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Abstract. User interruptability has become an important topic of study in 
Human-Computer Interaction (HCI). However, automatically determining the 
availability of users is still problematic. In this paper, we present a preliminary 
study of the use of physiological measurements for predicting user 
interruptability status. We measured Heart Rate Variability (HRV) and 
Electromyogram (EMG) signals whilst users performed a variety of tasks; 
including reading, solving word puzzles, mental arithmetic, typing, and playing 
a racing game. Results show high correlations for both HRV (r = 0.96) and 
EMG (r = 0.85) with user self-reports of interruptability.  We combined these 
two measures into a single linear model, which predicted user interruptability 
with a combined r2 of 0.95, or 95% of the variance. Please note that our model, 
at this stage, describes interruptability across users rather than per individual. 
We describe an application of our findings in the Physiological Weblog, or 
’Plog, a system that uses our model for automating online messaging status.   

Keywords: Interruptions, Blogs, Attentive User Interfaces (AUIs). 

1   Introduction 

With the emergence of camera phones and other mobile imaging devices, many users 
are capturing their daily lives and posting them online [4].  One example of this recent 
trend is the mobile blog, or ’moblog [18], a wearable form of blogging. Another 
example is the movement towards continuous capture or archival of personal 
experience [2], for example, using video glasses like eyeTap [21] or eyeBlog [6] (see 
Figure 1).   

With the availability of ubiquitous wireless devices, we have also seen an 
increase in communications between users. However, since these devices are not 
aware of the status or availability of their user, they often interrupt the user’s tasks 
and thought processes at inopportune times [12]. Studies have shown that workplace 
interruptions via communication devices adversely affect productivity and lower 
worker performance [17, 23]. 

The Attentive User Interface (AUI) paradigm [29] attempts to address these 
challenges by allowing devices to allocate the attention that users have for their tasks 
and devices in a more optimal fashion.  According to Shell et al. [29], AUIs achieve 
this through 1) sensing, 2) reasoning about, and 3) augmenting user attention. 
However, little research has been done on how AUIs might communicate attention to 
signal availability of others for online communications.  
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Fig. 1. Continuous archival of personal experiences using eyeBlog video glasses [6] 

This paper extends work on the Physiologically Attentive User Interface (PAUI) 
[5], and presents a study on the use of physiological measures for automated detection 
of user interruptability. We discuss an application of our findings in the Physiological 
Weblog interface, or ’Plog for short. Like PAUI, this system allows online users to 
assess availability of mobile users through a web-based interface. We first discuss 
background literature on interruptability and the use of physiological measures in 
HCI.  We then discuss our experiment, and conclude with a description of the ’Plog 
system.   

2   Previous Work 

There is very little work on the combination of blogging technologies and 
physiological interfaces. Since work on personal blogging tools is extensive, we 
restrict our discussion to studies involving interruptability.  This section discusses 
previous work on interruptability, and the use of physiological measures in Human-
Computer Interaction. 

2.1   Interruptability 

There has been a considerable interest in the modeling of user activity for the purpose 
of determining availability for notifications and communications [1, 3]. Horvitz et al. 
[13, 15] approached this problem using Bayesian reasoning models that allowed 
prediction of user interruptability on the basis of a variety of measures of interactive 
behaviors.  They created attention-based models based upon analysis of keyboard and 
mouse events during interactions with applications such as, for example, Microsoft 
Outlook.  Horvitz et al. also measured the effect of interruptions by calculating the 
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cost of interruption, from user feedback on video recordings [14].  The cost of 
interruption varied according to the state of the user, with highly focused tasks 
obtaining a higher cost of interruption.  In this way, attention-based states like driving 
and sleeping could be detected and correlated with a particular cost of interruption.  
Horvitz et al. [16] applied their Bayesian reasoning models in the Lumière project, 
which was used to provide automated assistance in popular software applications.  

Hudson et al. [17] used a “Wizard of Oz” study in an office setting to gather 
attention-based data from video-recorded user interactions.  They used a “beeper” 
approach to poll users for their current interruptability, rated on a linear scale.  Like 
Horvitz, they were able to uncover correlations and build statistical models for the 
prediction of human interruptability based upon overt physical activities [10]. 

In [30], Siewiorek et al. presented SenSay, a context-aware mobile phone that 
sensed physical and environmental changes in order to determine current user 
interruptability.  SenSay determined if a user was in a busy (uninterruptable) state 
based upon their electronic schedule, their movement, and any audible noise in the 
environment.  However, the device was limited due to its reliance on external 
measures in the user’s surroundings, which are not always related to interruptability. 

2.2   Physiological Measures 

Some of the earliest research that combined Human-Computer Interaction with 
physiology was by Picard et al. [25].  They used physiological sensors to analyse 
facial muscle tension, blood volume pulse, skin conductance, and respiration rate.  
After several weeks of data collection from one participant, they were able to create a 
feature-based algorithm using Sequential Floating Forward Search with Fisher 
Projection (SFFS-FP) [26] that was 81% accurate in the classification of eight 
emotional states (including anger, joy, and grief).   

Our paper draws inspiration from this work, with the hopes of modeling 
interruptability by measuring physical and mental activity of the user without having 
to overtly identify specific user tasks.  In taking this approach, we hope to correlate 
the user’s physiological responses to their self-assessed interruptability, thereby 
creating a task-independent model of interruptability based purely on the user’s 
current physiological state. 

Determining Mental Load. To obtain a model, we first needed to determine which 
measures would most likely correlate with user interruptability. As a first candidate, 
we examined measures of user mental load during a task. In the past, the most 
common measure of mental load has been NASA’s Task Load Index (TLX) [11], a 
subjective self-assessment of various mental and physical aspects of a task.  Results 
take the form of a multi-dimensional rating, based on the weighted average of six 
subscales: mental demand, physical demand, temporal demand, performance, effort, 
and frustration. 

Later, Rowe et al. [28] released a preliminary study indicating that mental effort 
may be reflected in Heart Rate Variability (HRV) [22].  In their experiment, 
participants’ HRV was monitored whilst playing air traffic control games with 
varying levels of difficulty. After completing the task, participants were asked to fill 
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out the NASA TLX Test for Mental Effort.  Results from the TLX showed significant 
increases in mental load with task difficulty. HRV correlated well with measures from 
the TLX questionnaire, with the advantages that HRV can be determined in real time; 
and is an objective measure, not reliant on participants’ self-assessment.  We 
therefore decided to use HRV as our physiological indictor of mental load. 

The Parasympathetic and Sympathetic Nervous Systems.  Within the human 
nervous system there are two opposing systems at work: the sympathetic nervous 
system (SNS) and the parasympathetic nervous system (PNS).  The SNS prepares the 
body for potentially dangerous or stressful situations by increasing both heart rate and 
blood pressure.  Conversely, the PNS is the calming force that returns the body to 
normal after stimulation by decreasing heart rate and blood pressure.  The balance 
between these two opposing forces is known as the sympathovagal balance, and it is 
these changes in the cardiac cycle that are reflected in Heart Rate Variability (HRV) 
measure [20]. 

Determining Physical Activity.  To complement measures of mental activity, we 
also examined ways in which we could measure physical activity. In the past, 
electroencephalogram (EEG) was typically used to measure gross motor movement 
using mu-related desynchronisation [27]. This approach has been used in work by 
Chen and Vertegaal [5] on Physiologically Attentive User Interfaces. However, EEG 
can be quite invasive because it requires direct scalp contact and the use of 
electrolytic gels.  

Instead, we chose to use electromyography (EMG), a direct measure of muscle 
activity.  EMG is much less invasive than EEG, as it only requires the placement of 
one dry sensor on the muscle in question.  This has the advantage that it can be used 
to measure signals throughout the user’s body for detecting specific muscle 
contractions. In order to minimise the intrusiveness of data acquisition we decided to 
examine the use of EMG for our interruptability model. 

3   Obtaining HRV and EMG Measurements 

We will now discuss how measurements of both Heart Rate Variability and 
Electromyography were obtained and analysed for use in our model. 

3.1   HRV: Analysing the ECG Signal 

Measures of Heart Rate Variability (HRV) are obtained through the analysis of 
Electrocardiogram (ECG) signals [8]. A typical ECG signal is shown in Figure 2, with 
each peak consisting of a complex pattern of pulses labeled PQRST, as illustrated in 
Figure 3. The most recognisable feature is the R peak, which represents the point in 
time where the ventricles of the heart are completely depolarised. We used the time 
interval between subsequent R peaks in determining both the heart rate itself and 
Heart Rate Variability. 
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               Fig. 2.  Electrocardiogram (ECG) signal                 Fig. 3.  PQRST structure 

A number of feature variables were used to explore how physiological signals 
correlated with interruptability (see [32] for a more detailed discussion): 

1) ECG Heart Rate Variability (Time Series): This measure is found by taking the 
standard deviation of the time interval between R peaks. 

2) ECG Heart Rate Variability (Frequency Domain): Here, measures of HRV are 
taken in the frequency domain. First, we take the Fourier transform of the R-R 
peak interval series, known as the tachogram. We then measure the resulting 
power in the 0.1Hz range, which has been shown to vary with mental load 
[28]. 

3)   ECG RMSSD (Root Mean Square of Successive Differences): This measure is 
calculated by finding the square root of the mean squared differences between 
successive R-R peaks.   

4)   ECG Beats Per Minute: This is the heart rate itself, as defined by the time interval 
between successive R peaks; and is used as an indicator of physical activity. 

3.2   Analysing the EMG Signal 

The typical EMG signal is irregular in comparison to the ECG signal, extracting 
usable signals is therefore more difficult.  The signal is a flat line prior to muscle 
contraction, then peaks with contraction, after which it becomes somewhat erratic. 

The following feature variables were used to determine EMG activity:  

1) EMG Count (Small and Large): Given a window of EMG data, this variable is 
incremented when a data point lies above a threshold.  The use of small or large 
thresholds allows distinction of smaller versus larger muscle contractions. 

2) EMG Standard Deviation (EMGSD): Given a window of EMG data, this variable 
takes the standard deviation of the EMG measurement.  As the signal increases in 
contraction, the amount of variation and deviation from the mean will also 
increase. 

3)   EMG Power: Given a window of EMG data, this measures the overall power of 
the signal.  
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An advantage of the latter two EMG feature variables is that they do not require 
calibration, whereas the EMG Count variable requires visual inspection so that 
meaningful threshold values can be chosen. 

4   Evaluation 

To obtain a generalised physiological model of interruptability, we designed a 
preliminary experiment that related participants’ self-perceived interruptability to 
their physiological state as measured by Heart Rate Variability (HRV) and muscle 
activity (EMG).  We used a beeper-study approach similar to that used by Hudson 
[17], asking participants to verbally state their interruptability whilst performing five 
different tasks with varying levels of both mental difficulty and physical activity.  

4.1   Participants and Design 

A total of nine people participated in our experiment. Participants consisted of six 
males and three females with a mean age of 24.3 years; all were regular computer 
users.  We employed a within-subjects design, meaning that all nine participants 
performed all five tasks.  The order of presentation was counterbalanced between 
subjects to eliminate any bias due to ordering. 

4.2   Apparatus 

A wearable Procomp+ system by Thought Technology [35] was used to continuously 
acquire discrete real-time physiological data from four sensors placed on the 
participant’s body.  Each sensor consisted of three silver chloride electrodes in a 
triangular formation, with a spacing of 2cm between electrodes.   

The ProComp+ system samples both ECG and EMG at 32 samples per second, 
which is sufficient for both HRV and EMG power analysis.  Our software logged the 
physiological data with a time stamp for offline analysis.  The computer system used 
a 2.0 GHz Pentium 4 processor, running a Debian Linux operating system. 

4.3   Sensor Placement 

We affixed four adhesive sensors to each participant (see Figure 4).  One sensor was 
placed on the left side of the upper chest to measure HRV, while the other three 
sensors were used to measure EMG in the upper fibres of the trapezius in the right 
shoulder, the extensor carpi radialis in the right forearm, and the tibialis anterior in the 
lower right leg. 

4.4   Task Description 

Participants were first briefed about the experiment, and familiarised with each of the 
five tasks.  The experimenter told participants that they would be interrupted every 30 
seconds and asked to verbally state their interruptability. Participants were told to 
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Fig. 4.  Sensor placement Fig. 5. Participant performing the racing game 
task 

answer on a scale of one to five, with one meaning “I am completely available for 
interruptions”, and five meaning “I do not wish to be interrupted”.  Each task took 
approximately three minutes to complete, and we therefore collected roughly 15 
minutes of data for each participant.  Participants remained seated during all five 
conditions. 

4.5   Task Conditions 

We selected the following five tasks, which varied in both mental difficulty and 
physical activity: 

• Reading                       
Participants were presented with a short reading passage of approximately 1100 
words (taken from [9]).  In order to encourage more thorough reading, 
participants were forewarned that they would be tested regarding the passage’s 
contents through a multiple-choice comprehension test with 10 questions.  
Physiological data was logged for the duration of the reading period, but not 
whilst the subjects were answering the questions. 
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• Mental Arithmetic                                           
The experimenter read 30 simple mental arithmetic questions to the participant.  
The questions were in the form “9 – 4 + 2”, and were designed such that all of the 
answers fell between one and nine.  Participants were required to answer 
verbally, and as quickly as possible. 

• Typing                       
Participants were presented with a web-based typing speed test [33].  For fair 
comparison, all participants were required to type the same passage (an excerpt 
from “The Adventures of Huckleberry Finn” [36]). Participants were allowed to 
practice prior to the task. 

• Word Puzzle                                       
We chose an online anagram puzzle called Text Twist® [34], where the user is 
presented with a number of scrambled letters. The task is to rearrange the letters 
in order to create as many words as possible.  Participants were given three 
minutes to find as many permutations as possible. 

• Racing Game                  
Participants played a racing game on an XBOX console [24] connected to a 42” 
widescreen plasma display (see Figure 5).  We chose the game “Need For Speed 
Underground 2” [7], as it provides a high-resolution simulation of a driving task. 
To provide participants with a more realistic experience we used a Madcatz MC2 
[19] steering wheel and surround sound stereo equipment.  All participants were 
allowed to practice prior to the task.  All participants used the same car model, 
and drove the same course, with no opponents or traffic. 

4.6   Hypothesis 

We hypothesise that both HRV and EMG measures correlate with participants’ self-
perceived level of interruptability, as these measures predict both mental effort and 
physical exertion during a task. 

5   Results 

In order to achieve the most accurate results, we analysed all four HRV feature 
variables (see Section 3.1) and all three EMG feature variables (see Sections 3.2).  We 
chose to use the standard deviation of Heart Rate Variability (Time Series) as our 
mental load metric and the standard deviation of EMG (EMGSD) as our muscle 
activity metric, as these measures proved to be the most consistent.    

Figures 6 and 7 shows the relationship between the self-assessed interruptability 
and our mean measures for HRV and EMG respectively, averaged over all five tasks.   
Since both the HRV and EMG are measured in standard deviations, the y-axes of the 
graphs are unitless.  As we expected, linear regressions showed a significant 
correlation of HRV with interruptability scores of r = 0.96 (p < 0.01).  EMG measures 
also showed a significant correlation of r = 0.85 (p = 0.03). 
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Fig. 6. Mean HRV levels with self-perceived interruptability 
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Fig. 7. Mean EMGSD levels with self-perceived interruptability 

We combined the two measures into a single model, as follows: 

Interruptability = a + b (HRV) + c (EMGSD)  (1) 

Multiple regression showed an excellent fit to the model, with r = 0.98 (r2 = 0.95) 
and the following results for our constants a, b and c: 

Interruptability = -8.12 + 6.89 HRV - 0.04 EMGSD  (2) 

6   Discussion 

Results show that, as expected, both measures of HRV (Time Series) and EMGSD 
increased significantly with participants’ self-perceived interruptability level.  
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Surprisingly, our model predicts up to 95% of the variance in interruptability scores, 
across a variety of tasks. This is a very high correlation indeed. Although such results 
may in part be attributable to an averaging effect of the linear regression across 
participants, we must note that analysis of individual correlations is problematic. The 
random variable nature of the beeper study method cannot ensure every subject 
reports on the entire range of interruptability scores from one to five at all times. This 
makes pooling of results essential, and averaging of individual correlations 
impractical.  

However, our results should not be interpreted to predict interruptability for any 
specific individuals, which is what our applications would require, but rather as a 
clear indication of the value of HRV as a means for measuring interruptability of 
groups of individuals in an automated fashion. We believe such results are extremely 
promising, and warrant further longitudinal investigation with larger sample sizes.  
One potential concern regarding the beeper method is that the act of interrupting the 
user to ask their interruptability may itself affect the resulting measurement. However, 
our results make this unlikely, and indicate a significant variance in interruptability 
scores throughout the various tasks. Another potential concern may be the relatively 
low sampling rate of our Procomp+ system. Again, our regression results show that 
relatively low-cost and potentially wearable measurement equipment may generate 
significant predictive power, which is a requirement for our applications. We also 
note that results may not necessarily apply to task situations where the user’s heart 
rate is particularly elevated, such as during exercise. 

Mental load appeared to contribute more to our model than muscle activity, as the 
HRV coefficient (6.89) was much greater than the EMGSD coefficient (0.04).  While 
the model is improved by the inclusion of EMG data, we believe measures of mental 
load provide a more reliable estimate of interruptability.  Our results are largely in 
line with prior experiments [28]. 

Our research suggests that it may be possible to correlate the internal 
physiological state of the user with their self-reported level of interruptability without 
the need to identify or classify the specific task that the user is currently involved in.  

7   ‘Plog: A Physiological Weblog 

We applied our findings in ‘Plog, an automated availability status system that blogs 
the user’s physiological state, as well as their predicted interruptability (see Figure 8). 
The most important function of ‘Plog is the communication of attention, thus allowing 
for an alternative approach to regulating interruptions. Note that because ‘Plog relies 
on other users to interpret the recipients’ states, a high degree of individual predictive 
power is not absolutely critical.  In part, we believe ‘Plog works by making others 
more aware of the need to be more considerate of recipients’ interruptability.   

’Plog continuously uploads physiological data information to a web server through 
a secure ssh protocol [31].  The system is tailored to each user’s individual 
physiological signals, and uses both HRV and EMG to infer the user’s current level of 
interruptability.  This information is represented using a simple interface that displays 
the interruptability on a scale from one to five. This allows people to maintain 
 



 Towards a Physiological Model of User Interruptability 449 

 

Fig. 8. Screenshot of the physiological weblog displaying the user’s predicted level of 
interruptability 

awareness of the interruptability of others, thus facilitating informed decisions on 
availability prior to actual communication. As such, we expect ’Plog to act as an 
attentive notice board that could reduce the number of inopportune interruptions by 
emails, instant messages or telephone calls. As a future direction of this work, we 
hope to evaluate the effectiveness of the ’Plog system as a means for determining and 
communicating user availability. 

8   Conclusions 

In this paper, we presented a preliminary study of the use of physiological 
measurements for predicting user interruptability status. We measured Heart Rate 
Variability (HRV) and Electromyography (EMG) signals whilst users performed a 
variety of tasks, including reading, solving word puzzles, mental arithmetic, typing, 
and playing a racing game. Results show high correlations for both HRV (r = 0.96) 
and EMG (r = 0.85) measures with user self reports of their interruptability.  We 
combined these two measures into a single linear model, which predicted user 
interruptability with a combined r2 of 0.95, explaining 95% of the variance. We note 
that our model describes interruptability across users, rather than per individual, and 
as such should be considered preliminary. We presented an application of our findings 
in the Physiological Weblog, or ’Plog, a system that uses our model of interruptability 
for automating online messaging status. 
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