Efficient Password-Based Authenticated Key
Exchange Without Public Information*

Jun Shao!, Zhenfu Cao®**, Licheng Wang', and Rongxing Lu?

! Department of Computer Science and Engineering
Shanghai Jiao Tong University
chn. junshao@gmail.com, zfcao@cs.sjtu.edu.cn, wanglc@sjtu.edu.cn
2 Department of Electrical and Computer Engineering
University of Waterloo
rxlu.cn@gmail.com

Abstract. Since the first password-based authenticated key exchange
(PAKE) was proposed, it has enjoyed a considerable amount of inter-
est from the cryptographic research community. To our best knowledge,
most of proposed PAKEs based on Diffie-Hellman key exchange need
some public information, such as generators of a finite cyclic group. How-
ever, in a client-server environment, not all servers use the same public
information, which demands clients authenticate those public informa-
tion before beginning PAKE. It is cumbersome for users. What’s worse,
it may bring some secure problems with PAKE, such as substitution at-
tack. To remove these problems, in this paper, we present an efficient
password-based authenticated key exchange protocol without any pub-
lic information. We also provide a formal security analysis in the non-
concurrent setting, including basic security, mutual authentication, and
forward secrecy, by using the random oracle model.

1 Introduction

With the rapid-developing of the Internet, people prefer to communicate with each
other through the common but insecure channel, rather than traditional meth-
ods, such as ordinary mail. It demands a protocol that can provide mutual au-
thentication and generation of a cryptographically-strong (high entropy) shared
key for two communicating entities. Password-based authenticated key exchange
(PAKE) is a such kind of protocol. In a PAKE, it allows two communicating en-
tities to share a fresh authenticated session key by using a pre-shared human-
memorable password. To date, there are two methods to construct a PAKE: the
hybrid (i.e., password and public-key) method and the password-only method. In
the former method, the two communicating entities share a password and the one
additionally knows the public key of the other (see [I7J12]), which demands a se-
cure public-key infrastructure (PKI), thereby arising of issues of user registration,

* Supported by National 863 Project of China, No.2006AA01Z424, National Natural
Science Foundation of China, No.60673079 and No.60572155, Research Fund for the
Doctoral Program of Higher Education, No.20060248008.

** Corresponding author.

J. Biskup and J. Lopez (Eds.): ESORICS 2007, LNCS 4734, pp. 299 2007.
© Springer-Verlag Berlin Heidelberg 2007

300 J. Shao et al.

key management, and key revocation. In contrast, in the latter method, the need
of a secure PKI can be eliminated, which can make the protocol be more efficient
and practical. Note that the pre-shared human-memorable password is low en-
tropy, however, the fresh authenticated session key is high entropy. It seems para-
doxical to get a high entropy key by only using a low entropy key. In other words,
the latter method seems impossible. However, in 1992, Bellovin and Merritt [3]
proposed the first such kind of protocol, named as Encrypted Key Exchange, by
using a combination of symmetric and asymmetric cryptographic techniques. In
their paper, they proposed two protocols, one is based on RSA [21], and the other
is based on ElGamal public key encryption [9].

Due to its simplicity and convenience, password-only authenticated key ex-
change protocol has received much interest from the cryptographic research com-
munity, and most of proposed protocols are based on Bellovin and Merritt’s work
[4120]. However, these protocols have not been proven secure. Until the results
in [5l6], the security proof of PAKE was not treated rigorously. Following these
results, a number of provable protocols and improvements have been put forth,
in random oracle model [BIT92I25[T], in ideal cipher model [6l2], and in standard
model [TOJIHTATOITT]. Most of provable PAKESs based on Diffie-Hellman key ex-
change need public information [IBT4I2U], such as generators of a finite cyclic
group. However, in a client-server environment, not all servers choose the same
public information, which would bring some security problems. For example, we
use the protocol in [T5], which “do require that no one know the discrete loga-
rithms of any of the generators with respect to any other” [I5]. If an adversary
changes the generators (g1, g2, h,c,d) to (g1,95 1, ¢ ,d"), which he knows the
discrete logarithms. As a consequence, a client’s password will be revealed after
an execution of PAKE with the adversary. And then the adversary can imper-
sonate the client. A natural method to resist this attack (named substitution
attack) is to authenticate the public information before beginning PAKE, how-
ever, it is cumbersome to clients, and adds complexity to password-only PAKE.
The other method is to remove the public information. To our best knowledge,
there is no provable PAKE without public information, based on Diffie-Hellman
key exchange. In this paper, we propose a such kind of PAKE, which is very
efficient (it requires only four and five modular exponentiation computations
on client’s side and server’s side, respectively). Furthermore, we give a formal
security analysis in the non-concurrent setting, including basic secure, mutual
authentication, and forward secrecy, by using the random oracle model.

1.1 Motivation

In this paper, we focus on the PAKE without public information. But what’s the
benefit we can get from this kind of PAKE? Firstly, we discuss the disadvantages
of the PAKE with public information.

As mentioned above, to resist substitution attack, users must get valid public
information. Although users can do it, there still exist some problems, which are
described as follows.

Efficient Password-Based Authenticated Key Exchange 301

— On the one hand, compared with the password, the public information is
more complex and larger. For different servers, the public information is dif-
ferent, hence it is a heavy burden for users who store the public information.

— On the other hand, if users will not store the public information, they must
get the public information before performing the protocol every time. To our
best knowledge, there are two following methods to get the public informa-
tion.

e from a public board;

e from a particular party trusted by communicating parties.
For the former one, the public board should be maintained by a particu-
lar trusted party, whom has to be trusted by all users and all servers, and
the data the party maintains will be larger and larger with the number of
servers increasing. Furthermore, on the one hand, if the public information
for some server changes, which will raise the problems similar to the certifi-
cate management problem. On the other hand, if the party is corrupted by
some adversary, the adversary can impersonate all users and all servers, such
as in the protocols of [T5IT4].

For the latter method, before performing the PAKE with public informa-
tion, the user must communicate with the particular trusted party, which
will increase user’s communication and computation burden. Furthermore,
in the PAKE with public information, it requires that the party and server
are connectable at the same time. If user cannot communicate with the party,
the PAKE cannot be performed.

Now, we can say that the benefit from the PAKE without public information
is to remove the above disadvantages.

1.2 Differences from Previous Work

In fact, the method proposed in this paper is very similar with that in [I8[7], while
not the same. On the one hand, in [I8], the author proposed a PAKE named Open
Key Exchange (OKE), where the server and the client only needs to share the
password, while the author focuses on the PAKE based on the RSA problem, not
the one based on Diffie-Hellman key exchange. On the other hand, it seems that
our proposal belongs to the generic construction in [7], which extends the OKE
construction by using trapdoor hard-to-invert group isomorphisms. However, in
the generic construction, the PAKE needs siz roundsﬂ7 while our proposal just
needs four rounds. Furthermore, although the concrete construction based on
Diffie-Hellman key exchange in [7] needs the same rounddd as our proposal does,
the shared information between the client and the server is different from our
proposal. The concrete construction requires that the shared information is not
only the password, but also the generator of a finite cyclic group, while in our
proposal, the shared information is only the password.

1 'We add one round for the client authenticates the server’s session key.
2 We add one round for the client authenticates the server’s session key.

302 J. Shao et al.

In this paper, we aim to propose a provable PAKE based on Diffie-Hellman
key exchange, where the client and the server only share the password. Our
proposal can be considered as a natural extension of [I8/7].

1.3 Organization

The rest of this paper is organized as follows. In Section[2] we first review the issues
related to the security of password-based authenticated key exchange protocol.
Then, we propose our protocol and its security analysis in SectionBland Section[d]
respectively. In what follows, we do comparisons our proposal with other PAKEs,
and give some discussions on PAKE without public information in Section Bl and
Section [G respectively. Finally, we draw our conclusions in Section [7

2 Preliminaries

In a password-only authenticated key exchange protocol, there are two entities,
say client and server (denoted by C' and S), both holding a secret password
drawn from a small password space P. Based on the password, client and server
can authenticate each other and generate a fresh session key which is only known
to the two of them. There is an active adversary, who controls all communications
between client and server, and aims to defeat the goal of the protocol. The
adversary can guess a value for the password and use this value in an attempt
to impersonate a player, either on-line or off-line. For the former attack, it can
be easily detected by the server after several failed attempts, and the server
can halt the account for a while, while the latter one is not the same case
due to its independence of the server. Thus, the fundamental security goal of a
password-only authenticated key exchange protocol is to be secure against the
latter attack. Our formal model of security for password-only authenticated key
exchange protocols is based on the “oracle-based” model of Bellare, Pointechaval,
and Rogaway [6]. In the following, we recall their definition of their model. For
further details, we refer the reader to [6].

Notes, Initialization. Let I be the set of protocol entities, and C' and S be
two elements of I, but not fixed. Before running of the protocol, each pair of
entities, C, S € I, share a password pwd, randomly selected from the password
space P. The public information of the protocol, such as a set of cryptographic
functions, are also specified. However, in our proposal, there does not exist any
public information.

Execution of the Protocol. In a challenge-response protocol, entities’ behave
in response to received message is determined by the protocol. For each entity,
she can execute the protocol multiple times with different entities, which is
modeled as an unlimited number of instancesd. We denote the i-th instance of
entity C as II%. Since the adversary is assumed to control all communications
among entities, she can interact with entities, which is modeled via access to
oracles. The oracle types are as follows:

3 The security analysis of our proposal is not in a concurrent setting.

Efficient Password-Based Authenticated Key Exchange 303

Send(C?, M) : This sends message M to instance C*. The instance executes and
responses as specified by the protocol. This oracle models the active attack.

Ezecute(C?,87) : This executes the protocol between instances C* and S7 hon-
estly and outputs the transcript. This oracle models the passive attack.

Reveal(I") : This outputs the session key skt of I'. This oracle models the
misuse of session key.

Test(I') : This oracle can be used only once per challenge. The instance I°
generates a random bit b and sends its session key ski to the adversary if
b =1, or a random session key if b = 0.

We say that two instances C* and S7 are partners if they both have accepted
and hold the same messages sent and received by C? (or S7). An instance is said
to be fresh if the instance has accepted and neither it nor its partner is queried
to a Reveal oracle.

The notion of semantic security intuitively says that an adversary cannot
effectively distinguish between a correct session key and a random session key.
This is formally defined via a game, which is described as follows: it initialized
by fixing a password pwd, randomly chosen from password space P, let the
adversary A ask a polynomial number of queries to the oracles as described
above. During the game, the adversary queries a single Test oracle on a fresh
instance. At the end of game, the adversary A outputs its guess b’ on the bit b
selected in the Test oracle. We define the advantage of A to be

AdvEARE — 1Pr|p =0'| — 1/2|.
Semantic security means that any efficient adversary’s AdViAK E is no more than
Q(k)/N + e(k), where k is the security parameter, Q(k) is the maximum times
of online attacks, N is the size of dictionary, and €(+) is a negligible function.

Computational Diffie-Hellman Assumption. Let G = (g) be a finite cyclic
group of order a k-bit prime number g. Computational Diffie-Hellman assump-
tion means that there is no probabilistic polynomial time adversary can solve
the following problem in G with non-negligible probability:

On input a tuple (g, 9%, g¥), where x,y € Z, computing the value g*¥.

In the following, we denote e.q; as the probability that the adversary solves
the above problem.

Decisional Diffie-Hellman Assumption. Let G = (g) be a finite cyclic group
of order a k-bit prime number ¢. Decisional Diffie-Hellman assumption means
that there is no probabilistic polynomial time adversary can solve the following
problem in G with non-negligible probability:

On input a quadruple (g, g%, ¢¥, g%), where z,y, 2z € Zy, outputs the decision
whether ¢™¥ = g~*.

In the following, we denote €445, as the probability that the adversary solves
the above problem.

304 J. Shao et al.

client and server only share a password pwd.

client server

G, q,9
rc €ER Z;
Rc «—g'c
Flow: — (G, q,g, Rc, client) Flow;
e
Check ¢ € {k-bit prime},
9" =1
(Re)? =1
Reject if not, else
rs €r 24
Rs —g"s
R% — (Rc)"™ Rs
R/ — (RC)TS
Flows Flows «— (Ry, server)
P A—
Check (R%)7 = 1
Reject if not, else
§ o Ry(Re) ™
R — (Rg)"®
Ho,H\,H> €r Fu
ve «+ client||server||Rc||Rs||R
a«— Hi(ve)
FlOU)3<—(H0,H1,H2,a) Flow3
e
Check whether Ho, H1, Ho € Fu,
vs < client||server||Rc||Rs|| R’
a= Hi(vs)
Reject if not, else
sks «— Ho(vs)
B« Hz(vs)
Flowy Flows «—
LoWs

Check 3 z Hz(ve)
if not, skc «—_L
else, skc «— Ho(vc)

Fig. 1. Password-based authenticated key exchange without public information

3 Owur Proposal

A high-level description of the protocol is given in Figure [l Our protocol is in
a finite cyclic group G = (g) with a k-bit prime order ¢, where G is chosen
by client C. Fp is denoted as the family of universal one-way hash function:
{0,1}* — {0,1}¥".

Efficient Password-Based Authenticated Key Exchange 305

As shown on Figure [l the protocol runs between a client C' and a server

S, who initially share a low-entropy secret string pwd, the password, uniformly
drawn from the dictionary P, without knowing other public parameters, such
as the generator g of the underlying finite cyclic group G, where k and k&’ are
security parameters. Note that all computations are in G.

1.

The protocol consists of the following four flows.

The client first chooses a random finite cyclic group G = (g) of order a k-bit
prime number ¢, and selects a random number r¢ € Z7, and computes the
value Ro «— ¢"¢, then it sends

(G,q,9, Rc, client)
to the server as Flow;.

After receiving Flow,, the server first checks whether ¢ is k-bit prime, g

and Rc are two members of G with order ¢ (g4 Z 1 and RL = 1). If not,
reject Flow; and abort; otherwise, choose a random number rg € Z;, and
compute

Rg « g™, R« (Rc)"™Rg, and R’ « (R¢)"s,
then it sends (R¥, server) to the client as Flows.

Upon receiving Flows, the client first checks whether R% is a member of G

with order ¢ ((R%)? <), if not, reject Flows and abort; otherwise, choose
randomly three hash functions Hy, Hy, Hs from Fp, and compute

R/S — R5(Rc)™PY, R — (R/S)Tc7 and o Hl(clientHserver\|RCHR/SHR),
and send (Ho, Hy, Ho, @) to the client as Flows.

On receiving Flows, the server first checks whether Hy, Hy, Ho are chosen

from Fg, and « < Hi(client||server||Rc||Rs||R’). If not, reject Flows and
abort; otherwise, compute

skg < Hy(client||server||Rc||Rs||R'), B « Hs(client||server||Rc||Rs||R)

which the server sends to the client as Flowy.

If 3 < Hs (client||server||Ro|| Rg||R) holds on the client side, the client com-
putes sko «— Ho(client||server||Ro||Rg||R), which means that they have
successfully exchanged the session key.

Mutual Authentication. The server authenticates the client by Flows, and
the client authenticates the server by Flowy.

4

Security of Our Protocol

In this section, we deal with the semantic security goal in the non-concurrent
setting, including the basic security of the protocol, mutual authentication goal,
and forward-secrecy.

306 J. Shao et al.

4.1 Basic Security

Theorem 1. Let P be the protocol in Figure [, where passwords are chosen
from a dictionary P of size N, and let k and k' be the security parameters. Let
A be an adversary which asks qe. queries to Ezecute oracle, qs queries to Send
oracle, and qp queries to the hash oracles. Then, in the non-concurrent setting:

qs 2qs

AT < (qew + an + @) €aan + gk—1 T

Proof Idea. We give our proof using similar techniques as described in [2[1]. We
define a series of hybrid experiments, starting with the real attack and ending in
an experiment in which the adversary’s advantage is 1/2, and for which we can
bound the difference in the adversary’s advantage between any two consecutive
experiments. From these experiments, we can see that the Execute, Send, and
Reveal oracle cannot help the adversary. Due to the lack of space, we give the
proof in the full version [23].

4.2 Mutual Authentication

The following theorem shows that our protocol ensures mutual authentication,
that is, a server/client instance will never accept a non-corresponding/non-
expected client/server instance with non-negligible probability. We denote that
AuthC/AuthS is the probability that a server/client instance accepts a non-
corresponding/non-expected client/server instance.

Theorem 2. Let us consider our protocol, where P is a finite dictionary of size
N equipped with the uniform distribution. Let A be an an adversary against the
security of our protocol, with less than qs Send queries, q., Erecution queries,
and qn hash queries. Then in the non-concurrent setting, we have

q: q:
AuthC < (Qem + qs)ﬁddh + 21{:'11 +]\;’

qs + 2qs

AuthS < (Gex + qs)€dan + ok'—1 N

Due to the lack of space, we give the proof in the full version [23].

4.3 Forward Secrecy

In this section, in order to deal with forward secrecy, we introduce a new kind
of query named the Corrupt-query [2]:

Corrupt([): This query models the adversary A have succeeded at getting the
password pwd of the entity I. However, A does not get internal data of I.

Efficient Password-Based Authenticated Key Exchange 307

Now, we say an instance is a fresh instance if before the Corrupt-query has
been asked, the instance has accepted and neither it nor its partner is queried
to a Reveal Oracle.

Forward-secrecy ensures that the adversary can not get any information about
the session keys established before the password pwd is revealed. We use the same
game in Section 2] to define forward-secrecy, and denote the advantage of A to
be

AdvEAEETES — 1 prib = b'| — 1/2].
Forward-secrecy means that any efficient adversary’s AdviAK E=FS g negligible.
Theorem 3. Let us consider our protocol, where P is a finite dictionary of size
N equipped with the uniform distribution. Let A be an an adversary against the
security of our protocol, with less than qs Send queries, q., Erecution queries,
and qpn, hash queries. Then in the non-concurrent setting, we have

qs 2q;

Aoy T < (e o+ an+ gs)eaan + gy T

Due to the lack of space, we give the proof in the full version [23].

5 Comparison

In this section, we will compare our proposal with the scheme in [I3] (named IEEE)
and the scheme in [I] (named APO05). From our viewpoint, the hash functions are
not the public information, but the common sense, like the operator “4” in algebra.
Since in our proposal, no matter which special finite cyclic group G = (g) is, we
can always use the hash function SHA — 1 only. For example, set Hy : SHA —
1(client||server||Rc||Rs||R||0), Hy : SHA—1(client||server||Rc||Rs||R||1), and
Hy : SHA — 1(client||server||Rc||Rs||R]||2).

Table 1. Comparison of PAKEs between with and without public information

Our proposal IEEE APO5
public information None G, g, q, (€, Dk) G, g, q, M, N
the total number of round 4 3 2
Authentication Mutual Unilateral None
Computation Costs Client’s side 47.% + 1T, 2T. 3T. 4+ 2T
Server’s side 5T¢ + 1715, 2Te 3Te + 2T,
Communication Costs¢ Client’s side 6 2 1
Server’s side 3 2 1

% Time for a modular exponentiation computation

b Time for a modular multiplication computation

¢ Since the schemes all work in a finite cyclic group G = (g) of order a k-bit prime
number ¢, hence, we just consider the total number of data unit.

308 J. Shao et al.

From Table [[l compared with IEEE and APO05, our proposal is a little bit
inefficient than these two protocols.

— Its computational overhead is five more modular exponentiation computa-
tions than that in IEEE, and three more modular exponentiation compu-
tations than that in AP05. Since in our proposal, the server has to check
the validity of Flowi, and the client has to check the validity of Flows, but
IEEE and APO05 do not need to do this.

— Its communication costs on client’s side are more than that in IEEE and
APO05. Since in our proposal, the client’s terminal does need transmit the
parameters. If we want to reduce the length of transmitting data, we can use
the cyclic finite group on the elliptic curve.

— Since our proposal provides full functions including mutual authentication,
while IEEE and AP05 do not. Hence, the total number of round in our
proposal is more than that in IEEE and APO05.

6 Discussion

The Parameters Can Be Reused. Now, let us think more about our new
kind of PAKE. We can find that there is no need for the client’s terminal to
generate new parameters each time. Since every server can perform the same
as the proposed scheme suggests, hence, it allows the client to choose its own
parameters once and re-use them for several different servers. In fact, if the client
has a device with the parameters, then the same parameters can be used every
time. We think it is very flexible and pretty attractive to users.

Generating And Testing The Parameters. In our proposal, the client’s
terminal should generate G, q, g, and the server’s terminal should verify these
parameters. For the client’s terminal, since the user can reuse the parameters,
the time for generating the parameters is not a problem in our proposal. For
the server’s terminal, checking whether an element ¢ in a cyclic finite group
is a generator with a prime order ¢ is fast, which just needs a exponentiation

computation in the underlying cyclic finite group (g? ks 1). On the other hand,
there exist fast algorithms to test primality [24122]. As a result, the time for
testing the parameters is not a problem in our proposal, neither.

Is There Existing PAKE Without Public Information? The answer is
“Yes”. Most PAKEs based on RSA [BII9I25] can be considered as the PAKE
without public information, since the public key of RSA (n,e) is chosen by the
client, and the client sends them to the server. However, our proposal is the first
provable-secure PAKE without public information, only sharing password, based
on Diffie-Hellman key exchange.

Can All PAKEs Be Changed Into The PAKE Without Public Infor-
mation? The answer is also “Yes”. If the protocol just needs one generator of

Efficient Password-Based Authenticated Key Exchange 309

the underlying finite cyclic group, it can be changed into the PAKE without pub-
lic information by the method in our proposal. If the protocol needs more than
one generators, it should need more communication and computation to com-
pute the generators, such as performing a standard Diffie-Hellman key exchange
[]] to get a generator.

7 Conclusion

In this paper, to remove the disadvantages raised by getting valid public infor-
mation, we have proposed an efficient password-based authenticated exchange
protocol without public information. Furthermore, we gave its security proof in
the non-concurrent setting, including basic security, mutual authentication, and
forward secrecy, by using the random oracle model.

Compared with the PAKEs with public information, our proposal is a little bit
inefficient in terms of computational complexity. However, since the parameters
can be reused in our proposal, it is very flexible and attractive to users.

References

1. Abdalla, M., Pointcheval, D.: Simple Password-based Encrypted Key Exchange
Protocols. In: Menezes, A.J. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 191-208.
Springer, Heidelberg (2005)

2. Bresson, E., Chevassut, O., Pointcheval, D.: Security Proofs for an Efficient
Password-Based Key Exchange. In: Proc. of the 10th ACM Conference on Com-
puter and Communication Security, pp. 241-250. ACM Press, New York (2003)

3. Bellovin, S.M., Merritt, M.: Encrypted key exchange: Password-based protocols
secure against dictionary attacks. In: Proc. of the IEEE Symposium on Research
in Secruity and Privacy, pp. 72-84. IEEE Computer Society Press, Los Alamitos
(1992)

4. Bellovin, S.M., Merritt, M.: Augmented encrypted key exchange: A passowrd-based
protocol secure against dictionary attacks and password file compromise. In: ACM
CCS 1993, pp. 244-250. ACM Press, New York (1993)

5. Boyko, V., MacKenzie, P., Patel, S.: Provably secure password authenticated key
exchange using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 156-171. Springer, Heidelberg (2000)

6. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attack. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 139-155. Springer, Heidelberg (2000)

7. Catalano, D., Pointcheval, D., Pornin, T.: IPAKE: Isomorphisms for Password-
based Authenticated Key Exchange. In: Franklin, M. (ed.) CRYPTO 2004. LNCS,
vol. 3152, pp. 477-493. Springer, Heidelberg (2004)

8. Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Trans. Info. The-
ory 22(6), 644-654 (1976)

9. ElGamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Dis-
crete Logarithms. IEEE Transactions on Information Theory IT-31(4), 469-472
(1985)

310

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

J. Shao et al.

Goldreich, O., Lindell, Y.: Session-key generation using human passwords only. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 408-432. Springer, Heidelberg
(2001)

Gennaro, R., Lindell, Y.: A framework for password-based authenticated key ex-
change. In: Biham, E. (ed.) EUROCRPYT 2003. LNCS, vol. 2656, pp. 524-542.
Springer, Heidelberg (2003)

Halevi, S., Krawczyk, H.: Public-Key Cryptography and Password Protocols. ACM
Trans. on Info. and Sys. Security 2(3), 230-268 (1999)

IEEE Standard 1363-2000: Standard Specifications for Public Key Cryptography.
IEEE (August 2000), available from http://grouper.ieee.org/groups/1363
Kobara, K., Imai, H.: Pretty-simple password-authenticated key-exchange under
standard assumptions. IEICE Trans. E85-A(10), 2229-2237 (2002)

Katz, J., Ostrovsky, R., Yung, M.: Efficient Password-Authenticated Key Exchange
Using Human-Memorable Passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 475-494. Springer, Heidelberg (2001)

Katz, J., Ostrovsky, R., Yung, M.: Forward Screcy in Password-only Key Exchange
Protocols. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576,
pp. 29-44. Springer, Heidelberg (2003)

Lomas, T.M.A., Gong, L., Saltzer, J.H., Needham, R.M.: Reducing Risks from
Poorly-Chosen Keys. ACM Operating Systems Review 23(5), 14-18 (1989)
Lucks, S.: Open Key Exchange: How to Defeat Dictionary Attacks Without En-
crypting Public Keys. In: Christianson, B., Lomas, M. (eds.) Security Protocols.
LNCS, vol. 1361, pp. 79-90. Springer, Heidelberg (1998)

MacKenzie, P., Patel, S., Swaminathan, R.: Password-authenticated key exchange
based on RSA. In: Okamoto, T. (ed.) ASTACRYPT 2000. LNCS, vol. 1976, pp.
599-613. Springer, Heidelberg (2000)

Jablon, D.P.: Strong password-only authenticated key exchange. SIGCOMM Com-
puter Communications Review 26(5), 5-26 (1996)

Rivest, R., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signa-
tures and Public Key Cryptosystems. Communications of the ACM 21(2), 120-126
(1978)

Solovay, R., Strassen, V.: A fast Monte-Carlo test for primality. STAM Journal of
Computing 6(1) (1977)

Shao, J., Cao, Z., Wang, L., Lu, R.: Efficient Password-based Authenticated Key
Exchange without Public Information. Cryptology ePrint Archieve: Report (2007)
Weisstein, E. W.: Primality Testing Is Easy,
http://mathworld.wolfram.com/news/2002-08-07/primetest/

Zhang, M.: New Approaches to Password Authenticated Key Exchange Based
on RSA. In: Lee, P.J. (ed.) ASTACRYPT 2004. LNCS, vol. 3329, pp. 230-244.
Springer, Heidelberg (2004)

http://grouper.ieee.org/groups/1363
http://mathworld.wolfram.com/news/2002-08-07/primetest/

	Efficient Password-Based Authenticated Key Exchange Without Public Information
	Introduction
	Motivation
	Differences from Previous Work
	Organization

	Preliminaries
	Our Proposal
	Security of Our Protocol
	Basic Security
	Mutual Authentication
	Forward Secrecy

	Comparison
	Discussion
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

