
Proteus: An Architecture for Adapting Web
Page on Small-Screen Devices

M.F. Caetano1, A.L.F. Fialho1, J.L. Bordim1, C.D. Castanho1, R.P. Jacobi1,
and K. Nakano2

1 Department of Computer Science, University of Brasilia, Brasilia, 70910–900, Brazil
{caetano,alfoltran,bordim,carlacastanho,rjacobbi}@cic.unb.br

2 Department of Information Engineering, School of Engineering, Hiroshima
University 1-4-1 Kagamiyama, Higashi-Hirhoshima, 739-8527, Japan

nakano@hiroshima-u.ac.jp

Abstract. Reading the contents of Web page with a small-screen device,
such as a PDA or cell-phone, is still far from being a pleasant experience.
Owing to the device limitations, current mobile browsers cannot handle
all HTML tags, such as tables, for instance. Thus, most mobile browsers
provide a linearized version of the source HTML page, leading to a large
amount of scrolling, not to mention the difficulty in finding the desired
content. The main contribution of this work is to propose an architec-
ture for adapting web page on small-screen devices. Among the features
that our architecture offers, we can cite on-the-fly Web page adaptation
and customization according to the user and device characteristics; text
summarization; page blocks identification and content mapping to easy
the task of locating user interests.

1 Introduction

Today, browsing the Web and reading emails while on the move has become
common place. This has been possible due to cheaper and faster wireless net-
work interfaces and the availability of mobile devices with augmented storage,
memory, and battery capacity. Even though current cell-phones and PDAs have
considerable processing power, their limited screen size and resolution makes it
quite hard to visualize a Web page content. In general, Web pages are designed to
be visualized on larger screens and, when one attempts to fit it on a small-screen
device, most of its content is not visible. To better visualize a Web page content,
the following approaches can be taken : create pages specially designed for the
device or adapt them whenever needed. In the latter case, the content of a Web
page could be adjusted, using a proxy-server for instance, to meet the device
needs. The Wireless Application Protocol (WAP) [5] and i-Mode [7] work on the
idea of creating Web content tailored for mobile devices. This, however, has a
major drawback as most of the Web content is not available in such formats.

Recently, a number of works have explored solutions to improve the ways mo-
bile devices with limited resources display Web content [3,4,11,2]. Among them,
we can observe two different approaches: those who preserve the source page

K. Li et al. (Eds.): NPC 2007, LNCS 4672, pp. 161–170, 2007.
c© IFIP International Federation for Information Processing 2007

162 M.F. Caetano et al.

layout [4,2,6], and those who do not [12,10,11]. OperaMini [10], is an example
of the latter which linearizes the entire content of a Web page. Although it is
simple to implement and does not demand much processing at the client side, it
leads to a large amount of vertical scrolling. Buyukkokten et al. [11], proposed to
reduce the source Web page textual content through the use of text summariza-
tion techniques. On the same line, Schilit et al. [12], analyze the original page
and have its content mapped to a previously established layout interface. As
the above approaches modify the source page layout, users may have difficulty
finding the information they are looking for. It is worth mentioning that most
Web portals arrange the information to in a way that provide easy access to the
topics with higher relevance. Also, when the user is familiarized with the page
layout, s/he probably knows where to look for the information s/he wants.

Clearly, when one attempts to fit an HTML page into a mobile device display,
most of its content is hidden from the user as the page is usually larger than the
mobile display. A common way to provide means for users to actually visualize
the entire Web page on a mobile device is to create a preview image of the original
page. In this context, Chen at. al. [4] proposed to split the source page structure
into blocks and associate each block to the corresponding area in the generated
thumbnail. In the same direction, the work in [2] focused on the identification
and delimitation of a page’s regions to provide a two-level hierarchy.

In this work, we propose an architecture, named Proteus for adapting web
page on small-screen devices. Proteus takes into consideration user preferences,
such as image rate compression, thumbnail generation, text summarization pref-
erences, mobile display size and topics of interest. The user preferences are stored
in a profile. When a client requests an HTTP page to the Proteus server, the
page is adapted based on the user’s profile, and then delivered to the client. As
we will describe in latter sections, the Proteus’s adapted pages assist the user to
identify relevant information even in a source page preview.

The rest of this paper is organized as follows. In Section 2 we present an
overview of the proposed architecture and Section 3 presents the implemen-
tation details. Preliminary results are shown in Section 4 and conclusions are
drawn in Section 5.

2 Proteus Architecture

Proteus architecture is based on a client/server model. In our case, the client’s
function is basically to display the information provided by the server and imple-
ment ways to navigate through it. The benefits of using a proxy server include:
(a) Better use of the client’s battery resources; (b) Help reducing the commu-
nication cost and download time; (c) The adapted pages are well formed; (d)
Allows to cache adapted pages for latter retrieval. In addition, with the use of a
proxy server, it is possible to provide the user the possibility to inform parame-
ters that will be analyzed and used during the treatment of the requested pages.
For instance, the user can customize how the Web content will be delivered to
his/her device, allowing the user adjust parameters to better suit his/her needs.

Proteus: An Architecture for Adapting Web Page on Small-Screen Devices 163

W
EB

 S
ER

VE
R

PROTEUS SERVER

Content Manager

Filter Text
Summarizer

Image
Processing

Profile Manager

Data Access

DBMS

Cache
HTTP Tools

Fig. 1. The Conversion Server Architecture of Proteus Project

The works proposed in [12,2,4] also make use of a proxy server. The model
presented by Schilit et al. [12] provides a type of conversion through a proxy
known as m-link service. However, the provided service neither foresee the reuse
of converted pages nor considers the users’ preferences. The works in [2,4] only
mention the possibility of using a proxy server but do not show its implemen-
tation details. The Proteus project’s architecture is shown in Figure 1. In what
follows, we will present in more details the component and services implemented
by this architecture.

2.1 Web Page Analysis

On receiving a client request, the server tries to fetch the source HTML. When
the page is successfully retrieved, the content manager parses the HTML to
validate its code. In this phase, unnecessary information, like code remarks, is
removed to avoid sending the user irrelevant data. After the validation, the page
is represented in memory using the DOM (Document Object Model) structure
[1]. After this preprocessing, co-related page blocks are identified, in a process
similar to the one proposed in [2]. Next, each page block is analyzed and pro-
cessed according to the user’s profile.

2.2 Profile Manager

The profile manager is the module responsible for registering and managing the
user profile. The profile information is used by the content manager during the
page conversion process. Currently, the user profile can be accessed through the
Web, where the user fills in an electronic form. In the form, the user customizes
and selects the services s/he wishes to include in the conversion system. Among
the conversion possibilities, we can cite:

– Figures - The user can choose to visualize only the textual contents. In this
case, all the figures are withdrawn from the HTML source page;

– Compression Rate - Informs the compression rate that will be applied to
the pictures in a Web page. This option will be disabled in case the user
chooses not to receive figures;

– Text Summarization Rate - All text blocks of the source page will be
summarized according to the stipulated rate;

164 M.F. Caetano et al.

GATEWAY PROTEUS SERVER

Wireless
Network

INTERNET

Http://www.bbc.co.uk

(1)

(1)

(2)

(3)

(4)

(4)

(1) Client HTTP Request
(2) Proteus Server HTTP
Request
(3) HTTP Response

(4) Proteus Server HTTP
Resp. (HTML Converted)

Fig. 2. Data flow involved from the moment the client makes a request until the answer
is provided by the server

– Content Highlight - Highlights page regions that matches the user inter-
ests or preferences;

– Subjects of Interest - The user can inform the subjects of interest, which
will be used by the content manager to identify the relevant areas on the
accessed pages;

– Thumbnail - The converted page can be sent to the client as a thumbnail
or conventional HTML text;

– Diplay Size - The size of the visualization area on the mobile device. This
informartion is used to adapt requested pages to fit the user’s device.

Based on the data provided by the user, the system will create an unique
key that identifies which type of conversion should be performed by the content
manager.

2.3 Content Manager

The content manager is responsible for the conversion, storage and retrieval of
the converted pages. It is composed by a cache system and a filter system. After
the identification and division of the page into blocks, the contentmanager uses the
filter system to modify the blocks according to the user’s profile. Concerning the
content manager attributions, we can cite, among others: (a) Text summarization;
(b) Identification of the user’s degree of interest in each block; (c) Image resizing;
(d) Identification and registration of new subjects of interest.

On a system that provides conversion services, it is important to implement
strategies for conversion reuse, aiming to improve its performance. In our archi-
tecture, already converted pages are cached, which makes it possible to quickly
retrieve them. More details concerning the content manager implementation and
the techniques adopted will be presented in Section 3.

2.4 Data Flow

Figure 2 shows the data flow from the moment the user makes a request until an
answer is provided by the server. Initially, the client submits an HTTP request to
the Proteus Server for a specific URL. In case the client has a registered profile,
his/her profile ID is sent, as cookie, along with the HTTP request. Otherwise, a

Proteus: An Architecture for Adapting Web Page on Small-Screen Devices 165

standard profile is used. Suppose that the user issuing the HTTP request has a
profile which specifies that a thumbnail should be generated from the requested
page. At the time that the request is received, the server checks with the content
manager whether there is a converted page according to the URL and the size
of the user’s mobile device display. If there is a hit, the thumbnail is retrieved,
and the areas of user’s interest (according to his profile) are highlighted and
then sent to the client (the way the areas of interest are located in the stored
thumbnail will be detailed in the next section). Otherwise, the server tries to
fetch the source page. In case of success, the server goes on to analyze and
convert the page, generate the thumbnail, and highlight areas of interest that
matches the user profile. When the source page cannot be fetched, the server
sends an appropriate message the client.

3 Implementation Details

3.1 Summarization

Recall that the Proteus goal is to adapt Web contents on-the-fly to better fit into
a mobile device display. Hence, we considered summarization techniques with the
following characteristics: language independent, fast, and able to generate sum-
maries that express, with a reasonable degree, the essence of the original text.
With that in mind, in this work we have focused our attention on extraction tech-
niques. Among the existing extraction techniques, we have selected the Keyword
[8] and Term-Frequency Inverse Sentence Frequency – TF-ISF [9].

In our tests, Keyword performed better with short texts while TF-ISF gen-
erates better results on larger inputs. In order to summarize the content of a
Web page, we first have to parse the HTML file and extract its textual contents.
It is important to note that HTML Tags may provide significant information
about its contents as well. So, the text found in certain tags are retained during
the parsing phase. Also, it is important to mention that words having the same
radical should be counted as the same word. However, for doing so, it is neces-
sary to find its root, thus eliminating prefixes, suffixes, and considering gender,
number, tense, and case. For each text to be summarized, we first identify the
number of words in the text. Based on this value, either Keyword or TF-ISF is
used. With the help of the Keyword and TF-ISF, it is possible to allow users
to define the desired degree of summarization. Also, as we are able to extract
keywords from the accessed Web pages, one can use such information to enhance
the accuracy of the system, as it will be shown latter. We will not go deeper into
text summarization and extraction techniques here, for further details, we refer
the reader to the references provide above and therein.

3.2 Web Page Content Mapping

Our architecture allows users to receive the requested HTML pages either in
HTML format or thumbnail image. If an HTML format is to be received, the

166 M.F. Caetano et al.

source page is adapted according to the information stored in the user’s profile.
When a reduced image is to be received, a thumbnail of the source page is
created. In either case, while parsing the requested HTML page, a blueprint of
the page is extracted. The blueprint will hold information concerning the source
page structure, such as:

– Location of page blocks.
– Block content description.

The blueprint is cached along with the source HTML page. When a thumbnail is
to be returned, the server uses the blueprint to identify the blocks that match to
the user profile. Such blocks are highlighted to inform the user that its content
matches the user preferences. According to the degree at which the contents
match the profile, different colors, or shades, can be used to express the degree
or relationship between the block and user preferences. When the user selects
the block, its associated information is brought to the user. That is, on click-
ing on a thumbnail region, the HTML content of the region is displayed. This
approach gives a two-level visualization: a reduced image on a first level, and
the associated HTML content on a second one. Also, the user may define a rate
for text summarization. In this case, the second-level will show a summarized
text according to the rate defined in the user profile. The summarized text pro-
vides a link to see the entire content. Note that this latter approach introduces
a three-level visualization.

3.3 Profile

In our architecture, each device has a profile which is stored on the server. The
profile can be created and accessed via a mobile device itself or any another
terminal. In any case, the user receives a key which shall be used when accessing
the Proteus Server. The key will identify the device and users preferences, which
will affect the ways the Web pages and its contents will be delivered to the mobile
terminal. In case the user has no profile in the server, a standard one is used.

In the profile the user can define if s/he wants to receive the Web page in
either thumbnail or HTML format. If s/he selects the thumbnail format, the
navigation on the page relies on a two level visualization where the first level
is the reduced image and the second level is the associated HMTL contents.
The profile still permits the user to define the summarization rate of the text
regions on the second level, introducing in fact a third layer of visualization. The
profile also allows a user to specify the categories s/he is interested in, such as
business, travel, etc. The Proteus Server will then create an association among
the specified categories and the relevant keywords that match the selected cate-
gories. For example, consider a user with a previously stored profile connecting
to the Proteus Server to request an HTML file. In this case, the requested page is
treated by the server to identify regions, summarize text, generate the thumbnail
and create the mappings (assuming these options match the user profile). Since
the text summarization works by ranking keywords, if a match among the ranked

Proteus: An Architecture for Adapting Web Page on Small-Screen Devices 167

keywords and the categories is found, the associated block receives a higher rank.
We call this matching process as static content matching. In contrast to this, we
also provide a dynamic content matching, which is described bellow.

In the dynamic content matching, the keywords that have obtained higher ranks
during the summarization step, are stored in a database called Dynamic Content
Database – DCB. When a user makes an HTTP request through the server, the sys-
tem checks the higher rankedkeywords on that page against the keywords stored in
the DCB. If there is a match, the blocks containing the keywords are rankedhigher,
as in the static content matching. To prevent old keywords to have an impact on
current pages, each keyword in the database is associated with a time stamp Ts,
which is updated according to the user requests for Web content. When Ts expires,
the associated keyword is removed from the DCB. Another point worth mention-
ing is that the DCB should not grow above a certain threshold as this has an im-
pact on the server workload. For this reason, we have devised the following policy
to update the DCB.

Let Ki denote the set of keywords stored in the DCB which are associated with
the user profile Pi, where 0 < i ≤ n, and n denotes the number of users. Also,
|Ki| ≤ δ, where δ is the maximum number of keywords allowed per user in the
DCB. Now, suppose that a new set of keywords, call it Si, have been obtained
for user Ui. Then, the keywords satisfying Ki

⋂
Si have their time stamp Ts

renewed in the DCB. The keywords in Si may be incorporated in DCB up to
the threshold δ.

3.4 Cache Module

As the mobile clients make HTTP requests to the server, the server caches in-
formation so that latter requests can be served in a faster way whenever there
is a cache hit. As the mobile devices have different screen-size and resolution,
we have organized them into categories, according to their characteristics. When
a user requests to receive a preview of the original page, the generated thumb-
nail is stored in the appropriate category. Thus, when a user requests a page
that has a cached thumbnail, the server checks whether the thumbnail matches
the device category. If affirmative, the cached thumbnail is returned. Otherwise,
a new thumbnail is created and returned. The Proteus cache module uses the
LRU (Least Recently Used) replacement policy, which means old and least used
cached information is removed when necessary.

4 Preliminary Results

4.1 Mapped Regions

Our first example illustrates how Proteus identifies the contents in a requested
page that matches the user preferences. In this example we focus on static con-
tents only. The user profile for this example is shown in Table 1. The profile
shows that the user wishes to create a thumbnail of the original page, in a way

168 M.F. Caetano et al.

Table 1. Example of profile specified by the user

Description Value
Keep Figures Yes
Compression Rate 58%
Summarize Content 0%
Subject / Keywords Games, Business
Highlight Content Yes
Create Thumbnail Yes
Size of the Display 470x770 pixels

that is applied to the figure a compression rate of 58%. Also, we can verify
that the user has interest on subjects related to Games and Business. Using the
keywords contained on the profile, the conversion server is capable of identifying,
on the HTML page, which regions are of interest to the user. The identified
regions are highlighted so that the user knows that they have information that
matches his interests. By clicking over the region, the associated HTML is shown.
The HTML content of other regions are reached in the same way.

Figure 3(a) shows the result obtained when the CNN site is submitted to
Proteus Server under the profile presented in Table 1. The Proteus Server has
identified four areas related to games (delineated in dashed-lines rectangles) and
the two areas related to business (delineated in solid-lines rectangles). In the
menu bar of the site, the option Business is circled. This options was ignored
because it is located in the menu region, which is identified during the page
analysis. On the bottom-left of the page, the figure Business2.0 was selected by
the algorithm because its ALT tag contains a valid text which was identified.
From the thumbnail, the user is able to see the whole page. However, s/he may
not be able to identify, on a first level of visualization, the information that s/he
is looking for. Highlighting areas of interest is a way of restraining the search
area and avoid unnecessary zoom.

4.2 Summarization Results

This sub-section presents a combination of the region mapping and summariza-
tion. The profile selected for this example is shown in the Table 2. Here, the user
requested an article published at the CNN website under the title: “MAC fans
clamor for iPhone”. The thumbnail result is shown in Figure 3(b), where the
area delineated in dashed-line rectangle was identified by the content manager
as an area of user interest. The highlighted text is composed of 789 words. By
choosing this area, the content summarization will be applied. The result that
is sent to the user is represented by the frame at the top of the page thumbnail.
It contains an abstract with 21,68% of the original text. Should the user require
the entire (original) text, s/he can access it via a link more, which is appended
by the server. This approach is similar to the use of RSS feeds, in which a brief
text is shown to allow the user to have a glance of the link contents.

Proteus: An Architecture for Adapting Web Page on Small-Screen Devices 169

Fig. 3. (a):CNN website created from the profile presented in Table 1. b): Summarized
text aaccessedfrom the Web page tthumbnail.

Table 2. Example of the profile specified by the user. The converted page is shown in
Figure 3.

Description Value
Keep Figures Yes
Compression Rate 87,70%
Summarize Content 80%
Subject / Keywords Technology
Highlight Content Yes
Create Thumbnail Yes
Size of the Display 124 x 320 pixels

5 Conclusions and Future Works

Up to this point, we have made a number of experiments, however, we have
not made our architecture available to the general public. Before doing that,
we plan to test our architecture with a selected number of users, so that their
feedback may help us to fine tune and improve the system. Also, we are currently
developping a mobile web browser that will have features to improve the ways

170 M.F. Caetano et al.

the thumbnails are presented to the user. We are also considering the use of Web
mining techniques and the extraction of semantic information of HTML pages as
a mean to provide the possibility to find related contents on a page and suggest
them as areas of interest to the user.

References

1. Apparao, V., Byrne, S., Champion, M., Isaacs, S., Jacobs, I., Hors, A.L., Nicol, G.,
Robie, J., Sutor, R., Wilson, C., Wood, L.: Document object model (dom) level 1
specification (second edition). Technical report, W3C (September 2000)

2. Cai, D., Yu, S., Wen, J.-R., Ma, W.-Y.: Vips: a vision-based page segmentation
algorithm (2003)

3. Chen, Y., Ma, W.-Y., Zhang, H.-J.: Detecting web page structure for adaptive
viewing on small form factor devices, pp. 225–233 (2003)

4. Chen, Y., Xie, X., Ma, W.-Y., Zhang, H.-J.: Adapting web pages for small-screen
devices. Internet Computing, IEEE 9, 50–56 (2005)

5. Gellens, R.: Wireless device configuration (otasp/otapa) via acap (1999)
6. Hua, Z., Lu, H.: Web Browsing on Small-Screen Devices: A Multiclient Collabora-

tive Approach. IEEE Pervasive Computing 5(2), 78–84 (2006)
7. Mobell. What is i-mode? Disponvel em: http://www.mobalrental.com/imode.asp

(Accessed in 11/09/2006)
8. Luhn, P.H.: The automatic creation of literature abstracts. IBM Journal of Re-

search and Development 2, 159–165 (1958)
9. Larocca Neto, J., Santos, A.D., Kaestner, C.A.A., Freitas, A.A.: Document cluster-

ing and text summarization. In: Proceedings of the 4th International Conference
on Practical Applications of Knowledge Discovery and Data Mining, London, pp.
41–55 (2000)

10. Opera. Opera Mini. Disponvel em: http://mini.opera.com (Accessed in
11/09/2006)

11. Buyukkokten, O., Kaljuvee, O., Garcia-Molina, H., Paepcke, A., Winograd, T.:
Efficient web browsing on handheld devices using page and form summarization.
ACM Trans. Inf. Syst. 20(1), 82–115 (2002)

12. Schilit, B.N., Trevor, J., Hilbert, D.M., Koh, T.K.: m-links: An infrastructure for
very small internet devices. In: MobiCom ’01: Proceedings of the 7th annual inter-
national conference on Mobile computing and networking, New York, NY, USA,
pp. 122–131. ACM Press, New York (2001)

http://www.mobalrental.com/imode.asp
http://mini.opera.com

	Proteus: An Architecture for Adapting Web Page on Small-Screen Devices
	Introduction
	Proteus Architecture
	Web Page Analysis
	Profile Manager
	Content Manager
	Data Flow

	Implementation Details
	Summarization
	Web Page Content Mapping
	Profile
	Cache Module

	Preliminary Results
	Mapped Regions
	Summarization Results

	Conclusions and Future Works

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

