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Abstract. This paper presents two key-recovery attacks against Achter-
bahn-128/80, the last version of one of the stream cipher proposals in the
eSTREAM project. The attack against the 80-bit variant, Achterbahn-
80, has complexity 2. The attack against Achterbahn-128 requires 28958
operations and 2°° keystream bits. These attacks are based on an im-
provement of the attack due to Hell and Johansson against Achterbahn
version 2. They mainly rely on an algorithm that makes profit of the
independence of the constituent registers.
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1 Introduction

Achterbahn [46] is a stream cipher proposal submitted to the eSSTREAM project.
After the cryptanalysis of the first two versions [I0/9], it has moved on to a new
one called Achterbahn-128/80 [5] published in June 2006. Achterbahn-128/80
corresponds to two keystream generators with key sizes of 128 bits and 80 bits,
respectively. Their maximal keystream length is limited to 293,

We present here two attacks against both generators. The attack against the 80-
bit variant, Achterbahn-80, has complexity 25'. The attack against Achterbahn-
128 requires 28058 operations and 2% keystream bits. These attacks are based
on an improvement of the attack against Achterbahn version 2 and also on an
algorithm that makes profit of the independence of the constituent registers.

The paper is organized as follows. Section 2 presents the main specifications of
Achterbahn-128/80. Section 3 then describes the general principle of the attack
proposed by Hell and Johansson [J] against the previous version of the cipher
Achterbahn version 2, since our attacks rely on a similar technique. We also
exhibit a new attack against Achterbahn version 2 with complexity 2°3, while
the best previously known attack had complexity 264. Section 4 then presents two
distinguishing attacks against Achterbahn-80 and Achterbahn-128 respectively.
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Section 5 describes how this previous distinguishing attacks can be transformed
into key-recovery attacks.

2 Main Specifications of Achterbahn-128/80

2.1 Main Specifications of Achterbahn-128

Achterbahn-128 is a keystream generator, consisting of 13 binary nonlinear feed-
back shift registers (NLFSRs) denoted by R0, R1, ..., R12. The length of register
t1is Ly =21+ifori=0,1,...,12. These NLFSRs are primitive in the sense that
their periods T are equal to 2+ — 1. The sequence which is used as an input
to the Boolean combining function is not the output sequence of the NLFSR
directly, but a shifted version of itself. The shift amount depends on the register
number, but it is fixed for each register. In the following, x; = (2;(t)),~, for
0 < i < 12 denotes the shifted version of the output of the register ¢ at time ¢.
The output of the keystream generator at time ¢, denoted by S(¢), is the one of
the Boolean combining function F' with the inputs corresponding to the output
sequences of the NLFSRs correctly shifted, i.e. S(t) = F(xo(t),...,z12(t)). The
algebraic normal form of the 13-variable combining function F is given in [5].

Its main cryptographic properties are: balancedness, algebraic degree 4, cor-
relation immunity order 8, nonlinearity 3584, algebraic immunity 4.

2.2 Main Specifications of Achterbahn-80

Achterbahn-80 consists of 11 registers, which are the same ones as in the above
case, except for the first and the last ones. The Boolean combining function, G,
is a sub-function of F' :

G(l’h...,xu) = F(071'1,...,(E1170).

Its main cryptographic properties are: balancedness, algebraic degree 4, correla-
tion immunity order 6, nonlinearity 896, algebraic immunity 4. As we can see,
Achterbahn-128 contains Achterbahn-80 as a substructure.

2.3 The Key-Loading Algorithm

The key-loading algorithm uses the key K of 128/80 bits and an initial value
IV of 128/80 bits. The method for initializing the registers is the following one:
first of all, all registers are filled with the bits of K||IV. After that, register 7 is
clocked a — L; times where a is the number of bits of K||IV, and the remaining
bits of K||IV are added to the feedback bit. Then, each register outputs one bit.
Those bits are taken as input on the Boolean combining function, which outputs
a new bit. This bit is now added to the feedbacks for 32 additional clockings.
Then we overwrite the last cell of each register with a 1, in order to avoid the
all zero state.

This algorithm has been modified in relation to the previous versions. The
aim of this modification is to prevent the attacker from recovering the key K
from the knowledge of the initial states of some registers.
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3 Attack Against Achterbahn Version 2 in 253

3.1 Principle of Hell and Johansson Attack

Achterbahn version 2 was the previous version of Achterbahn. The main and
most important differences to this last one, which are used by the attack are
that:

— it had 10 registers, with lengths between 19 and 32 bits,
— the Boolean function, f, had correlation immunity order 5.

This version has been broken by Hell and Johansson [9] using a quadratic
approximation. Their attack is a distinguishing attack that relies on a biased
parity-check relation between the keystream bits which holds with probability

;(1 +n) with |n] < 1,
where 7 is the bias of the relation. The attack then consists of an exhaustive
search on 2% initial states. For each of those states, the parity-check relation is
computed for N samples in order to detect the bias. As noticed in [§], the usual
estimate [QIO/TT] of the number of samples which are required for distinguishing
the keystream,

p:

1

27

N ~
n

is a bit underestimated. Actually, this problem can be seen as a decoding prob-
lem where the received word corresponds to the sequence formed by the N
parity-check evaluations. And this received word can be seen as the result of the
transmission of a codeword through a binary symmetric channel with cross-over
probability p. Then, the number of samples N required for decoding is

k
N= oy

where C(p) is the capacity of the channel, i.e.,
Clp) = 1+ plogy(p) + (1 — p)logy(1 — p).
Moreover, when p = 1 (1 +n) with || < 1, we have C(p) ~ 21:’1?2), leading to

N~ 2kIn 2

U
where 2¥ is the number of possible initial states of the guessing registers, as we
will see.

The attack proposed by Hell and Johansson exploits a quadratic approxima-

tion ¢ of the combining function f:

S m
Q(ylv s 7yn) = Z Yi; + Z(yj7yk1)
J=1 i—1
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with m quadratic terms and which satisfies
1
(1+¢).

Pr[F(y17'~°7yn) = Q(yl,,yn)] = 9

We build the parity-check equations, as the ones introduced by [I0], that make
disappear the quadratic terms by summing up:

alt) = 3 s, 6) + Y (B, 1)

at 2" different epochs (t+7), where 7 varies in the set of the linear combinations
with 0—1 coefficients of T, Ty, , T}, Tk, - - ., 1}, Tk, , where T} denotes the period
of Ri. In the following, this set is denoted by (T}, Tk, , - .., L}, Tk,.), i-€.,

T =(TjThy,.., Ty, Th,) = {ZCiTjiTki,cl, . em €40, 1}} .
i=1
This leads to a parity-check sequence pc defined by:

pe(t) =Y qt+7) = (@i, (t+7)+...+zi,(t+7)).
Tl Tl
We then decimate the sequence (pc(t)),-, by the periods of r sequences among
(@i, (£))e05 - - -, (@i, (£))1=0. We can suppose here without loss of generality that
the periods of the first r sequences have been chosen. Now a new parity-check,
pc,, can be defined by:
per(t) = pe(tT;, ... T;,).

This way, the influence of those r registers on the parity-check pe, (t) corresponds
to the addition of a constant for all t > 0, so it will be 0 or 1 for all the parity-
checks.

Now, the attack consists in performing an exhaustive search for the initial
states of the (s — r) remaining registers, i.e. those of indices 4,41, ...,4s. For
each possible values for these initial states, we compute the sequence:

S

a(t) = > SWTy ... Ty, +1)+ > @y (tT, ... T, +1)| (1)
T€<leTk1""’Tj7nTkm> j=r+1

We have 1
Prlo(t) =0] > (1+ e2").

It has been recently observed by Hell and Johansson that the total bias may be
much higher than this bound. However, it can be shown that equality holds in
some particular cases, as noted in [7]. An interesting case of equality is when f
is v-resilient, and we build parity-checks from the terms appearing in a linear
approximation of (v + 1) variables (see Appendix). This also provides the bias
of the parity-checks obtained in [0J8] from some quadratic approximations, since
they can also be derived from such linear approximations.

This result is going to be used all along our attacks, as we will work with
linear approximations of (v + 1) variables.
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3.2 Complexity

Using the previously computed bias, we can distinguish the keystream (S(¢)):>0
from a random sequence and also recover the initial states of (s —r) constituent
registers.

— We will havle 2™ terms in each parity-check. That means that we need to com-
putes 2" x2x > i—ri1(Li, —1) xIn(2) = 212" % 2 x > jerin(Li; —1) %
In(2) values of o (t) for mounting the distinguishing attack, where n, = log, 1.

Besides, o(t) is defined by (), implying that the attack requires

o2 TSI Ly ooy Z (Li; —1) x In(2) + Z 2LiitLki keystream bits,
j=r+1 i=1

where L;; are the lengths of the registers associated to the periods by which
we have decimated, and the last term corresponds to the maximal distance
between the bits involved in each parity-check.

— Time complexity will be

gmome2™ TS (i =1) g o Z (Li; — 1) x In(2)
Jj=r+1

where i,41,...,17s are the indices of the registers over whom we have made
an exhaustive search and whose initial state we are going to find.

3.3 Example with Achterbahn Version 2

Hell and Johansson [9] have used this attack against Achterbahn version 2 with
the following quadratic approximation:

Q(l‘h .. .,(Elo) = X1 + X9 + 328 + T4X6.

Then, they decimate by the period of the second register, whose length is 22.
After that, they make an exhaustive search over the first register, of length 19.
Time complexity will be 267 and data complexity 25 (the complexity given in [J],
equal to 25992 is obtained by using the estimation N = £~2 instead of the one
given in Section 3.1). Using the small lengths of the registers, time complexity
can be reduced below data complexity, so the overall complexity of the attack
will be 264,

3.4 Improvement of the Attack Against Achterbahn Version 2

We are going to improve the previously described attack against Achterbahn
version 2 and we reduce the complexity to 2°3.

For this attack, we use the idea of associating the variables in order to reduce
the number of terms that we will have in the parity-checks. The only negative
effect that this could have on the final complexity of the attack is to enlarge the
number of required keystream bits; but being careful, we make it stay the same
while reducing the time complexity.
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The chosen approximation. At first, we searched for all the quadratics approxi-
mations of f with one and two quadratic terms, as the original attack presented
by Hell and Johansson was based on a quadratic approximation. Finally, after
looking for a trade-off between the number of terms, the number of variables,
the bias, etc., we found that none quadratic approximation was better for this
attack than linear ones. It is worth noticing that, since the combining function
f is b-resilient, any approximation of f involves at least 6 input variables. More-
over, the highest bias corresponding to an approximation of f by a 6-variable
function is achieved by a function of degree one as proved in [3]. After analyzing
all linear approximations of the Boolean combining function, we found that the
best one was:

9(1'1,...,%10):1'8+1'6+1'4+1'3+1'2+$1.

We have f(z1,...,210) = g(21,...,210) with a probability of ;(1+27?).

Parity-checks. Let us build a parity-check as follows:
999(t) = g(t) + g(t + ThTs) + g(t + ToTs) + g(t + ThTs + T2 Ts),
with
9(t) = zs(t) + w6(t) + za(t) + 23(t) + 22(t) + 21(2).

The terms zs, g, x2, x1 Will disappear and, so, ggg(t) is a sequence that depends
uniquely on the sequences x3 and x4. Adding four times the approximation has
the effect of multiplying the bias four times, so the bias of

a(t) = S(t) + St +TiTs) + S(t + ToTs) + S(t + ThTs + ToTp)

is 273%4 = 2712 because 4 is the number of terms in ggg(t). That means that
we will need 23%4%2 x 2 x (Ly — 1) x In(2) = 227 values of the parity-check for
detecting this bias. If we decimate ggg(t) by the period of register 3, we will
need

2Ty 4+ T\ Ty + TyTy = 229123 4 929419 4 927422 _ 952 it of keystream,

and time complexity will be 229 x 2F4~1 = 253 a5 we only guess the initial state
of register 4. This complexity is 2°3 while the complexity of the previous attack
was equal to 264

4 Distinguishing Attacks Against Achterbahn-128/80

4.1 Distinguishing Attack Against Achterbahn-80

This attack is very similar to the improvement of the attack against Achterbahn
version 2 which has been described in the previous section.

Our attack exploits the following linear approximation of the combining func-
tion G:

l(xy,...,x11) = 21 + T3 + 24 + T5 + 6 + T7 + T10.
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Since G is 6-resilient, ¢ is the best approximation by a 7-variable function.
For £(t) = x1(t) + w3(t) + x4 (t) + x5(t) + w6 (t) + x7(t) + 210(¢), the keystream
(S(t)),> satisfies Pr[S(t) = £(t)] = 3(1—27%).

Parity-checks. Let us build a parity-check as follows:
COt) = L(t) + 0(t + TuT7) + L(t + T6T5) + L(t + TyT7 + TeT5).

The terms containing the sequences x4, x5, Tg, x7 vanish in ££(t), so £¢(t) depends
exclusively on the sequences z1, 3 and x1g.

Adding four times the approximation has the effect of multiplying the bias
four times, so the bias of

o(t)=8(t)+ St +T:Ty) + St + TeTs) + S(t + T7 Ty + TeT5)

where (S(t));>0 is the keystream, is 274%3.

We now decimate o(t) by the period of the Rjg, which is involved in the
parity-check, so we create like this a new parity-check o’ (t) = o (t(23! — 1)).

Then, the attack performs an exhaustive search for the initial states of reg-
isters 1 and 3. Then we need 23*4*2 x 2 x (46 — 2) x In(2) = 23° parity-checks
o' (t) to detect this bias. Its time complexity is 230 x 2F1+Ls=2 = 974

The number of keystream bits that we need is 230 x Ty + TuTy + TsTs = 251,

4.2 Distinguishing Attack Against Achterbahn-128

Now, we present a distinguishing attack against the 128-bit version of Achter-
bahn which also recovers the initial states of two registers.
We consider the following approximation of the combining function F"

E(ﬂjo,...,xlg) =20+ 23+ 7+ x4+ X110+ T8+ X9 + 21 + T2
Then, for £(t) = xo(t)+x3(t)+27(t) +2a(t) +210(t) +28(1) +29 (1) +21 (1) +22(1),
we have PrlS(t) = £(t)] = L (1 +2-3).

Parity-checks. The period of any sequence obtained by combining the registers
0, 3 and 7 is equal to lem(Tp, T3, T%), i.e. 2°93 as Ty T3 and T have common
divisors. We are going to denote this value by Tp 3 7.

If we build a parity check as follows:

eee(t) = > ot +7),
7E(To,3,7,T4,10,18,9)

the terms containing the sequences xg, x3, x7, T4, T10, Ts, 9 Will disappear from
L0e(t), so L0e(t) depends exclusively on the sequences x; and xs:

00e(t) = > 0t +7)
7€(To,3,7,T4,10,18,9)
= > 1(t+7) + z2(t+7)

7€(T0,3,7,T4,10,Ts,9)
= 01(t) + o2(t),
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where o1 (t) and o3(t) are the parity-checks computed over the sequences gener-
ated by NLFSRs 1 and 2.

Adding eight times the approximation has the effect of multiplying the bias
eight times, so the bias of o/(t) =3 c(7, . 1y 10.15.4) O (E+T) Where (S(2))e0 is
the keystream, is 2753, So:

Prlo(t) + o1() + oa(t) = 1] = ;(1 e
This means that we need 23%8%2 x 2 x (45—2) xIn(2) = 254 values of o/(t)+01 () +
o2(t) to detect this bias, when we perform an exhaustive search on registers 1
and 2.

We now describe an algorithm for computing the sum o (t) + o1 (¢) + o2(t) over
all values of ¢t. This algorithm has a lower complexity than the trivial algorithm
which consists on computing the 2°% parity-checks for all the initial states of the
registers 1 and 2. Here we use (2°4—2%) values of ¢ since (254 —28) = Ty x (231 428).
We can write it down as follows:

254 28 1 To—1231428 1

> ot e Z Z o (Tt + k) @ L00(Tot + k)

t'=0

Tp—1 231+28—1
Z Z o(Tot+k) @ o1(Tat + k) @ o2 (Tot + k)
k=0  t=0

Ty—1 931498

= (c2(k)@1) | Y o(Tat+k)@or(Tat+k) | +
k=0 t=0
231428 1

oo (k) | (23 +28)— Z o(Tot+k)Dor(Tat+k) | |,
t=0

since oo (Tot + k) is constant for a fixed value of k.
At this point, we can obtain o(t) from the keystream and we can make an
exhaustive search for the initial state of register 1. More precisely:

— We choose an initial state for register 2, e.g. the all one initial state. We
compute and save a binary vector V5 of length Ts:

‘/Q[k] = UQ(k)u

where the sequence x5 is generated from the chosen initial state. The com-
plexity of this step is Th x 23 operations.
— For each possible initial state of register 1:
e we compute and save a vector V3 composed of Ts integers of 32 bits.

281408 1
Vilk]= > o(Tat+k) @ oy (Tat + k).
t=0
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The complexity of this step is 254 x (2% 4 2%) = 25958 for each possible
initial state of register 1, where 2* corresponds to the number of opera-
tions required for computing each (o(t) + o1(t)) and (23 4 28) x 2° =
(23! + 28) x 32 is the cost of summing up 23 + 2% integers of 32 bits.
e For each possible i from 0 to To — 1:
* we define V3 of length T5:

Vilk] = Valk +4 mod T5].

Actually, (V3[k]); g, corresponds to (o2(k));.5, When the initial
state of register 2 corresponds to the internal state after clocking
register 2 i times from the all-one initial state.

* With the two vectors that we have obtained, we compute:

Y [V @ DVl + Vi (2 + 2 -] @)
k=0

When we do this with the correct initial states of registers 1 and 2, we will
find the expected bias. The major difference with the classical exhaustive search
used in [Q8T0] is that the sequence Vi[k] is computed independently of the
choice of the initial state of Ro. As a comparison, the classical algorithm has
time complexity 2102,

Table 1. Algorithm for finding the initial states of registers 1 and 2

for each possible initial state of R1 do
for k=0to 7, —1do
Vilk] = 220 o (Tot + k) @ o1 (Tt + k)
end for
for each possible initial ¢ state of R2 do
for k=0to71> —1do
Vi k] = Valk +i mod T3]
end for
2ot (VB[R] @ 1) Vi[k] + V3 [K] (2°" + 2° — VA [R))]
if we find the bias then
return the initial states of R1 and R2
end if
end for
end for

The total time complexity of the attack is going to be:
2871 250 x (21 4 29) + 1o x 2 x T x 2°] + T x 23 = 28058,

where 2 x Ty x 2° is the time it takes to compute the sum described by (@).
Actually, we can speed up the process by rewriting the sum (2)) in the following
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way

To—1 31 8 31 8
. 2°0 42 2°0 42
Z (—1)Velk+i] <V1 (k] — ) ) + T g
k=0

The issue is now to find the i that maximizes this sum, this is the same as
computing the maximum of the crosscorrelation of two sequences of length T5.
We can do that efficiently using a fast Fourier transform as explained in [1]
pages 306-312|. The final complexity will be in O(T:logTs). Anyway, this does
not change our total complexity as the higher term is the first one.

The complexity is going to be, finally:

2871 [25% x (21 4 2°) + O(Tolog T)] + T x 23 = 28058,

The length of keystream needed is Tp 37 + T410 + Ts,0 + 2°% < 261 bits.
We can apply the algorithm to the attack against Achterbahn-80 described in
Section 4.1 and its time complexity will be reduced to:

28171 290 x (28 +2299) + O(Ts log Ts)| + T x 2% = 2745,

4.3 Attack with a New Keystream Limitation

Recently, the authors of Achterbahn have proposed a new limitation of the
keystream length [7], which is 2°2 for Achterbahn-80 and 2% for Achterbahn-
128. Those limitations are not restrictive enough to prevent the cipher from
being cryptanalysed. In fact, we can mount an attack against the 128-bit version
which is very similar to the last one with the same linear approximation, where
the sequences considered for building the parity-checks are generated by only
two terms (so Ry and Ry, Re and Ry, R3 and Rg). Then we perform an exhaus-
tive search over registers 0, 4 and 7 with the previously described the algorithm,
where we consider register 0 and register 4 together. The complexity is, finally:

2Fol s plamh o 25403 5 (21 4 247) 4+ O(Tr log Tr)] + Ty x 2° = 204,
The length of keystream needed is
25463 4 Ty 1o+ Tog + Ta g = 22403 1 253 4 253 4 953 < 956 it
For Achterbahn-80 there is also a succesfull attack which is only slightly different

from the one we have previously described [12].

5 Recovering the Key

As explained by Hell and Johansson in [8], if we recover the initial states of all the
registers, we will be able to retrieve the key as all the initialization steps which
do not involve the key become invertible. It is easy to show that once we have
found the initial states of two registers, the complexity of finding the remaining
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ones will be lower (for the other registers appearing in the used approximation it
is quite obvious: we apply the same method but simplified, as now we know two
variables. For the other registers we can use the same method but with other
linear approximations making profit of the already-known variables). Once we
have found the initial states of all the registers, we can invert all the initializing
steps until the end of the second step, which corresponds to the introduction of
the key bits. At this point, there are two methods proposed in [§]. The first one
is clocking backwards register i (|k| — L;) times for each i. We do this for all the
possibles values of the last |k| — Ly, key bits, where L, is 21 for Achterbahn-128
and 22 for Achterbahn-80. When all the registers have the same first L,, bits,
we have found the correct |k| — L, bits of the key. The second method proposed
is a meet-in-the-middle attack with time-memory tradeoff as explained in [10].
It leads to a complexity of:

— For Achterbahn-80: 2°% in time or 24° in memory and 2%° in time.
— For Achterbahn-128: 21%7 in time or 2%° in memory and 2%% in time.

We can do better. We are going to explain the technique for Achterbahn-128.
The idea is that we do not need to invert all the clocking steps in the meet-in-the-
middle attack, if we split the key into 2 parts composed of the first 40 bits and
the last 88 bits, we could make an exhaustive search for the first part and store
in a table the states of the registers obtained after applying the initialization
process for each set of 40 bits. Then, if we make an exhaustive search through
the 88 remaining key bits, and we clock backwards the registers from the known
states, we will find a match in the table. But we do not need to make this search
over all the 88 remaining bits. Instead, we make it through the last 73 bits (that
means that 15 rounds are not inverted). At the end of doing this, we need that,
for all 4, the first L; — 15 bits of the state of register ¢ match with the last L; — 15
bits of the states of the registers saved in the table. For instance, for the register
0 we will have a match on 6 bits, and for register 12 we will have 18. We do not
have to worry about matches coming from wrong values of the 73 bits since the
number of such false alarms is:
240
25710 x 9329-13x15 277,

as (329 — 13 x 15) is the number of bits we consider for a match, 24 is the size
of the table, and 2 is the number of possibilities for the exhaustive search. As
we can see, with such a match we have found 113 bits of the key. The other 15
can be found with very low complexity by clocking the registers until finding
the desired state. So the final complexity for the step of retrieving the key in
Achterbahn-128 once we have the initial states of all the registers is 273 in time
and 2% x (329 — 13 x 15) ~ 2% in memory. If we do the same thing with
Achterbahn-80, we could have a complexity of 249 in time and 2%! in memory.

6 Conclusion

We have proposed an attack against Achterbahn-80 in 2°° operations, so we
can consider as the total complexity the data complexity which is equal to 26,
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since it is bigger. An attack against Achterbahn-128 is also proposed in 230-58
where fewer than 26! bits of keystream are required. After that we can recover
the key of Achterbahn-80 with a complexity of 2%° in time and 2%! in memory
(the time complexity is less than for the distinguishing part of the attack).
For Achterbahn-128 we can recover the key with a complexity of 27 in time
and 2*® in memory. The complexities of the best attacks against all versions of
Achterbahn are summarized in the following table:

Table 2. Attacks complexities against all versions of Achterbahn (Each complexity
corresponds to the best key-recovery attack)

version data complexity time complexity references
v1 (80-bit) 232 255 [10]
v2 (80-bit) 264 267 [@]
v2 (80-bit) 252 253
v80 (80-bit) 201 255
v128 (128-bit) 200 280.58
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A On the Biases of Parity-Checks Derived from Linear
Approximations

Proposition 1. Given a v-resilient Boolean function f, the bias of a parity-
check built from a (v + 1)-variable linear approximation of f with bias ¢ is e
raised to the power of the number of terms in the parity check.

Proof. Let f be a v-resilient Boolean function of n variables and ¢ = z;, +
...+ x;, = oz be a linear approximation of f with bias e. We can now build
g(x1,...,zn) = flz1,...,2n) + Uxjy, . .., xj, ). We have

1
Prlg(a1,...oan) = 0] = (1 +¢).
Let W denote the subspace of F spanned by the basis vectors ej, ..., e;, , and

let V' be in direct sum with W. Then, for any n-variable function f, and any
a € FSH, fla+v denotes the restriction of f to (a + V). In other words, fj,4v
is the function of (n — v — 1) variables derived from f when zj,,...,z;, are
fixed and equal to ag,...,a,. If we build the parity-checks with g considering
the sequences defined by the terms of the linear approximation we will have:

Pr Z glai(t+71),...,2,(t+71)) =0
TE(Tjg s Th)

R

1
= Qu+1 Z Pr Z g|a+V($1<t+T)7”'7xn<t+7—)) =0
aEFg+l TE<TJ'0 7---7ij>

It is quite obvious that the variables appearing in the terms of the sum over 7
are independent, as the variables that could be repeated are the (v + 1) fixed
ones. So, as all the variables appearing are independent, each sum has the effect
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of multiplying the corresponding bias by itself 2°T! times. Now we want to show
that this bias is also equal to e. This equivalently means that

2n—1U—1 Z <_]')g|a+V($) = 21n Z (_1)9(93)

zea+V zeFy

o~

Let f(a) denote the Walsh coefficient of f at point a € F%, i.e:

fla)= 3 (-,

zeFy
Then, from [2, pages 2005-2006] we have

gutl Z (_1)g|a+v(m): G(u)

r€a+V ueW
=Y fla+u
uceWw
= f(a) =3(0)
since f is v-resilient. So:
1 vr v
Pr > gt +7),. . wa(t+7) =0| = qurt1 X2 T0.5(14€).

TE<Tj07"'7Tj1;>

And then, the bias of the parity check will be €2”. It is obvious that if, instead of
building the parity-checks by considering each term in the linear approximation
separately, we do it by associating several terms, the result will not change. The
final bias of the parity-check will also be the bias of the linear approximation
raised to the power of the number of terms in the parity-check. o
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