
Algebraic Immunity of S-Boxes
and Augmented Functions

Simon Fischer and Willi Meier

FHNW, CH-5210 Windisch, Switzerland
{simon.fischer,willi.meier}@fhnw.ch

Abstract. In this paper, the algebraic immunity of S-boxes and aug-
mented functions of stream ciphers is investigated. Augmented functions
are shown to have some algebraic properties that are not covered by pre-
vious measures of immunity. As a result, efficient algebraic attacks with
very low data complexity on certain filter generators become possible.
In a similar line, the algebraic immunity of the augmented function of
the eSTREAM candidate Trivium is experimentally tested. These tests
suggest that Trivium has some immunity against algebraic attacks on
augmented functions.

Keywords: S-box, Stream Cipher, Augmented Function, Algebraic At-
tack, Filter Generator, Trivium.

1 Introduction

Algebraic attacks can be efficient against stream ciphers based on LFSR’s [12],
and potentially against block ciphers based on S-boxes [13]. In the case of stream
ciphers, the algebraic immunity AI of the filter function is a measure for the
complexity of conventional algebraic attacks. However, it turned out in some
cases that large AI did not help to prevent fast algebraic attacks (FAA’s). It
is an open question if immunity against FAA’s is a sufficient criterion for any
kind of algebraic attacks on stream ciphers. In the case of block ciphers, the
algebraic immunity of S-boxes is a measure for the complexity of a very general
type of algebraic attacks, considering implicit or conditional equations [13, 2].
Present methods for computation of AI of S-boxes are not very efficient, only
about n = 20 variables are computationally feasible (except for power mappings,
see [20, 11]).

In this paper, we integrate the general approach for S-boxes in the context
of stream ciphers and generalise the concept of algebraic immunity of stream
ciphers (see Open Problem 7 in [7]). More precisely, we investigate conditional
equations for augmented functions of stream ciphers and observe some algebraic
properties (to be used in an attack), which are not covered by the previous
definitions of AI. As a consequence, immunity against FAA’s is not sufficient
to prevent any kind of algebraic attack: Depending on the Boolean functions
used in a stream cipher, we demonstrate that algebraic properties of the aug-
mented function allow for attacks which need much less known output than

A. Biryukov (Ed.): FSE 2007, LNCS 4593, pp. 366–381, 2007.
c© International Association for Cryptologic Research 2007

Algebraic Immunity of S-Boxes and Augmented Functions 367

established algebraic attacks. This induces some new design criteria for stream
ciphers. Time complexity of our attacks is derived by intrinsic properties of the
augmented function. Our framework can be applied to a large variety of situa-
tions. We present two applications (which both have been implemented). First,
we describe efficient attacks on some filter generators. For example, we can effi-
ciently recover the state of a filter generator based on certain Boolean functions
when an amount of output data is available which is only linear in the length of
the driving LFSR. This should be compared to the data complexity of conven-
tional algebraic attacks, which is about

(
n
e

)
, where n is the length of the LFSR

and e equals the algebraic immunity of the filter function. Our investigation of
the augmented function allows to contribute to open problems posed in [15], and
explains why algebraic attacks using Gröbner bases against filter generators are
in certain cases successful even for a known output segment only slightly larger
than the LFSR length. In a second direction, a large scale experiment carried
out with the eSTREAM focus candidate Trivium suggests some immunity of this
cipher against algebraic attacks on augmented functions. This experiment be-
comes feasible as for Trivium with its 288-bit state one can find preimages of
144-bit outputs in polynomial time.

Augmented functions of LFSR-based stream ciphers have previously been
studied, e.g. in [1], [16] and [19], where it had been noticed that the augmented
function can be weaker than a single output function, with regard to (condi-
tional) correlation attacks as well as to inversion attacks. However, for the first
time, we analyse the AI of (sometimes quite large) augmented functions. Sur-
prisingly, augmented functions did not receive much attention in this context
yet.

The paper is organised as follows: In Sect. 2, we investigate some algebraic
properties of S-boxes. Our general ideas of algebraic attacks on augmented func-
tions (which are some special S-boxes) are presented in Sec. 3. In Sect. 4, this
framework is discussed for filter generators. Sect. 5 and Sect. 6 contain applica-
tions of our method, namely for some specific filter generators and for eSTREAM
candidate Trivium.

2 Algebraic Properties of S-Boxes

Let F denote the finite field GF(2), and consider the vectorial Boolean function
(or S-box) S : Fn → Fm with S(x) = y, where x := (x1, . . . , xn) and y :=
(y1, . . . , ym). In the case of m = 1, the S-box reduces to a Boolean function, and
in general, the S-box consists of m Boolean functions Si(x). These functions give
rise to the explicit equations Si(x) = yi. Here, we assume that y is known and
x is unknown.

2.1 Implicit Equations

The S-box can hide implicit equations, namely F (x, y) = 0 for each x ∈ Fn

and with y = S(x). The algebraic normal form of such an equation is denoted

368 S. Fischer and W. Meier

F (x, y) =
∑

cα,βxαyβ = 0 mod 2, with coefficients cα,β ∈ F, multi-indices
α, β ∈ Fn (which can likewise be identified by their integers) and the notation
xα := (xα1

1 · · ·xαn
n). In the context of algebraic attacks, it is of interest to focus

on implicit equations with special structure, e.g. on sparse equations or equations
of small degree. Let the degree in x be d := max{|α|, cα,β = 1} ≤ n with the
weight |α| of α, and consider an unrestricted degree for the known y, hence
max{|β|, cα,β = 1} ≤ m. The maximum number of monomials (or coefficients)
in an equation of degree d corresponds to 2mD, where D :=

∑d
i=0

(
n
i

)
. In order

to determine the existence of an implicit equation of degree d, consider a matrix
M in F of size 2n × 2mD. Each row corresponds to an input x, and each column
corresponds to an evaluated monomial (with some fixed order). If the number
of columns in M is larger than the number of rows, then linearly dependent
columns (i.e. monomials) exist, see [9,13]. The rank of M determines the number
of solutions, and the solutions correspond to the kernel of MT . Any non-zero
implicit equation (which holds for each input x) may then depend on x and y,
or on y only. If it depends on x and y, then the equation may degenerate for
some values of y. For example, x1y1 + x2y1 = 0 degenerates for y1 = 0.

2.2 Conditional Equations

As the output is assumed to be known, one could investigate equations which
are conditioned by the output y, hence Fy(x) = 0 for each preimage x ∈ S−1(y)
and of degree d in x. The number of preimages is denoted Uy := |S−1(y)|, where
Uy = 2n−m for balanced S and m ≤ n. Notice that conditional equations for
different outputs y need not be connected in a common implicit equation, and
one can find an optimum equation (i.e. an equation of minimum degree) for
each output y. Degenerated equations are not existing in this situation, and the
corresponding matrix My has a reduced size of Uy × D. Similar to the case of
implicit equations, one obtains:

Proposition 1. Consider an S-box S : Fn → Fm and let S(x) = y. Then, the
number of (independent) conditional equations of degree at most d for some y
is Ry = D − rank(My). A sufficient criterion for the existence of a non-zero
conditional equation is 0 < Uy < D.

The condition Ry > 0 requires some minimum value of d, which can depend on
y. As already proposed in [2], this motivates the following definition of algebraic
immunity for S-boxes:

Definition 1. Consider an S-box S : Fn → Fm. Given some fixed output y, let
d be the minimum degree of a non-zero conditional equation Fy(x) = 0 which
holds for all x ∈ S−1(y). Then the algebraic immunity AI of S is defined by the
minimum of d over all y ∈ Fm.

The AI can be bounded, using the sufficient condition of Prop. 1. Let d0 be
the minimum degree such that D > 2n−m. If the S-box is surjective, then there
exists at least one y with a non-zero conditional equation of degree at most d0,

Algebraic Immunity of S-Boxes and Augmented Functions 369

hence AI ≤ d0. In addition, the block size m of the output could be considered
as a parameter (by investigating truncated S-boxes Sm, corresponding to partial
conditioned equations for S). Let m0 := �n−log2 D+1� for some degree d. Then,
the minimum block size m to find non-zero conditional equations of degree at
most d is bounded by m0. See Tab. 1 for some numerical values of m0.

Table 1. Theoretical block size m0 for different parameters n and d

d
n 16 18 20 32 64 128

1 12 14 16 27 58 121
2 9 11 13 23 53 115
3 7 9 10 20 49 110

A single output y is called weak, if non-zero conditional equations of degree
d exist for Uy � D (or if the output is strongly imbalanced). This roughly
corresponds to the condition d � d0, or m � m0.

2.3 Algorithmic Methods

As already mentioned in [7], memory requirements to determine the rank of
M are impractical for about n > 20. In the case of conditional equations, the
matrix My can be much smaller, but the bottleneck is to compute an exhaus-
tive list of preimages, which requires a time complexity of 2n. However, one
could use a probabilistic variant of this basic method: Instead of determining
the rank of My which contains all Uy inputs x, one may solve for a smaller
matrix M ′

y with V < Uy random inputs. Then, one can determine the non-
existence of a solution: If no solution exists for M ′

y, then no solution exists for
My either. On the other hand, if one or more solutions exist for M ′

y, then they
hold true for the subsystem of V inputs, but possibly not for all Uy inputs.
Let the probability p be the fraction of preimages that satisfy the equation cor-
responding to such a solution. With the heuristical argument (1 − p)V < 1,
we expect that p > 1 − 1/V . However, this argument holds only for V > D,
because otherwise, there are always at least D − V solutions (which could be
balanced). Consequently, if V is a small multiple of D, the probability can be
quite close to one. For this reason, all solutions of the smaller system can be
useful in later attacks. Determining only a few random preimages can be very
efficient: In a naive approach, time complexity to find a random preimage of an
output y is about 2n/Uy (which is 2m for balanced S), and complexity to find
D preimages is about 2nD/Uy. This is an improvement compared to the exact
method if Uy � D, i.e. equations can be found efficiently for weak outputs.
Memory requirements of the probabilistic algorithm are about CM = D2, and
time complexity is about CT = D2m + D3. Computation of AI requires about
CT = D2m + D32m = O(D32m).

370 S. Fischer and W. Meier

3 Algebraic Attacks Based on the Augmented Function

In this section, we focus on algebraic cryptanalysis of S-boxes in the context of
stream ciphers. Given a stream cipher, one may construct an S-box as follows:

Definition 2. Consider a stream cipher with internal state x of n bits, an up-
date function L, and an output function f which outputs one bit of keystream in
a single iteration. Then, the augmented function Sm is defined by

Sm : Fn → Fm

x 	→ (f(x), f(L(x)), . . . , f(Lm−1(x)) .
(1)

The update L can be linear (e.g. for filter generators), or nonlinear (e.g. for
Trivium). The input x correspond to the internal state at some time t, and the
output y corresponds to an m-bit block of the known keystream. Notice that
m is a very natural parameter here. The goal is to recover the initial state
x by algebraic attacks, using (potentially probabilistic) conditional equations
Fy(x) = 0 of degree d for outputs y of the augmented function Sm. This way,
one can set up equations for state variables of different time steps t. In the case of
a linear update function L, each equation can be transformed into an equation
of degree d in the initial state variables x. In the case of a nonlinear update
function L, the degree of the equations is increasing with time. However, the
nonlinear part of the update is sometimes very simple, such that equations for
different time steps can be efficiently combined. Finally, the system of equations
in the initial state variables x is solved.

If the augmented function has some weak outputs, then conditional equations
can be found with the probabilistic algorithm of Sect. 2.3, which requires about
D preimages of a single m-bit output. One may ask if there is a dedicated way to
compute random preimages of m-bit outputs in the context of augmented func-
tions. Any stream cipher as in Def. 2 can be described by a system of equations.
Nonlinear systems of equations with roughly the same number of equations as
unknowns are in general NP-hard to solve. However, due to the special (simple)
structure of some stream ciphers, it may be easy to partially invert the nonlinear
system. For example, given a single bit of output of a filter generator, it is easy
to find a state which gives out this bit. Efficient computation of random preim-
ages for m-bit outputs is called sampling. The maximal value of m for which
states can be sampled without trial and error is called sampling resistance of the
stream cipher. Some constructions have very low sampling resistance, see [5, 4].

The parameters of our framework are the degree d of equations, and the block-
size m of the output. An optimal tradeoff between these parameters depends on
the algebraic properties of the augmented function. The attack is expected to
be efficient, if:

1. There are many low-degree conditional equations for Sm.
2. Efficient sampling is possible for this block size m.

This measure is well adapted to the situation of augmented functions, and can
be applied to sometimes quite large augmented functions, see Sect. 5 and 6. This

Algebraic Immunity of S-Boxes and Augmented Functions 371

way, we intend to prove some immunity of a stream cipher, or present attacks
with reduced complexity.

4 Generic Scenarios for Filter Generators

Our framework is investigated in-depth in the context of LFSR-based stream
ciphers (and notably for filter generators), which are the main target of con-
ventional and fast algebraic attacks (see also Appendix A). We describe some
elementary conditional equations induced by annihilators. Then, we investigate
different methods for sampling, which are necessary to efficiently set up condi-
tional equations. We suggest a basic scenario and estimate data complexity of
an attack, the scenario is refined and improved.

4.1 Equations Induced by Annihilators

Let us first discuss the existence of conditional equations of degree d = AI, where
AI is the ordinary algebraic immunity of f here. With m = 1, the number of
conditional equations for y = 0 (resp. y = 1) corresponds to the number of
annihilators of f + 1 (resp. f) of degree d. If one increases m, then all equations
originating from annihilators are involved: For example, if there is 1 annihilator
of degree d for both f and f + 1, then the number of equations is expected to
be at least m for any m-bit output y. Notice that equations of fast algebraic
attacks are not involved if m is small compared to n.

4.2 Sampling

Given an augmented function Sm of a filter generator, the goal of sampling is to
efficiently determine preimages x for fixed output y = Sm(x) of m bits. Due to
the special structure of the augmented function, there are some efficient methods
for sampling:

Filter Inversion. One could choose a fixed value for the k input bits of the filter,
such that the observed output bit is correct (using a table of the filter function).
This can be done for about n/k successive output bits, until the state is unique.
This way, preimages of an output y of n/k bits can be found in polynomial
time, and by partial search, preimages of larger outputs can be computed. Time
complexity to find a preimage of m > n/k bits is about 2m−n/k, i.e. the method
is efficient if there are only few inputs k.

Linear Sampling. In each time step, a number of l linear conditions are im-
posed on the input variables of f , such that the filter becomes linear. The lin-
earised filter gives one additional linear equation for each keystream bit. Notice
that all variables can be expressed by a linear function of the n variables of the
initial state. Consequently, for an output y of m bits, one obtains (l+1)m (inho-
mogeneous) linear equations for n unknowns, i.e. we expect that preimages can
be found in polynomial time if m ≤ n/(l +1). To find many different preimages,

372 S. Fischer and W. Meier

one should have several independent conditions (which can be combined in a
different way for each clock cycle).

In practice, sampling should be implemented carefully in order to avoid contra-
dictions (e.g. with appropriate conditions depending on the keystream), see [5].

4.3 Basic Scenario

We describe a basic scenario for algebraic attacks on filter generators based on
the augmented function: With CD bits of keystream, one has C′

D = CD − m + 1
(overlapping) windows of m bits. Assume that there are R :=

∑
y Ry equations

of degree d for m-bit outputs y. For each window, we have about r := R/2m

equations, which gives a total of N = rC′
D equations.1 Each equation has at most

D monomials in the initial state variables, so we need about the same number
of equations to solve the system by linearisation. Consequently, data complexity
is CD = D/r + m − 1 bits. The initial state can then be recovered in CT = D3.
This should be compared with the complexity of conventional algebraic attacks
CD = 2E/RA and CT = E3, where e := AI, E :=

∑e
i=0

(
n
i

)
, and RA the

number of annihilators of degree e. Notice that the augmented function may give
low-degree equations, which are not visible for single-bit outputs; this increases
information density and may reduce data complexity. Our approach has reduced
time complexity if d < e, provided that sampling (and solving the matrix) is
efficient.

4.4 Refined Basic Scenario

The basic scenario for filter generators should be refined in two aspects, concern-
ing the existence of dependent and probabilistic equations: First, with overlap-
ping windows of m bits, it may well happen that the same equation is counted
several times, namely if the equation already exists for a substring of m′ < m bits
(e.g. in the case of equations produced by annihilators). In addition, equations
may be linearly dependent by chance. If this is not considered in the compu-
tation of R, one may have to enlarge data complexity a little bit. Second, one
can expect to obtain probabilistic solutions. However, depending on the number
of computed preimages, the probability p may be large and the corresponding
equations can still be used in our framework, as they increase R and reduce
data complexity, but potentially with some more cost in time. As we need about
D (correct and linearly independent) equations to recover the initial state, the
probability p should be at least 1 − 1/D (together with our estimation for p,
this justifies that the number of preimages should be at least D). In the case
of a contradiction, one could complement a few equations in a partial search
and solve again, until the keystream can be verified. Depending on the actual
situation, one may find an optimal tradeoff in the number of computed preim-
ages. Notice that our probabilistic attack deduced from an algebraic attack with

1 From a heuristical point of view, the parameter r is only meaningful if the conditional
equations are approximately uniformly distributed over all outputs y.

Algebraic Immunity of S-Boxes and Augmented Functions 373

equations of degree 1 is a powerful variant of a conditional correlation attack,
see [19]. A probabilistic attack with nonlinear equations is a kind of higher order
correlation attack, see [8].

4.5 Substitution of Equations

It is possible to further reduce data complexity in some cases. Consider the
scenario where one has N = rC′

D linear equations. On the other hand, given
an annihilator of degree e := AI, one can set up a system of degree e as
in conventional algebraic attacks. The N linear equations can be substituted
into this system in order to eliminate N variables. This results in a system of
D′ :=

∑e
i=0

(
n−N

i

)
monomials, requiring a data complexity of CD = D′ and time

complexity CT = D′3. Notice that data can be reused in this case, which gives
the implicit equation in CD. Obviously, a necessary condition for the success of
this method is rE > 1. A similar improvement of data complexity is possible for
nonlinear equations of degree d. One can multiply the equations by all monomi-
als of degree e − d in order to obtain additional equations of degree e, along the
lines of XL [14] and Gröbner bases algorithms.

5 First Application: Some Specific Filter Generators

Many conventional algebraic attacks on filter generators require about
(
n
e

)
output

bits where e equals the algebraic immunity of the filter function. On the other
hand, in [15], algebraic attacks based on Gröbner bases are presented, which in a
few cases require only n+ε data. It is an open issue to understand such a behavior
from the Boolean function and the tapping sequence. We present attacks on the
corresponding augmented functions, requiring very low data complexity. This
means, we can identify the source of the above behavior, and in addition, we can
use our method also for other functions.

5.1 Existence of Equations

In this subsection, we give extensive experimental results for different filter gen-
erators. Our setup is chosen as follows: The filter functions are instances of the
CanFil family (see [15]) or the Majority functions. These instances all have five
inputs and algebraic immunity 2 or 3. Feedback taps correspond to a random
primitive feedback polynomial, and filter taps are chosen randomly in the class
of full positive difference sets, see Tab. 4 in Appendix B for an enumerated speci-
fication of our setups. Given a specified filter generator and parameters d and m,
we compute the number Ry of independent conditional equations Fy(x) = 0 of
degree d for each output y ∈ Fm. The overall number of equations R :=

∑
y Ry

for n = 20 is recorded in Tab. 2. Thereby, preimages are computed by exhaustive
search in order to exclude probabilistic solutions.

In the case of CanFil1 and CanFil2, linear equations exist only for m ≥ m0 −1,
independent of the setup. On the other hand, for CanFil5 and Majority5, there

374 S. Fischer and W. Meier

Table 2. Counting the number of linear equations R for the augmented function of
different filter generators, with n = 20 bit input and m bit output

Filter m R for setups 6 − 10
CanFil1 14 0 0 0 0 0

15 3139 4211 3071 4601 3844
CanFil2 14 0 0 0 0 0

15 2136 2901 2717 2702 2456
CanFil5 6 0 0 0 2 0

7 0 0 0 8 0
8 0 0 0 24 0
9 0 0 0 64 0

10 6 0 0 163 0
11 113 0 2 476 0
12 960 16 215 1678 29

Majority5 9 0 0 0 2 0
10 1 10 1 18 1
11 22 437 40 148 56

exist many setups where a large number of linear equations already exists for
m ≈ n/2, see Ex. 1. We conclude that the number of equations weakly depends
on the setup, but is mainly a property of the filter function. The situation is
very similar for other values of n, see Appendix C. This suggests that our results
can be scaled to larger values of n. Let us also investigate existence of equations
of higher degree: CanFil1 and CanFil2 have AI = 2 and there is 1 annihilator
for both f and f + 1, which means that at least m quadratic equations can be
expected for an m-bit output. For each setup and m < m0 − 1, we observed
only few additional equations, whereas the number of additional equations is
exploding for larger values of m. This was observed for many different setups
and different values of n.

Example 1. Consider CanFil5 with n = 20 and setup 9. For the output y =
000000 of m = 6 bits, there are exactly 214 preimages, hence the matrix My has
214 rows and D = 21 columns for d = 1. Evaluation of My yields a rank of 20,
i.e. a nontrivial solution exists. The explicit solution is Fy(x) = x2 + x4 + x5 +
x6 + x10 + x11 + x12 + x13 + x14 + x15 + x17 = 0. �

5.2 Probabilistic Equations

In the previous subsection, the size n of the state was small enough to compute
a complete set of preimages for some m-bit output y. However, in any practical
situation where n is larger, the number of available preimages is only a small
multiple of D, which may introduce probabilistic solutions. Here is an example
with n = 20, where the probability can be computed exactly:

Example 2. Consider again CanFil5 with n = 20 and setup 9. For the output
y = 000000 of m = 6 bits, there are 214 preimages and one exact conditional

Algebraic Immunity of S-Boxes and Augmented Functions 375

equation of degree d = 1. We picked 80 random preimages and determined
all (correct or probabilistic) linear conditional equations. This experiment was
repeated 20 times with different preimages. In each run, we obtained between
2 and 4 independent equations with probabilities p = 0.98, . . . , 1. For example,
the (probabilistic) conditional equation Fy(x) = x2 + x3 + x4 + x7 + x10 + x16 +
x17 + x18 = 0 holds with probability p = 1 − 2−9. �

In the above example, there are only few probabilistic solutions and they have im-
pressively large probability, which makes the equations very useful in an attack.
Notice that experimental probability is in good agreement with our estimation
p > 1 − 1/80 = 0.9875. The situation is very similar for other parameters. With
the above setup and m = 10, not only y = 000 . . .0 but a majority of outputs
y give rise to linear probabilistic equations. In the case of CanFil1 and CanFil2,
we did not observe linear equations of large probability for m < m0 − 1. It is
interesting to investigate the situation for larger values of n:

Example 3. Consider CanFil5 with n = 40 and setup 11. For the output y =
000 . . .0 of m = 20 bits, we determine 200 random preimages. With d = 1,
evaluation of My yields a rank of 30, i.e. 11 (independent) solutions exist. With
2000 random preimages, we observed a rank of 33, i.e. only 3 solutions of the
first system were detected to be merely probabilistic. An example of an equation
is Fy(x) = x1 + x8 + x10 + x14 + x15 + x18 + x19 + x26 + x31 + x34 = 0. �

The remaining 8 solutions of the above example may be exact, or probabilistic
with very high probability. By sampling, one could find (probabilistic) condi-
tional equations for much larger values of n. For example, with CanFil5, n = 80,
m = 40 and filter inversion, time complexity to find a linear equation for a weak
output is around 232.

5.3 Discussion of Attacks

Our experimental results reveal that some filter functions are very vulnerable to
algebraic attacks based on the corresponding augmented function. For CanFil5
with n = 20 and setup 9, we observed R = 163 exact equations using the para-
meters m = 10 and d = 1, which gives a ratio of r = 0.16. Including probabilistic
equations, this ratio may be even larger. Here, preimages of any y can be found
efficiently by sampling: using filter inversion, a single preimage can be found in
2m−n/k = 26 steps, and a single equation in around 213 steps. Provided that
equations are independent and the probability is large, data complexity is about
CD = (n + 1)/r + m − 1 = 140. The linear equations could also be substi-
tuted into the system of degree AI = 2, which results in a data complexity
of about CD = 66. Notice that conventional algebraic attacks would require
CD = E = 211 bits (and time complexity E3). As we expect that our obser-
vation can be scaled, (i.e. that r remains constant for larger values of n and
m = n/2), data complexity is a linear function in n. Considering time com-
plexity for variable n, the matrix M and the final system of equations can be

376 S. Fischer and W. Meier

solved in polynomial time, whereas sampling is subexponential (and polynomial
in some cases, where linear sampling is possible).

In [15], CanFil5 has been attacked experimentally with n + ε data, where
n = 40, . . . , 70 and ε < 10. Our analysis gives a conclusive justification for their
observation. Other functions such as Majority5 could be attacked in a similar
way, whereas CanFil1 and CanFil2 are shown to be much more resistant against
this general attack: No linear equations have been found for m < m0 − 1, and
only few quadratic equations.

6 Second Application: Trivium

Trivium [6] is a stream cipher with a state of 288 bits, a nonlinear update and a
linear output. It has a simple algebraic structure, which makes it an interesting
candidate for our framework. We consider the S-box Sm(x) = y, where S is the
augmented function of Trivium, x the state of n = 288 bits, and y the output of
m bits. We will first analyse the sampling of Sm, which is very similar to linear
sampling of filter generators.

6.1 Sampling

The state consists of the 3 registers R1 = (x1, . . . , x93), R2 = (x94, . . . , x177)
and R3 = (x178, . . . , x288). In each clock cycle, a linear combination of 6 bits
of the state (2 bits of each register) is output. Then, the registers are shifted
to the right by one position, with a nonlinear feedback to the first position of
each register. In the first 66 clocks, each keystream bit is a linear function of the
input, whereas the subsequent keystream bit involves a nonlinear expression.
Consequently, given any output of m = 66 bits, one can efficiently determine
some preimages by solving a linear system. It is possible to find preimages of
even larger output size. Observe that the nonlinear function is quadratic, where
the two factors of the product have subsequent indices. Consequently, one could
fix some alternating bits of the state, which results in additional linear equations
for the remaining variables. Let c, l, q denote constant, linear, and quadratic
dependence on the initial state. Let all the even bits of the initial state be c, see
Tab. 3. After update 83, bits 82 and 83 of R2 are both l. Variable t2 takes bits
82 and 83 of R2 to compute the nonlinear term. So after update 84, t2 = x178 is
q (where nonlinear terms in t1 and t3 appear somewhat later).

Table 3. Evolution of states with partially fixed input

Initial state After 1 update After 84 updates
R1 = lclcl . . . R1 = llclcl . . . R1 = lllll . . .
R2 = clclc . . . R2 = lclclc . . . R2 = lllll . . .
R3 = clclc . . . R3 = lclclc . . . R3 = qllll . . .

Algebraic Immunity of S-Boxes and Augmented Functions 377

After 65 more updates, x243 is quadratic, where x243 is filtered out from R3 in
the next update (after 84 updates, other bits are also q and are filtered out from
registers R1 and R2, but on a later point in time). Consequently, keystream bit
number 66 + 84 = 150 (counting from 1) is q, and the first 149 keystream bits
are linear in the remaining variables.

The number of remaining variables in the state (the degree of freedom) is
144. Consequently, for an output of size m = 144 bits, we can expect to find
one solution for the remaining variables; this was verified experimentally. The
solution (combined with the fixed bits) yields a preimage of y. Notice that we
do not exclude any preimages this way. In addition, m can be somewhat larger
with partial search for the additional bits.

Example 4. Consider the special output y = 000 . . .0 of m = 160 bits. By sam-
pling and partial exhaustive search, we find the nontrivial preimage

x =

100010111100010111001100010101001101000010010010
000100100100110011111011011101100001001100101000
110000000101011001110000111111011001100001101010
011100000101010011001101111010101011111110100001
000001000001101000100001111001101010100010101111
101000001110100101010011000100111001010010101101 �

6.2 Potential Attacks

The nonlinear update of Trivium results in equations Sm(x) = y of increasing
degree for increasing values of m. However, for any output y, there are at least 66
linear equations in the input variables. It is an important and security related
question, if there are additional linear equations for some fixed output y. A
linear equation is determined by D = 289 coefficients, thus we have to compute
somewhat more than 289 preimages for this output. By sampling, this can be
done in polynomial time. Here is an experiment:

Example 5. Consider a prescribed output y of 144 bits, and compute 400 preim-
ages x such that Sm(x) = y (where the preimages are computed by a uniform
random choice of 144 fixed bits of x). Given these preimages, set up and solve
the matrix M of linear monomials in x. For 30 uniform random choices of y, we
always observed 66 linearly independent solutions. �

Consequently, Trivium seems to be immune against additional linear equations,
that might help in an attack. Because of the lack of probabilistic solutions,
Trivium is also supposed to be immune against equations of large probability
(compare with CanFil1 and CanFil2). As pointed out in [17], there are some
states resulting in a weak output: If R1, R2 and R3 are initialised by some
period-3 states, then the whole state (and hence the output) repeats itself every
3 iterations. Each of these states results in y = 000 . . .0. Here is an extended
experiment (with partial exhaustive search) for this special output:

378 S. Fischer and W. Meier

Example 6. Consider the output y = 000 . . .0 of 150 bits, and compute 400
random preimages x such that Sm(x) = y. By solving the matrix M of linear
monomials in x, we still observed 66 linearly independent solutions. �

7 Conclusions

Intrinsic properties of augmented functions of stream ciphers have been inves-
tigated with regard to algebraic attacks. Certain properties of the augmented
function enable efficient algebraic attacks with lower data complexity than es-
tablished algebraic attacks. In order to assess resistance of augmented functions
against such improved algebraic attacks, a prespecified number of preimages of
outputs of various size of these functions have to be found. For a random func-
tion, the difficulty of finding preimages increases exponentially with the output
size. However, due to a special structure of the augmented function of a stream
cipher, this can be much simpler than in the random case. For any such stream
cipher, our results show the necessity of checking the augmented function for
algebraic relations of low degree for output sizes for which finding preimages is
feasible. In this paper, this has been successfully carried out for various filter
generators as well as for the eSTREAM candidate Trivium.

Acknowledgments

This work is supported in part by the National Competence Center in Research
on Mobile Information and Communication Systems (NCCR-MICS), a center
of the Swiss National Science Foundation under grant number 5005-67322. The
second author is supported by Hasler Foundation www.haslerfoundation.ch
under project number 2005. We would like to thank Steve Babbage for encour-
aging us to study algebraic immunity of large S-boxes.

References

1. Anderson, R.J.: Searching for the Optimum Correlation Attack. In: Preneel, B.
(ed.) Fast Software Encryption - FSE 1994. LNCS, vol. 1008, Springer, Heidelberg
(1995)

2. Armknecht, F., Krause, M.: Constructing Single- and Multi-Output Boolean Func-
tions with Maximal Algebraic Immunity. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, Springer, Heidelberg (2006)

3. Armknecht, F., Carlet, C., Gaborit, P., Künzli, S., Meier, W., Ruatta, O.: Efficient
Computation of Algebraic Immunity for Algebraic and Fast Algebraic Attacks.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, Springer, Heidelberg
(2006)

4. Babbage, S.: A Space/Time Tradeoff in Exhaustive Search Attacks on Stream Ci-
phers. In: European Convention on Security and Detection. IEE Conference Pub-
lication No. 408 (1995)

www.haslerfoundation.ch

Algebraic Immunity of S-Boxes and Augmented Functions 379

5. Biryukov, A., Shamir, A.: Cryptanalytic Time/Memory/Data Tradeoffs for Stream
Ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, Springer,
Heidelberg (2000)

6. de Cannière, C., Preneel, B.: Trivium - A Stream Cipher Construction Inspired by
Block Cipher Design Principles. In: eSTREAM, ECRYPT Stream Cipher Project,
Report 2005/030

7. Canteaut, A.: Open Problems Related to Algebraic Attacks on Stream Ciphers.
In: Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, Springer, Heidelberg (2006)

8. Courtois, N.: Higher Order Correlation Attacks, XL algorithm and Cryptanalysis
of Toyocrypt. In: Cryptology ePrint Archive, Report 2002/087

9. Courtois, N.: Algebraic Attacks on Combiners with Memory and Several Outputs.
In: Cryptology ePrint Archive, Report 2003/125

10. Courtois, N.: How Fast can be Algebraic Attacks on Block Ciphers. In: Cryptology
ePrint Archive, Report 2006/168

11. Courtois, N., Debraize, B., Garrido, E.: On Exact Algebraic (Non-)Immunity of S-
boxes Based on Power Functions. In: Cryptology ePrint Archive, Report 2005/203

12. Courtois, N., Meier, W.: Algebraic Attacks on Stream Ciphers with Linear Feed-
back. In: Biham, E. (ed.) Advances in Cryptology – EUROCRPYT 2003. LNCS,
vol. 2656, Springer, Heidelberg (2003)

13. Courtois, N., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined Sys-
tems of Equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501,
Springer, Heidelberg (2002)

14. Courtois, N., Shamir, A., Patarin, J., Klimov, A.: Efficient Algorithms for solving
Overdefined Systems of Multivariate Polynomial Equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, Springer, Heidelberg (2000)

15. Faugère, J.-C., Ars, G.: An Algebraic Cryptanalysis of Nonlinear Filter Generators
using Gröbner Bases. In: Rapport de Recherche de l’INRIA (2003)

16. Golić, J.Dj.: On the Security of Nonlinear Filter Generators. In: Gollmann, D. (ed.)
Fast Software Encryption. LNCS, vol. 1039, Springer, Heidelberg (1996)

17. Hong, J.: Some Trivial States of Trivium. In: eSTREAM Discussion Forum (2005)
18. Krause, M.: BDD-Based Cryptanalysis of Keystream Generators. In: Knudsen,

L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, Springer, Heidelberg (2002)
19. Löhlein, B.: Attacks based on Conditional Correlations against the Nonlinear Filter

Generator. In: Cryptology ePrint Archive, Report 2003/020
20. Nawaz, Y., Gupta, K.C., Gong, G.: Algebraic Immunity of S-boxes Based on

Power Mappings: Analysis and Construction. In: Cryptology ePrint Archive, Re-
port 2006/322

A Algebraic and Fast Algebraic Attacks

The algebraic immunity AI of a Boolean function f is defined by the minimum
degree d of a function g, such that fg = 0 or (f + 1)g = 0. In the case fg =
0, one can multiply yt = f(Lt(x)) by g and obtains g(Lt(x)) · yt = 0. For
yt = 1, this is an equation of degree d. Similarly, for (f + 1)g = 0, one obtains
g(Lt(x)) · (yt + 1) = 0. With RA linearly independent annihilators of degree d
for f and f + 1, a single output bit can be used to set up (in average) RA/2
equations in x at time t. The number of monomials in these equations is at most
D :=

∑d
i=0

(
n
i

)
, hence by linearisation, data complexity of conventional algebraic

attacks becomes about 2D/RA, and time complexity CT = D3.

380 S. Fischer and W. Meier

In fast algebraic attacks, one considers equations of type fg = h for deg h ≥
AI and deg g < AI. The equation yt = f(Lt(x)) is multiplied by g such that
g(Lt(x)) · yt = h(Lt(x)). One can precompute then a linear combination

∑
i ci ·

h(Lt+i(x)) = 0 for all t, such that
∑

i ci · g(Lt+i(x)) · yt+i = 0 of lower degree
deg g. The linear combination utilises the structure of the LFSR, and helps to
cancel out all monomials of degree larger than deg g. However, the equation
depends on several output bits yt. It is a special case of implicit equation, where
the degree in y is 1. Depending on the degrees of g and h, time complexity can
be smaller than in algebraic attacks, and data complexity is about CD = D +E,
where E :=

∑e
i=0

(
n
i

)
. This is not much larger than in algebraic attacks (with the

same asymptotic complexity). See [3] for an efficient computation of annihilators
and low-degree multiples.

B Experimental Setup for Filter Generators

In Tab. 4, we collect the setups of our experiments with filter generators, where
n is the size of the LFSR, and k the number of inputs to the filter function. The
feedback taps are chosen such that the LFSR has maximum period (i.e., the
corresponding polynomial is primitive), and filter taps are chosen according to a
full positive difference set (i.e., all the positive pairwise differences are distinct).
Tap positions are counted from the left (starting by 1), and the LFSR is shifted
to the right.

Table 4. Different setups for our experiments with filter generators

Setup n k feedback taps filter taps
1 18 5 [2, 3, 5, 15, 17, 18] [1, 2, 7, 11, 18]
2 18 5 [1, 2, 5, 7, 9, 14, 15, 16, 17, 18] [1, 3, 7, 17, 18]
3 18 5 [3, 5, 7, 15, 17, 18] [1, 5, 8, 16, 18]
4 18 5 [4, 5, 6, 10, 13, 15, 16, 18] [1, 6, 7, 15, 18]
5 18 5 [2, 3, 5, 7, 11, 15, 17, 18] [1, 3, 6, 10, 18]
6 20 5 [7, 10, 13, 17, 18, 20] [1, 3, 9, 16, 20]
7 20 5 [1, 2, 4, 7, 8, 10, 11, 12, 13, 15, 19, 20] [1, 5, 15, 18, 20]
8 20 5 [2, 3, 4, 5, 6, 7, 8, 11, 13, 14, 19, 20] [1, 4, 9, 16, 20]
9 20 5 [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 15, 17, 19, 20] [1, 2, 15, 17, 20]
10 20 5 [1, 2, 6, 7, 9, 11, 15, 20] [1, 5, 13, 18, 20]
11 40 5 [3, 8, 9, 10, 11, 13, 14, 15, 18, 19, [1, 3, 10, 27, 40]

23, 24, 25, 26, 27, 30, 33, 34, 36, 40]

C Additional Experimental Results

In Tab. 5, we present the number of conditional equations for different filters
and different parameters, where the size of the LFSR is n = 18.

Algebraic Immunity of S-Boxes and Augmented Functions 381

Table 5. Counting the number of linear equations R for the augmented function of
different filter generators, with n = 18 bit input and m bit output

Filter m R for setups 1-5
CanFil1 12 0 0 0 0 0

13 625 288 908 335 493
CanFil2 12 0 0 0 0 0

13 144 346 514 207 418
CanFil3 12 0 0 4 0 0

13 1272 1759 2173 2097 983
CanFil4 7 0 0 0 0 0

8 19 4 0 0 0
9 102 17 1 0 12

10 533 69 9 20 167
CanFil5 6 1 0 0 0 0

7 4 0 0 0 0
8 15 0 0 0 1
9 55 1 0 0 39

10 411 61 3 0 360
11 2142 1017 166 10 1958

CanFil6 8 0 0 0 0 0
9 0 10 64 0 0

10 0 97 256 0 0
11 0 517 1024 0 0
12 0 2841 3533 1068 0
13 152 19531 17626 12627 9828

CanFil7 11 0 2 0 0 6
12 68 191 36 26 178

Majority5 8 1 0 0 0 0
9 8 3 42 27 14

10 97 94 401 282 158

	Algebraic Immunity of S-Boxes and Augmented Functions
	Introduction
	Algebraic Properties of S-Boxes
	Implicit Equations
	Conditional Equations
	Algorithmic Methods

	Algebraic Attacks Based on the Augmented Function
	Generic Scenarios for Filter Generators
	Equations Induced by Annihilators
	Sampling
	Basic Scenario
	Refined Basic Scenario
	Substitution of Equations

	First Application: Some Specific Filter Generators
	Existence of Equations
	Probabilistic Equations
	Discussion of Attacks

	Second Application: Trivium
	Sampling
	Potential Attacks

	Conclusions
	Algebraic and Fast Algebraic Attacks
	Experimental Setup for Filter Generators
	Additional Experimental Results

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

