uuaa, relative to A1.

This is a type-II mutation. At the last position of A′
3, the t was mutated to

t, relative to A1 and A2. This again is type-I mutation.
After this preprocessing, we denote the envelope and core of A′

1, A
′
2, A

′
3 by

C0, D0, and let the uniform alignment be:
⎧
⎪⎨

⎪⎩

C′
1 = aaatg(- - - -)ggga[tagat]gguuuaacgta{aauau}accgt ,

C′
2 = aactg(gta)ggga[- - - - - - -]gguaauucgta{aauau}accgt ,

C′
3 = aactg(gta)ggga[tagat]gguuuaacgta{- - - - - - -}accgg .
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Problems in Uniform Alignment of Multiple Sequences

Based on the definition of uniform alignment of multiple sequences, we know
that all of the shifting mutations among the multiple sequences can be deter-
mined by uniform alignment of multiple sequences, after which all the muta-
tions between every pair in the multiple sequence can be determined. Thus,
uniform alignment of multiple sequences is the ultimate goal. On the other
hand, there are several difficult problems involved in uniform alignment of
multiple sequences which must be solved, such as:

1. Example 19 is a special case that may be solved. For general cases, the
calculation of the uniform alignment is too complex; so we must still find
a systematic algorithm in order to solve it.

2. It is difficult to judge whether a MA is a uniform alignment or not. We
cannot establish a unified indexing system to judge uniform alignment.

This shows that the uniform alignment of multiple sequences is simply an
ideal optimization criterion, which is in reality difficult to perform. So, we
must still find other optimization criteria.

SP-Criterion of MA

The SP-penalty functions of MA presented in (1.9), are frequently involved
in current literature. The involved notations are stated as follows:

1. Let w(a, b), a, b ∈ V5 be the metric function defined on V5, which is also
called the difference degree, or penalty matrix. The most popular penalty
matrices for DNA (or RNA) are the Hamming matrix, the WT-matrix, etc.
The definition of the WT-matrix is presented in (1.7). Generally, a met-
ric function w(a, b), a, b ∈ V5 should satisfy the three axioms, namely,
nonnegativity, symmetry and the triangle inequality.

2. The SP-function is the function most frequently used as the penalty func-
tion for multiple sequences. The definition of the SP-function is presented
in (1.9).

3. A generalized form of the SP-function is the weighted WSP-function de-
fined as follows:

wWSP(C) =
n′
∑

j=1

∑

t>s

m−1∑

s=1

θs,tw(cs,j , ct,j) =
n′
∑

j=1

m−1∑

s=1

∑

t>s

θs,tw(cs,j , ct,j) ,

(5.18)
where θs,t is a weighting function.
The functions wSP(C) and wWSP(C) defined by (1.9) and (5.18) respec-
tively, are both called SP-penalty functions for multiple sequences. Thus,
multiple sequence alignment (MSA) may be formed as follows. For a mul-
tiple sequences A, search for its expansion C0 with the minimum penalty
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(or the maximum similarity) under the given penalty function. Alterna-
tively, solve the expansion C0 of A such that

wSP(C0) = min{wSP(C) : C is the expansion of A} . (5.19)

4. In addition, the SP-scoring function is also commonly used in current lit-
erature. We then let w(a, b), a, b ∈ V5 be a scoring function defined on V5.
Similarly, we have the scoring matrices for DNA (or RNA) sequences based
on the Hamming matrix, or the WT-matrix. The scoring matrix based on
the Hamming matrix is defined below:

W = [wWT(a, b)]a,b∈V5 =

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎝

− a c g t(u)
− 0 −2 −2 −2 −2
a −2 1 0 0 0
c −2 0 1 0 0
g −2 0 0 1 0
t(u) −2 0 0 0 1

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎠

, (5.20)

where −, a, c, g, t(u) are 4, 0, 1, 2, 3 respectively. The definition of the SP-
scoring function for multiple sequences is then the same as (1.9) or (5.18).
The corresponding optimization criterion is to find the maximum value in
(5.19).

5.2.3 Discussion of the Optimization Criterion of MA

Establishing the Optimization Criteria for Multiple Sequences

As presented above, the uniform alignment criterion is reasonable but difficult
to judge, while the index of the SP-criterion is easily calculated based on the
result C although its rationality is yet to be demonstrated. In fact, many
other optimization criteria for MA have been proposed. Therefore, we first
must understand how to find the fundamental rules for judging the quality of
specific optimization criteria. For this, we propose the following requirements:
rationality, decidability, comparability (with the optimization solution) and
helpfulness in calculating the optimization solution. We detail them as follows:

Requirement 1: rationality. Rationality here means whether or not the
proposed criterion is related to multiple alignments. We need to know
how to judge rationality.

Requirement 2: decidability. Decidability here means it directly and
quickly decides the quality of an optimization criterion based on the align-
ment output. Obviously, a good criterion should be decidable and easy to
calculate.

Requirement 3: comparability (with optimization solution).
Comparability here means that the alignment result determining the pro-
posed optimization criterion should be comparable with the optimization
solution, or should determine the difference between the alignment result
and the optimization solution.
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Requirement 4: usefulness in optimizing the solution.

Based on the definitions of a uniform alignment criterion and the SP-criterion,
we know that a uniform alignment criterion satisfies requirement 1, but it does
not satisfy requirements 2 and 3. The SP-criterion satisfies requirements 1
and 2, but does not satisfy requirement 3. Therefore, by using the SP-criterion,
we can only judge whether the alignment result is good or bad compared
with another result. We cannot calculate the difference between the alignment
result and the optimal solution. Later, we may find that the SP-criterion is
easily calculated, although it does not really satisfy requirement 1.

Rational Conditions of the Optimization Criteria of MA

As mentioned above, the optimization conditions of MA should relate to the
goal of MA. That is, to search for stable regions within multiple sequences
and to determine the trend of mutation. Therefore, we should use the “con-
centration” of alignment results as a basic index.

In mathematics, there are several methods for measuring the relationship
between various data. For example, distance, surface area and volume are
familiar measurements. As well, the uncertainty of a random variable is a basic
element in informatics. The probability distribution is an important factor
when determining the uncertainty.

Besides the expressions of metric relations between the data, we also should
consider their specific characteristics. For example, in the case of distance, it
includes not only the formulas in Euclidean space, but also the three character-
istics: nonnegativity, symmetry and the triangle inequality. For measurement,
its vital characteristic is its additivity. The uncertainty also has particular
characteristics that will be discussed later.

In order to establish the optimization conditions for MA, the concentration
is chosen as a candidate index. We add the following conditions on the penalty
function of MA.

Condition 5.2.1 Nonnegative property. For any MA C, we always have
w(C) ≥ 0, and the equality holds if and only if

C = A , and A1 = A2 = · · · = Am . (5.21)

Expression (5.21) means that there are no virtual symbols “−” in any
sequence.

Condition 5.2.2 Symmetry property. This means that the overall penalty
function is invariant if we permute the order of the sequences in C. Gen-
erally, let σ1, σ2 be two permutations defined on sets

M = {1, 2, · · · ,m} , N ′ = {1, 2, · · · , n′} ,
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respectively, and let
{
σ1(C) = {Aσ1(s) , s = 1, 2, · · · ,m} ,
σ2(C) = {σ2(As) , s = 1, 2, · · · ,m} , (5.22)

where
σ2(As) = (σ2(as,1), σ2(as,2), · · · , σ2(as,n′)) (5.23)

and σ2(as,j) = as,σ2(j). The symmetry property means that

w[σ1(C)] = w(C) , w[σ2(C)] = w(C) . (5.24)

Condition 5.2.3 Maximum–minimum condition. This condition is used to
describe the column without the virtual symbol “−”. It means that the
penalty score is maximum if a, c, g, and u occur in this column obeying
uniform distribution, and the penalty score is minimum if only one of a,
c, g, or u occurs in this column. Condition 5.2.3 reflects the requirement
for uniformity. We use this to find positions that are invariant for all
sequences.
Another requirement for uniformity is that the penalty score of the mixed
sequence produced by two multiple sequences should be greater than the
sum of the penalty scores of two single multiple sequences. For example,
if

A1 = {A1,1, A1,2, · · · , A1,m1} , A2 = {A2,1, A2,2, · · · , A2,m2} . (5.25)

These two multiple sequences have no common elements, where

Aτ ;s = (aτ ;s,1, aτ ;s,2, · · · , aτ ;s,nτ,s) , τ = 1, 2 , s = 1, 2, · · · ,mτ .
(5.26)

The mixed multiple sequence is

A0 = {A1,A2} = {A1,1, A1,2, · · · , A1,m1 , A2,1, A2,2, · · · , A2,m2} . (5.27)

We denote A0 = A1 ⊗ A2, and the operation ⊗ is called the row super-
position of multiple sequences.
Let Cτ be the alignments of the multiple sequences Aτ , τ = 1, 2, and
let C0 = C1 ⊗ C2 be defined in the same way as (5.27). Then, C0 is the
alignment of A0.

Condition 5.2.4 Convexity of row superposition. Let Cτ be the alignment of
multiple sequences Aτ , τ = 1, 2, then C0 = C1 ⊗ C2 satisfies the following
inequality:

w(C0) ≥ m1

m1 +m2
w(C1) +

m2

m1 +m2
w(C2) . (5.28)

If m1,m2 > 0, then the equality in (5.28) holds if and only if there is no
“−” in C0 and if the probabilities of finding a, c, g, t in each column of C1

and C2 are the same.
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Let the jth column vector of C0, C1, and C2 be

c0;·,j =
(
c1;·,j
c2;·,j

)
, cτ ;·,j =

⎛

⎜
⎜
⎜
⎝

cτ ;1,j
cτ ;2,j

...
cτ ;mτ ,j

⎞

⎟
⎟
⎟
⎠
, τ = 1, 2 . (5.29)

Then, the equality in Condition 5.2.4 holds if and only if there is no “−”
occurring in both c1;·,j and c2;·,j and the probabilities of finding a, c, g, t
are the same.

Conditions 5.2.1–5.2.4 are the basic requirements for uncertainty or concen-
tration. We should pay attention when comparing them with other relations
(i.e., distance, measurement, etc). These basic relations frequently form an ax-
iomatic system in the mathematical sense. Different axiomatic systems lead
to different branches of disciplines, and different branches which have differ-
ent data structure relations. For example, the difference between Euclidean
geometry and non-Euclidean geometry is the fifth postulate (the axiom of
parallels).

Besides the uncertainty requirements, we still have several additional re-
quirements. We add the following three conditions:

Condition 5.2.5 The invariance of the penalty function. This means the
“penalty function” for MA should be a penalty function for pairwise align-
ment if it was restricted to a pair of sequences. The popular penalty func-
tions for pairwise alignment include the generalized Hamming function,
the WT-matrix, etc.

Condition 5.2.6 The number of virtual symbols “−” is a minimum. If there
exists one row of C where all the elements are “−”, i.e., if

c·j =

⎛

⎜
⎜
⎜
⎝

c1,j
c2,j
...

cm,j

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

−
−
...
−

⎞

⎟
⎟
⎟
⎠

,

then C is definitely not the minimum penalty expansion of A.
The row superposition operation ⊗ for multiple sequences is defined in
expression (5.27). Similarly, we define the column superposition operation
for multiple sequences. Let

A1 = {A1,1, A1,2, · · · , A1,m} , A2 = {A2,1, A2,2, · · · , A2,m}
be two multiple sequences with the same multiplicity, where

Aτ,s = (aτ ;s,1, aτ ;s,2, · · · , aτ ;s,nτ,s) , τ = 1, 2 .

Then, the column superposition of two multiple sequences is defined as

A0 = A1 + A2 = (A0,1, A0,2, · · · , A0,m)T , (5.30)
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in which

A0,s = (A1,s, A2,s) = (a1;s,1, a1;s,2, · · · , a1;s,n1,sa2;s,1, a2;s,2, · · · , a2;s,n2,s) .
(5.31)

For the alignment C1, C2 of A1,A2, we can also define the column super-
position operation C0 = C1 + C2. If C1, C2 are the alignments of A1,A2,
then C0 is the alignment of A0.

Condition 5.2.7 Convexity of column superposition. If Cτ is the alignment
of the multiple sequence Aτ , τ = 1, 2, then C0 = C1 + C2 satisfies

w(C0) = w(C1) + w(C2) (5.32)

These additional conditions are also the natural requirement for MA.
We can easily verify that the SP-penalty function defined by expression

(1.9) does not satisfy the Conditions 5.2.4 and 5.2.7. Therefore, we may arrive
at some unreasonable results such as; for example,

CSP

⎛

⎜
⎜
⎜
⎜⎜
⎝

⎛

⎜
⎜
⎜
⎜⎜
⎝

−
−
...
−
a

⎞

⎟
⎟
⎟
⎟⎟
⎠

⎞

⎟
⎟
⎟
⎟⎟
⎠

= CSP

⎛

⎜
⎜
⎜
⎜⎜
⎝

⎛

⎜
⎜
⎜
⎜⎜
⎝

a
a
...
a
−

⎞

⎟
⎟
⎟
⎟⎟
⎠

⎞

⎟
⎟
⎟
⎟⎟
⎠

= m− 1 .

In addition, if

C0 =

⎛

⎜
⎜
⎝

a
a
c
c

⎞

⎟
⎟
⎠ , C1 =

(
a
c

)
, C2 =

(
a
c

)
, (5.33)

then following from Condition 5.2.4, the penalty functions of C0, C1, C2 must
be the same. Nevertheless, for the SP-function (wSP(a, b) is assumed to be the
Hamming matrix), we have

wSP(C0) = 4 , while wSP(C1) = wSP(C2) = 1 . (5.34)

Obviously, the conclusion in (5.34) does not satisfy Condition 5.2.7. Gener-
ally, which conclusion, that of the conclusion of the SP-function or that of
Condition 5.2.4, is more reasonable is a good question for discussion.

5.2.4 Optimization Problem Based on Shannon Entropy

The goal of alignment is to keep the corresponding components of multiple
sequences as consistent as possible while minimizing the number of virtual
symbols “−”. Using Conditions 5.2.1–5.2.7, we may find that the penalty
function of MA is actually a measure of the complexity or uncertainty of mul-
tiple sequences. Since Shannon entropy is a natural measurement to describe
the uncertainty, it allows us to use the concept of information to describe
the optimization criteria. We now introduce some pertinent notations and
properties.
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Notations for MA C
Let C be the alignment of the multiple sequence A, then we introduce the
following notation to describe the structure of C:

1. For simplicity, we may assume that the row lengths of A and C are the
same. Then

n1 = n2 = · · · = nm = n , n′
1 = n′

2 = · · · = n′
m = n′ .

Let a·,j , ai,· be the row vector and column vector of A, respectively, and
let c·,j , ci,· be the row vector and column vector of C, respectively.

2. Let

χz(cs,j) =

{
1 , if cs,j = z ,

0 , otherwise

be the indicator function, here cs,j , z ∈ V5, and let

fj,z(C) =
m∑

s=1

χz(cs,j) , j = 1, 2, · · · , n′ , z ∈ V5 (5.35)

be the frequency distribution function of the value of each component in
the column vector of the multiple sequence, then obviously we find that

fj,z ≥ 0 ,
4∑

z=0

fj,z(A) = m

holds for any z ∈ V5, j = 1, 2, · · · , n′.
3. Let θj(C) = fj,4(C), and let

pj,z(C) =
fj,z(C)
m

, j = 1, 2, · · · , n′ , z = 0, 1, 2, 3, 4 (5.36)

be the frequency distribution function of the jth column of the multiple
sequence, then

∑4
z=0 pj,z(C) = 1 holds; here fj,z(C)pj,z(C) are actually

functions of cj,z.
4. In the definitions of (5.35) and (5.36), we may omit the notation C some-

times, so
pj,·(C) = pj,· = (pj,0, pj,1, pj,2, pj,3, pj,4) .

We then define a function as follows:

wHG(C) =
n′
∑

j=1

HG(c·,j) =
n′
∑

j=1

[H(pj,·) +G(θj)] , (5.37)

where
HG(c·,j) = H(pj,·) +G(θj), j = 1, 2, · · · , n′

Then HG(c·,j) is called the HG function of C, and G(θj) is a strictly
monotonically increasing function with G(0) = 0.
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Definition 29. In the HG function of C, if

H(pj,·) = −
4∑

z=0

pj,z log pj,z (5.38)

is a Shannon entropy, then the function wHG(C) is called the S-function, or
information-based penalty function, and is denoted by wS(C).

As this is a very important penalty function, the reader should keep it in mind
as we will use it in the text below.

The Selection of the Monotonically Increasing Function G(θ)

There are several possible selections for the monotonically increasing function
G(θ), some of which are listed as follows:

1. Linear function: Gm(θ) = θ
g(m) , where g(m) is a nondecreasing function

of m (g(m) ≥ g(m′) if m > m′) which does not depend on θ. In particu-
lar, g(m) may be chosen as a constant with respect to m, and Gm(θ) is
a common linear function of θ for the multiple sequences.

2. Power law function: for example, G(θ) = θ2.
3. Logarithmic function: i.e., G(θ) = log(1 + θ), etc.

If we choose wS(C) as the penalty function to process the optimization prob-
lems for multiple sequences, then these types of optimal problems are called
information-based optimal problems. As well, the corresponding optimization
criteria are called information-based criteria.

Information-Based Criteria of Multiple Sequences

Theorem 24. If w(C) is an information-based function of MA given by (5.37)
and (5.38), then Conditions 5.2.1–5.2.7 hold.

Since the proof of this theorem is long, we will outline for the reader the
role played by this theorem, before providing the proof. It follows from this
theorem that the information-based penalty function defined by (5.37) and
(5.38) is a penalty function satisfying Conditions 5.2.1–5.2.7. That is, this
new penalty function is the best one among all penalty functions.

Proof. The proof of this theorem is divided into nine steps as follows:

1. Verifying that Conditions 5.2.1 and 5.2.2 are satisfied. This is trivial be-
cause H(pj·), G(θj) are nonnegative functions, and wS(C) = 0 holds if
and only if

H(pj·) = 0 , G(θj) = 0 , j = 1, 2, · · ·n′ (5.39)

holds. Furthermore, (5.39) holds if and only if (5.21) holds. In addition,
based on the definitions of wS(C) and H(pj·), θj , we know that they
are symmetric functions with respect to the subscripts s, j. Hence, the
symmetric Condition 5.2.2 is true.
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2. Verifying Condition 5.2.3. Condition 5.2.3 can be directly proved by the
properties of Shannon entropy. This is because H(pj·) is maximal if pj·
obeys uniform distribution, while it is minimum if pj· obeys binary distri-
bution (in other words,

pj,z =

{
1 , if z = z0 ,

0 , otherwise ,

for a fixed z0 ∈ V4).
3. Verifying Condition 5.2.4. Let C0 = C1 ⊗ C2, then both C1 and C2 are

subsets of C0. Following from (5.26) and (5.27), we have

Cτ = {Cτ,1, Cτ,2, · · · , Cτ,mτ } , τ = 0, 1, 2 , (5.40)

where m0 = m1 +m2, and

Cτ,s = (cτ ;s,1, cτ ;s,2, · · · , cτ ;s,n′) , τ = 0, 1, 2 , s = 1, 2, · · · ,mτ .
(5.41)

We then define ⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

fτ,j(z) =
mτ∑

s=1

χz(cτ ;s,j) ,

θτ,j = fτ,j(4) ,

pτ,j(z) =
fτ,j(z)
mτ

,

(5.42)

where τ = 0, 1, 2, z ∈ V5, j = 1, 2, · · · , n′. We then find that the equations
{

θ0,j = θ1,j + θ2,j ,

p0,j(z) = μ1p1,j(z) + μ2p2,j(z)
(5.43)

hold for all z = 0, 1, 2, 3, 4, and j = 1, 2, · · · , n, where μ1 = m1
m0

, μ2 = m2
m0

.
4. Verifying the convexity of G(θ). Following from formula (5.37) for the

S-penalty function for multiple sequences C0, and the property that G(θ)
is a monotonically increasing function, we obtain the inequality:

G(θ0,j) = μ1G(θ0,j) + μ2G(θ0,j) ≥ μ1G(θ1,j) + μ2G(θ2,j) . (5.44)

5. Verifying the inequality μ1wS(C1)+μ2wS(C2) ≤ wS(C0) in Condition 5.2.4.
Let h(p) = −p log p be the entropy density function, then h(p) = −p log p
is a convex function of the variable p ∈ (0, 1). In fact, μ1 + μ2 = 1 and

p0,j(z) = μ1p1,j(z) + μ2p2,j(z)

imply the inequality:

−p0,j(z) log p0,j(z) = −[μ1p1,j(z) + μ2p2,j(z)] log[μ1p1,j(z) + μ2p2,j(z)]
≥ −μ1p1,j(z) log p1,j(z) − μ2p2,j(z) log p2,j(z) .

(5.45)
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Taking the sum of z by the two sides of expression (5.45), we have

H(p0;j,·) = −
4∑

z=0

p0,j(z) log p0,j(z)

= −
4∑

z=0

[μ1p1,j(z) + μ2p2,j(z)] log[μ1p1,j(z) + μ2p2,j(z)]

≥ −
4∑

z=0

[μ1p1,j(z) log p1,j(z) + μ2p2,j(z) log p2,j(z)]

= μ1H(p1;j,·) + μ2H(p2;j,·) . (5.46)

Furthermore, using expressions (5.44) and (5.46), we find that the inequal-
ity

μ1[H(p1;j,·)+G(θ1,j)]+μ2[H(p2;j,·)+G(θ2,j)] ≤ H(p0;j,·)+G(θ0,j) (5.47)

holds for all j = 1, 2, · · · , n′. Again, taking the sum over j on both sides
of expression (5.47), we have the inequality

μ1wS(C1) + μ2wS(C2)

=
n′
∑

j=1

{μ1[H(p1;j,·) +G(θ1,j)] + μ2[H(p2;j,·) +G(θ2,j)]}

≤
n′
∑

j=1

[H(p0;j,·) +G(θ0,j)] = wS(C0) .

Hence, the inequality μ1wS(C1) + μ2wS(C2) ≤ wS(C0) in Condition 5.2.4
holds.

6. Verifying the sufficient condition for the equation in Condition 5.2.4. If
θ0,j = 0 and the relationship

p1,j(z) = p2,j(z) = p0,j(z) , ∀z ∈ V5 (5.48)

holds for all j = 1, 2, · · · , n′, then θ1,j = θ2,j = 0 and then G(θ1,j) =
G(θ2,j) = 0 holds. Furthermore, following from (5.48), we haveH(p1;j,·) =
H(p2;j,·) = H(p0;j,·). It implies that

H(p0;j,·) = μ1H(p1;j,·) + μ2H(p2;j,·) .

Thus,

H(p0;j,·) +G(θ0,j) = μ1[H(p1;j,·) +G(θ1,j)] + μ2[H(p2;j,·) +G(θ2,j)] .
(5.49)

If we sum over j on both sides of (5.49), then we have

wS(C0) = μ1wS(C1) + μ2ws(C2) ,

showing that the equality in expression (5.28) holds.
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7. Verifying the necessary condition for the equation in Condition 5.2.4. If the
equal sign in expression (5.28) holds and m1,m2 > 0, then we have θ0,j =
θ1,j = θ2,j = 0 and (5.48) hold. Since G(θ) is a strictly monotonically
increasing function and θ0,j = θ1,j + θ2,j , it follows that

G(θ0,j) ≥ μ1G(θ1,j) + μ2G(θ2,j)

holds. Furthermore, the equality holds if and only if θ0,j = 0. On the other
hand, following from the strictly convex property of function H(p0;j,·), we
have

H(p0;j,·) ≥ μ1H(p1;j,·) + μ2H(p2;j,·) .

The equality holds if and only if expression (5.48) is true. If the equal sign
in expression (5.28) holds and m1,m2 > 0, then θ0,j = 0 and expression
(5.48) holds. In conclusion, the function wS(C) satisfies Condition 5.2.4.

8. Verifying Conditions 5.2.5–5.2.7. Since Condition 5.2.7 can be directly
verified using the definition of the penalty function, we only check that
Conditions 5.2.5 and 5.2.6 hold. For Condition 5.2.6, we may assume that
the jth row of C is such that all the elements are “−” in the form

⎛

⎜
⎜
⎜
⎝

c1,j
c2,j
...

cm,j

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

−
−
...
−

⎞

⎟
⎟
⎟
⎠

.

We obtain a new multiple expansion C′ by deleting this purely “−” column
from C, and then we have CS(C) > CS(C′). Therefore, C is definitely
not the minimum penalty alignment, and Condition 5.2.6 holds. Since
verifying Condition 5.2.5 is a long process, we do this in the next step.

9. For verifying Condition 5.2.5, on the one hand, we begin by calculating
HG(c1,j , c2,j) defined in (5.37) in the case m = 2. We then have the
following subcases:
(a) If (c1,j , c2,j) = (−,−), then θj = 2. Therefore,

H(pj,·) = 0 , G(θj) = G(2) , HG(c1,j , c2,j) = G(2) .

(b) If (c1,j , c2,j) = (−, c) ∀c ∈ {0, 1, 2, 3}, then θj = 1. Therefore,

H(pj,·) = 0 , G(θj) = G(1) , HG(c1,j , c2,j) = G(1) .

(c) If (c1,j , c2,j) = (c, c′) ∀c = c′ ∈ {0, 1, 2, 3}, then θj = 0. Therefore,

H(pj,·) = 0 , G(θj) = G(0) = 0 , HG(c1,j , c2,j) = 0 .

(d) If (c1,j , c2,j) = (c, c′) ∀c �= c′ ∈ {0, 1, 2, 3}, then θj = 0, pj,0 = pj,1 =
1/2. Therefore,

H(pj,·) = 1 , G(θj) = G(0) = 0 , HG(c1,j , c2,j) = 1 .
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As a result, we find the penalty matrix of HG(c, c′), ∀c, c′ ∈ V5 as
follows:

w(c, c′) =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎝

a c g u −
a 0 1 1 1 G(1)
c 1 0 1 1 G(1)
g 1 1 0 1 G(1)
u 1 1 1 0 G(1)
− G(1) G(1) G(1) G(1) G(2)

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎠

. (5.50)

On the other hand, to get the penalty matrix for multiple sequences,
we choose a function G(θ) such that G(2) ≥ G(1) ≥ 1. The penalty
matrix w(c, c′) coincides with the generalized Hamming penalty ma-
trix that is commonly used for pairwise alignment. This ends the proof
of this theorem.

Discussion of the Converse Theorem 24

In Theorem 24, we proved that the information-based criterion satisfies Con-
ditions 5.2.1–5.2.7 of the penalty function. We now consider the inverse propo-
sition: what kind of conditions will imply the information-based function de-
fined in (5.38). To solve this problem, we use the definition and properties of
Shannon entropy.

Condition 5.2.8 The penalty function w(C) is formed by HG defined by
(5.37), H(p0, · · · , p4) is a continuous function of (p1, · · · , p4), and G(θj)
is a strictly monotonically increasing function with G(0) = 0.

Condition 5.2.9 If C0 = C1⊗C2 is defined as in Condition 5.2.4, and function
H(·) satisfies:

H(p0;j,·) = H(μ1) + μ1H(p1;j·) + μ2H(p2;j,·) . (5.51)

where h(p) = −p log p− (1 − p) log(1 − p).

Theorem 25. If the penalty function w(C) satisfies Conditions 5.2.1–5.2.3,
5.2.8, and 5.2.9, then w(C) is definitely the information-based penalty function
defined by (5.37) and (5.38).

The proof of this theorem is detailed in many informatics books, for example,
[23,88], etc. Therefore, we omit it here and refer the reader to other literature
sources.

5.2.5 The Similarity Rate and the Rate of Virtual Symbols

Problems of the SP-Penalty (or Scoring) Function
and the Information-Based Penalty Function

In previous sections, we defined two important penalty functions: the SP-
penalty function and the information-based penalty function, which are fre-
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quently used to study MA. We also discussed their roles in the optimal anal-
ysis. However, these discussions were not in-depth enough for further study.
We must study these two functions with respect to the following:

1. The comparability of the minimum penalty solution must be solved. In
other words, we are unable to show a difference between the optimal so-
lution and the minimum penalty solution based on these two functions.

2. The rate of virtual symbols proportional to the length of a sequence.
Based on the results of MA, the optimization index for MA often involves
the rate of virtual symbols, which will be defined later. The value of the
SP-penalty function or the information-based function increases as the
rate of virtual symbols increases. Conversely, the value of the SP-penalty
function or information-based function decreases as the rate of the virtual
symbols decreases. Determining the exact relationship between the rate
of virtual symbols and the value of the penalty function is the problem to
be discussed.

3. These two functions are unable to construct an optimally fast alignment.
Therefore, the optimization criteria of MA similar to the fast MA still
need to be discussed further. In this subsection, we focus on finding more
optimization indices of MA besides the SP-penalty (or scoring) function
and the information-based penalty function.

Similarity Rate

Let A be a given multiple sequence, so that we may obtain the minimum
penalty matrix B = (Bs,t) based on A, and the output C = {C1, C2, · · · , Cm}.
Based on these three elements, we have the following results:

1. A scoring matrix W = (ws,t)s,t=1,2,··· ,m is induced by the matrix B =
(Bs,t) in the natural way: ws,t = w(Bs,t, Bt,s).

2. A scoring matrix of MA W ′ = (w′
s,t)s,t=1,2,··· ,m is induced by result C in

the natural way: w′
s,t = w(Cs, Ct).

We then define the similarity rate as follows:

R(C) =
1

m(m− 1)

m∑

s=1

∑

t	=s

w′
s,t

ws,t
. (5.52)

Since ws,t is the score of the minimum penalty alignment based on As, At, we
have that w′

s,t ≤ ws,t always holds. Hence, R(C) ≤ 1 holds. We define C as the
optimal (or suboptimal) alignment of A if R(C) = 1 (or R(C) ∼ 1). Therefore,
the similarity rate describes the closeness between the optimal alignment and
the minimum penalty alignment.
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Rate of Virtual Symbols

The so-called rate of virtual symbols is the proportion of all virtual symbols
“−” (or 4) in C, namely,

P (C) =
the total of virtual symbols “−” in C

m× n
, (5.53)

where m is the multiplicity of C, and n is the length of each sequence in C.
In conclusion, the challenge of the optimization problem of MA is how to

make the value wSP(C) and the similarity ratio R(C) as large as possible while
making the rate of virtual symbols P (C) as small as possible. Or, how to make
the rate of virtual symbols as small as possible while making the value wSP(C)
and the similarity rate R(C) as large as possible.

5.3 Super Multiple Alignment

With the above principle in mind, we developed a fast algorithm for MA known
as the super multiple alignment (SMA). The associated software package was
also developed by the Nankai University group, and is freely available to the
public on the website (see Table 5.1). Next, we introduce the relevant materials
of SMA.

5.3.1 The Situation for MA

In Sect. 1.1, we introduced the general situation for the algorithms of MA,
and we discuss this issue in more detail at this point.

Definition of the MA

In 1982, the pairwise alignment problem had been primarily solved as the
Smith–Waterman algorithm was validated. Since then, interest has turned to
the question of how to get MA and how to improve the existing pairwise
alignment. Almost all bioinformatics literature such as [64] involve MA.

MA is widely used in various fields. For example, to study biological evolu-
tion, researchers analyze structural changes based on the MA of special DNA
sequences or protein sequences (such as mitochondrial DNA, cytochrome,
C. intestinalis, etc.). To study the virus genome, MA is also used to get
the evolution processes of specific viruses (such as SARS, HIV-1, and various
tumors) [101]. As a result, Paguma larvata is identified as the source of the
SARS virus based on the MA of 63 SARS genome sequences. In contrast, the
article [101] used pairwise alignment rather than MA, and as a result, too
much information was lost.

Another feature of MA is that the sizes of both the multiplicity m and the
lengths of sequences are growing rapidly as work on this problem progresses.
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It is common for a MA to involve hundreds of sequences which are hundreds
of million base pairs in length. For example, there are 706 HIV-1 sequences in
the GenBank 2004 edition (release 43); hopefully, the total number of HIV-1
sequences in all databases combined will exceed 1000. Therefore, there is great
demand for fast algorithms of MA for the analysis of these large-scale data.

Progress of MA

The earliest MA algorithm is the MA software package [56], which extended
the dynamic programming-based algorithm for pairwise alignment to the mul-
tiple cases by changing the penalty matrix to the multiple penalty tensor.
The computational complexity of this algorithm is O(nm), so it is hard to
compute as m,n increase. As a result, the scale of this algorithm is only
(m,n) = (7, 300). Progress on the improvement of MA is very slow, so it does
not keep pace with the exponential speed of the data growth.

After this phase, the study of MA has been developing along two direc-
tions. One is to discuss the computational complexity of the solution with
minimum penalty, which many publications consider to be a very difficult
problem. It was called the first open problem in biological computing in [46],
while refs. [15,36,106] call it the NP-hard and Max-Snp hard problem. Hence,
it is difficult to achieve MA with minimum penalty theoretically. The MA
problems become problems of computational complexity, as described in these
publications.

On the other hand, interest in this problem is ongoing because of the
importance of MA. Many algorithms, software packages and alignment results
appear in the literature one after another. For example, BLAST and FASTA
are both able to perform MA. Several specialized software packages, such as
CLUSTAL-W/X, BioEdit, MulAlin, GCG, Match-Box, BCM, and CINEMA,
etc. are all specific algorithms for MA. The common feature of these algorithms
is that they are not concerned with minimum penalty solutions, but result
in an increased scale of alignment. These algorithms achieve the suboptimal
solutions to some degree, and get a large return for increasing the alignment
scale. The alignment scale and the performance indices are shown in Table 5.2.

With MA emerging, the question of how to judge the quality of an algo-
rithm becomes increasingly important. The four indices given in Sect. 1.1.3,
namely, the utility range, alignment size, computational speed, and optimiza-
tion index, are useful when judging the quality of an algorithm. In addition,
the SP-penalty function, information-based penalty function, similarity rate
and the rate of virtual symbols defined in (1.9), (5.37), (5.38), (5.52), and
(5.53), respectively, should also be comprehensively considered if we want to
judge the quality of a MA.
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Features of the SMA

The purpose of this section is to present a fast algorithm, the so-called super
MA (SMA) to fit large-scale MA. Several specific features of the algorithm
can be summarized here:

1. Wide applicability. This algorithm may still lead to good results if
the homology (similarity) between the multiple sequences is only slightly
larger than 50%. For instance, we may get good alignment of the DNA
sequences of the mitochondria of Primates, although the sequence homol-
ogy for these sequences ranges from 55 to 90%. In fact, the homology ratio
approaches 1, which exceeds our expectations.

2. Large-scale. Generally, the computational scale of the SMA is without
limitation if a super computer is used. Even running this algorithm on
a PC, the size limit of n × m is beyond 20 Mbp. We may get better
results if the size m×n is less than 20 Mbp and if the homology for these
sequences is larger than 80%.

3. Fast. On a PC with a 2.8GHz processor, the alignment of 118 × 30,000
SARS sequences, takes 21min; while the alignment of 706×8000 bp HIV-1
sequences takes 34min. This is much faster than other algorithms.

4. Highly superior to other algorithms based on three indices. We
compare this algorithm with others based on the following three optimiza-
tion indices: the SP-scoring function, similarity ratio and ratio of virtual
symbols. This algorithm is superior to the other algorithms in all three
cases.

The SMA has been published on the Nankai University website [99], and
computational service is also offered there. In addition, the alignments for the
SARS sequences and HIV-1 sequences are also included on the website. 1

5.3.2 Algorithm of SMA

For a given multiple sequence A, in order to get its MA, we must first con-
struct an algorithm. To construct an algorithm, we begin by formulating the
computational principles.

Principles of MA

Principles of MA include the following:

1. Pairwise alignment. The most popular pairwise alignment include dy-
namic programming-based algorithms (i.e., the Smith–Waterman algo-
rithm) and the statistical decision-based algorithm (i.e., SPA) [69,90,95].

1 http://mathbio.nankai.edu.cn/database/exe/sma/PerformanceofSMA/
SarsPredictbySMA.txt;
http://mathbio.nankai.edu.cn/database/exe/sma/PerformanceofSMA/
HivGeneMatchCompare/
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These two kinds of algorithms are easy to compute. Using a dynamic
programming-based algorithm, we get the minimum penalty alignment
with computational complexity O(n2), while we may get the subopti-
mal alignment with the computational complexity O(n) if we use sta-
tistical decision-based algorithms. Therefore, we may use the dynamic
programming-based algorithms if the lengths of the sequences are less
than 10 kbp.

2. Modulus structure. Let (Cs, Ct) be the alignment of (As, At); then we
describe all the virtual symbols in the sequence (Cs, Ct) by a mathe-
matical formula referred to as the modulus structure or alignment mode.
The modulus structure is a set of transformations and operations detailed
in [89].

3. Clustering analysis of multiple sequences A. Using the characteristics of
A such as length function ns = ||As||, s = 1, 2, · · · ,m, the scoring matrix
of pairwise alignment of A, etc., we construct the phylogenetic tree or
the minimum distance tree. Both the phylogenetic and minimum distance
trees are typical clustering methods in statistics and combination graph
theory [35].

Algorithm of MA

Using the principles of MA, we construct the MA as follows:

Step 5.3.1 Preprocess the relevant parameters and data:
1. Let M ′ = {A1,A2, · · · ,A2m−1} be the set of nodes in the clustering

tree, where each node As ∈M ′ is a subset of A = {A1, A2, · · · , Am}.
Specifically, As is a single-point set, namely, As = {As} if s =
1, 2, · · · ,m, and As is a set with at least two sequences if s > m.
In some cases, we may simply use the following form:

M = {1, 2, · · · ,m} , M ′ = {1, 2, · · · ,m′} , m′ = 2m− 1 .

2. Let G′ = {M ′, V ′} denote the graph associated with the clustering
tree, in which V ′ is the set of edges in the clustering tree, which will
be defined later.

3. Let w(s, t), s, t ∈M be the clustering function that may be chosen in
many ways, as follows:
(a) If Cs, Ct is the minimum penalty alignment of As, At, then choose

w(s, t) = w(Cs, Ct).
(b) Let Cs, Ct be the minimum penalty alignment of As, At, and let

n(Cs, Ct) be the total number of the virtual symbols in Cs, Ct. We
choose w(s, t) = n(Cs, Ct).

(c) If the sequencesAs, At are not the same length, we choosew(s, t) =
|na − nt|.

We now only show the algorithm based on the choice of Step 5.3.1, pro-
cedure 3a, leaving analysis of the remaining cases up to the reader.
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Step 5.3.2 With the notations defined in Step 5.3.1, we plant the clustering
tree based on the multiple sequence A = {A1, A2, · · · , Am} as follows:
1. Let M (k) = {s1, s2, · · · , sm−k+1} ⊂M ′ be the set of states at the kth

clustering. It then satisfies the following conditions:
(a) Each node si in M (k) corresponds to a subset of M , denoted by

A(k)
si , here sm−k+1 = m+ k.

(b) M (1) = M = {1, 2, · · · ,m} is the set of states at the initial clus-
tering. Thus, each node s corresponds to a single-point set {As}
if s ≤ m; and it corresponds to a set As with at least two points
if s > m.

(c) All the points of M (k) comprise a division of M . In other words,
these subsets are mutually disjoint, and the union of them is M .

2. If the M (k) is found, we calculate

w
(k)
s,t = min

{
w(s′, t′), s′ ∈ A(k)

s , t′ ∈ A(k)
t

}
, s �= t ∈M (k) .

(5.54)
Let s′0 ∈ A(k)

s , t′0 ∈ A(k)
t be the pair of points satisfying w(s′0, t

′
0) =

w
(k)
s,t , and let the pair s′0, t

′
0 be the closest nodes within A(k)

s and A(k)
t .

If there is a pair s0, t0 ∈M (k) such that

w
(k)
s0,t0 = min

{
w(k)(s, t) , s, t ∈M (k)

}
, (5.55)

then the set M (k+1) at the (k + 1)th clustering is defined by: Let
Am+k denote the union of A(k)

s0 and A(k)
t0 , and keep the rest of the

nodes invariant. Then, (s0,m + k), (t0,m + k) are two edges on the
clustering tree G′, and m+ k is the clustering point of s0, t0.

3. Continuing this procedure, we may get the structure for each point of
M ′ defined in Step 5.3.1, and we may also get all the edges in graph G′

defined by Step 5.3.2, procedure 2. Finally, we may find the graph of
clustering tree G′.

Step 5.3.3 Based on the clustering tree G′ = {M ′, V ′} obtained by Steps
5.3.1 and 5.3.2, we construct the MA of A as follows. If r is the clustering
point of s, t, then s, t correspond to the union of sets

As = {As,1, As,2, · · · , As,ps} , At = {At,1, At,2, · · · , At,pt} , (5.56)

in which Ar = As ∪At, As ∩ At = ∅, and As,At both are subsets of A.
If we found the MA for As and At, respectively, then we construct the
MA for Ar in the following way:
1. Let

Cs = {Cs,1, Cs,2, · · · , Cs,ps} , Ct = {Ct,1, Ct,2, · · · , Ct,pt} (5.57)

be the MA for As and At, respectively, and let

Hs = {Hs,1, Hs,2, · · · , Hs,ps} , Ht = {Ht,1, Ht,2, · · · , Ht,pt} (5.58)

be the expanded modes that As, At mutates to Cs, Ct, respectively.
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2. To cluster, let s′, t′ be the closest nodes within sets As and At, then
As′ , At′ ∈ A. Let (Cs′ , Ct′) be the pairwise alignment of (As′ , At′), and
let (Hs′ , Ht′) be the corresponding expanded mode such that (As′ , At′)
mutates to (Cs′ , Ct′).

3. Constructing the union modes based on Hs, Ht defined in (5.58) and
(Hs′ , Ht′) defined in Step 3.5.3, procedure 2, we have two modes as
follows:
{
Hs ∨Hs′ = {Hs,1 ∨Hs′ , Hs,2 ∨Hs′ , · · · , Hs,ps ∨Hs′} ,
Ht ∨Ht′ = {Ht,1 ∨Ht′ , Ht,2 ∨Ht′ , · · · , Ht,pt ∨Ht′} .

(5.59)

Furthermore, we construct the new mode

Hr = Hs ∨Hs′ ∪Ht ∨Ht′ . (5.60)

This Hr is then the expanded mode by which multiple sequences Ar

mutate to Cr.
Step 5.3.4 Repeating Step 5.3.3 for each clustering point on the tree G′

defined by Steps 5.3.1 and 5.3.2, we calculate the MA of each Ar, and
finally find the alignment C of the multiple sequence A.

Step 5.3.5 Generally, the MA C obtained by Steps 5.3.1–5.3.4 is a suboptimal
solution. In order to improve the optimization index of MA, we continue
to align C through the following steps:
1. For each given s′ ∈ {1, 2, · · · ,m}, let

Cs′ = {C1, C2, · · · , Cs′−1, Cs′+1, · · · , Cm} . (5.61)

This is a sequence with multiplicity (m − 1), where the general form
of the component is represented as follows:

Cs = (cs,1, cs,2, · · · , cs,nc) , (5.62)

where nc is the common length for all components. Next, let Ms′ =
{1, 2, · · · , s′ − 1, s′ + 1, · · · ,m} denote the set of subscripts of Cs′ , so
that it is a (m− 1)-ary set.

2. For each column in Cs′ , calculate its frequency distribution: f̄j =
(fj,c, c ∈ Vq+1), in which, fj,c is the number of the elements of c̄s′,j
whose value is c. Then, the transpose of this column c̄s′,j is

c̄Ts′,j = (c1,j , c2,j , · · · , cs′−1,j , cs′+1,j , · · · , cm,j) . (5.63)

The SP-penalty function of Cs′ is

wSP(Cs′) =
∑

s<t∈Ms′

nc∑

j=1

w(cs,j , ct,j) =
1
2

nc∑

j=1

∑

c 	=c′∈Vq+1

fj,cfj,c′w(c, c′)

(5.64)
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and the SP-penalty functions of Cs′ and C satisfy the following rela-
tionship:

wSP(C) =
∑

s<t∈M

nc∑

j=1

w(cs,j , ct,j) = wSP(Cs′) +
m∑

t=1

nc∑

j=1

w(cs′,j, ct,j) .

(5.65)
Let wSP(Cs′ , Cs′) =

∑m
t=1

∑nc

j=1 w(cs′,j, ct,j) and choose the s0 ∈ M
such that

wSP(Cs0 , Cs0) = max{wSP(Cs′ , Cs′) , s′ ∈M} . (5.66)

3. Delete these columns of Cs′ if they are purely “−” and let C′
s′ denote

the rest of the multiple sequence. If C′
s′ = (c′s′,1, c

′
s′,2, · · · , c′s′,n′) is

the expansion of As′ , we define the penalty function of Cs′ and C′
s′ as

follows:

w(C′
s′ , C′

s′) =
m∑

t=1

n′
c∑

j=1

w
(
c′s′,j, c

′
t,j

)
, (5.67)

in which n′
c = max{n′, nc}.

4. Compute the alignment of As0 and C′
s0 under the penalty function in

(5.67) with the dynamic programming-based algorithm. Let C′′ be the
output, then C′′ is united by C′′

s0 and C′′
s0 , where C′′

s0 is the expan-
sion of As0 , and C′′

s0 is the expansion of C′
s0 by inserting an (m − 1)-

dimensional vector consisting of “−”. According to (5.67), we can get
the corresponding penalty matrix:

w(c, c̄) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

4∑

c′=0

fc′w(c, c′) , if c̄′ is a column vector in C′
s0 ,

m− 1 , if c̄′ is an (m− 1)-dimensional vector
filled by virtual symbols, and c′ �= 4 ,

0 , if c′ = 4, and c̄′ is an (m− 1)-dimen-
sional vector filled by virtual symbols .

(5.68)
Under this penalty matrix, we may prove that C′′ is the optimal align-
ment of sequence As0 and C′

s0 , and

wSP(C) ≥ wSP(C′′) . (5.69)

5. Repeating Step 5.3.5, we continue until the SP-penalty score can no
longer be reduced.

Remark 3. The above steps form just the outline for the SMA. It still needs
to be adjusted according to specific cases of multiple sequences if we are
constructing a program.
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Table 5.1. Comparison of the size of multiple alignment

Software
package or

Multiplicity
restriction

Length
restriction

Web page

name of
algorithm

SMA No No http://mathbio.nankai.edu.cn
/eversion/align-query.php

HMMER No No http://hmmer.janelia.org/

POA No < 1 kbp http://www.bioinformatics.ucla.edu/poa

MLAGAN < 31 Unrestricted http://genome.lbl.gov/vista
/lagan/submit.shtml

ClustalW 1.8 < 500 Unrestricted http://www.ebi.ac.uk/clustalw/

MuAlin < 80 < 20 kbp http://bioinfo.genopole-toulouse.prd.fr
/multalin/multalin.html

MSA < 8 < 800 bp http://searchlauncher.bcm.tmc.edu
/multi-align/multi-align.html

Match-Box < 50 < 2 kbp http://searchlauncher.bcm.tmc.edu
/multi-align/multi-align.html

Table 5.2. Comparison of the optimization indices

Name of Scale of Software CPU SP-score Similarity Rate of
sequence alignment package time rate (%) virtual

or algorithm (min) symbols (%)

SARS 118 × 30 kbp ClustalW 1.8 4740 9.7 × 107 99.97 0.40

SARS Same HMMER 2.2 381 1.0 × 108 99.93 0.47

SARS Same SMA 21 1.0 × 108 99.99 0.53

HIV1 706 × 10 kbp HMMER 2.2 256 1.65 × 109 98.03 49.13

HIV1 Same SMA 34 1.68 × 109 98.58 31.23

5.3.3 Comparison Among Several Algorithms

To show how well the SMA performs, we compare it with some popular MA
with respect to the indices listed in Tables 5.1 and 5.2.

Remark 4. CPU time is defined as the time required for a PC with a 2.8GHz
processor to compute. The results in Tables 5.1 and 5.2 were obtained in 2004.

Following from Tables 5.1 and 5.2, we draw the following conclusions:

1. For size, SMA is the same as the HMMER 2.2 algorithm, but is far superior
to other algorithms.
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2. For speed, SMA is 8–18 times faster than the HMMER 2.2 algorithm, as
well as 230 times faster than the ClustalW 1.8 algorithm.

3. For the SP-score index and similarity ratio index, SMA is slightly better
than the HMMER 2.2 and ClustalW 1.8 algorithms.

4. For the ratio of virtual symbols index, SMA is far superior to the HMMER
2.2 algorithm if we consider the case of HIV1 because its rate of virtual
symbols is less 18%. SMA is slightly inferior to HMMER 2.2 algorithm
and ClustalW 1.8 if we use SARS as the benchmark set.

As a result we conclude that SMA is generally superior to other MA in terms
of size, CPU time, similarity rate and rate of virtual symbols since HMMER
2.2 and ClustalW 1.8 are both the best among existing MA.

5.4 Exercises, Analyses, and Computation

Exercise 21. The metric relations distance, measurement (or probability),
and uncertainty are frequently used in mathematics. Compare them, focusing
on the aspects of content, definition and difference. For example:

1. Write down the objects they act upon.
2. Construct the basic requirements (axiom system) for these metrics.
3. Write down the expressions of these metrics (i.e., the formula).
4. Write down the definitions of these metrics and indicate in which fields

they tend to be applied.

Exercise 22. Check whether or not the SP-penalty functions satisfy Condi-
tions 5.2.1–5.2.7.

Exercise 23. Check whether or not the criterion of similarity rate satisfies
Conditions 5.2.1–5.2.7.

Exercise 24. Download the data sets of SARS and HIV-1 from the Web [99],
obtain the pairwise alignment using a dynamic programming-based algorithm
and the SPA algorithm, respectively, and then analyze the results based on
CPU time for pairwise alignment. Compute the matrix consisting of similarity
rates based on the Hamming matrix.

Exercise 25. Download the ClustalW algorithm for MA from the Web [22].
Input the SARS and HIV-1 sequences, and compute the alignment output.

Exercise 26. According to the steps in Sect. 5.3, develop a program to obtain
the SMA algorithm, and align the SARS and HIV-1 sequences.

Exercise 27. Prove that the expansion Cr obtained by Step 5.3.3 is just the
alignment of the multiple sequence Ar.

Exercise 28. Continue Exercises 22 and 23 to analyze MA outputs for SARS
and HIV-1 according to the following indices:

1. CPU time and rate of virtual symbols.
2. The SP-penalty function, the information-based function.



5.4 Exercises, Analyses, and Computation 181

Hints

For SMA, we suggest that the reader write a program satisfying the steps
presented in Sect. 5.2. If this proves too difficult, the reader may use the
algorithm given on the Nankai University website [99], and then try to develop
a program independently.




