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Abstract. This paper proposes a novel approach to both registration and recog-
nition of face in three dimensions. The presented method is based on normal 
map metric to perform either the alignment of captured face to a reference tem-
plate or the comparison between any two faces in a gallery. As the metric in-
volved is highly suited to be computed via vector processor, we propose an im-
plementation of the whole framework on last generation graphics boards, to ex-
ploit the potential of GPUs applied to large scale biometric identification appli-
cations. This work shows how the use of affordable consumer grade hardware 
could allow ultra rapid comparison between face descriptors through their 
highly specialized architecture. The approach also addresses facial expression 
changes by means of a subject specific weighting masks. We include prelimi-
nary results of experiments conducted on a proprietary gallery and on a subset 
of FRGC database. 

1   Introduction 

Three dimensional face representation is object of growing interest from the biomet-
rics research community, as witnessed by the large number of approaches to recogni-
tion proposed in the last years, whose main focus has been accuracy and robustness, 
often considering the computing time required a minor issue. This fact is easily un-
derstandable considering the serious challenges related to face recognition which 
sometimes push researchers to exploit metrics involving time intensive computing. 
According to literature, 3D based methods can exploit a plurality of metrics [1], some 
of which, like Eigenface [2], Hausdorff distance [3] and Principal Component Analy-
sis (PCA) [4], have been originally proposed for 2D recognition and then extended to 
range images. Other approaches instead, have been developed specifically to operate 
on 3D shapes [5], like those exploiting Extended Gaussian Image [6], the Iterative 
Closest Point (ICP) method [7], canonical image [8] or normal map [9]. One line of 
work is represented by multi-modal approaches, which typically combine 2D (inten-
sity or colour) and 3D (range images or geometry) facial data and in some case differ-
ent metrics, to improve recognition accuracy and/or robustness over conventional  
techniques [10-12]. However, as the diffusion of this biometric increases, the need for 
one-to-many comparison on large galleries becomes more frequent and crucial to 
many applications. Unfortunately, a matching time in the range of seconds (or even 
minutes) is not rare in 3D face recognition, so, as claimed by Bowyer et al. in their 
2006 survey “one attractive line of research involves methods to speed up the 3D 
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matching” [1]. To this regard the launch of multi-core CPUs on the market could be 
appealing to biometric systems developers, but the reality is that not many of the most 
established face recognition algorithm can take advantage of multithreading process-
ing and, even in case this is possible, the overall theoretical speedup is by a factor 2 or 
4 (for PC and workstation class machines), while database size could possibly grow 
by even orders of magnitude.  

It is worth to note that one of the most stable technological trend in the last years 
for PCs and workstations has been the leap in both computing power and flexibility of 
specialized processors on which graphics board are based on: the Graphical Process-
ing Units (GPUs). Indeed, GPUs arguably represent today most powerful and afford-
able computational hardware, and they are advancing at an incredible rate compared 
to CPUs, with performances growing approximately from 1.7 to 2.3 times/year versus 
a maximum of 1.4 times/year for CPUs. As an example, the recent G80 GPU core 
from Nvidia Corp. (one of the market leaders together with ATI Corp.) features ap-
proximately 681 millions of transistors resulting in a highly parallel architecture based 
on 128 programmable processors, 768 MB of VRAM with 86 GB/sec of transfer rate 
over a 384 bit wide bus.  

The advantages in using these specialized processors for general purpose applica-
tions, a task referred as General Purpose computation on GPU or GP-GPU, have been 
marginal until high level languages for GPU programming have emerged. Neverthe-
less, as GPUs are inherently vector processors and not real general-purpose process-
ing units, not every algorithm or data structure is suited to fully exploit this potential. 
In this paper, we  present a method to register and recognize a face in 3D by means of 
the same normal map metric. As this metric represents geometry in terms of coloured 
pixels, it is particularly suited to take full advantage of vector processors, so we pro-
pose a GPU implementation aimed to maximize the comparison speed for large scale 
identification applications. This paper is organized as follows. In section 2. the pro-
posed methodology is presented in detail. In section 3. experimental results are shown 
and briefly discussed. The paper concludes in section 4.  

2   Description of Proposed Methodology 

In the following subsections 2.1 to 2.4. we describe in depth the proposed face recog-
nition approach and its implementation via GPU. A preliminary face registration is 
required for the method to perform optimally but, as it is based on the same metric 
exploited for face matching, we first describe the normal map based comparison, then 
we expose the alignment algorithm, and the adaptation necessary to efficiently com-
pute the metric through GPU.  

2.1   Representing Face Through Normal Map and Comparing Faces Through 
Difference Map 

Whether a subject has to be enrolled for the first time or a new query (a subject which 
has to be recognized) is submitted to the recognition pipeline, a preliminary face cap-
ture is performed and the resulting range image is converted in a polygonal mesh M. 
We intend to represent face geometry storing normals of mesh M in a bidimensional 
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matrix N with dimension l×m. To correlate the 3D space of normals to the 2D domain 
of matrix N we project each vertex in M onto a 2D surface using a spherical projec-
tion (opportunely adapted to mesh size). Then we sample the mesh by means of map-
ping coordinates and quantize the length of the three scalar components of each nor-
mal as an RGB coded color, storing it in a bitmap N by means of the same coordinates 
as array indexes. More precisely, we assign to each pixel (i, j) in N, with 0 ≤ i < l and 
0 ≤ j < m, the three scalar components of the normal to the point of the mesh surface 
with mapping coordinates (l/i, m/j). The resulting sampling resolution is 1/l for the s 
range and 1/m for the t range. The normal components are stored in pixel (i, j) as RGB 
colour components.  

We refer to the resulting matrix N as the normal map of mesh M. A normal map 
with a standard colour depth of 24 bit allows 8 bit quantization for each normal com-
ponent, this precision proved to be adequate for the recognition process. To compare 
the normal map NA from input subject to another normal map NB previously stored in 
the reference database, we compute the angle included between each pairs of normals 
represented by colours of pixels with corresponding mapping coordinates, and store it 
in a new Difference Map D with components r, g and b opportunely normalized from 
spatial domain to colour domain, so 1,,0 ≤≤

AAA NNN bgr  and 1,,0 ≤≤
BBB NNN bgr . The 

value θ, with 0 ≤ θ < π, is the angular difference between the pixels with coordinates 
( )

AA NN yx ,  in NA and ( )
BB NN yx ,  in NB and it is stored in D as a grey-scale image (see 

Fig. 1). To reduce the effects of residual face misalignment during acquisition and 
sampling phases, we calculate the angle θ using a k × k (usually 3 × 3 or 5 × 5) matrix 
of neighbour pixels.  

Summing every grey level in D results in histogram H(x) that represent the angular 
distance distribution between mesh MA and MB. On the X axis we represent the result-
ing angles between each pair of comparisons (sorted from 0° degree to 180° degree), 
while on the Y axis we represent the total number of differences found. This means 
that two similar faces will have an histogram H(x) with very high values on little 
angles, while two distinct faces will have differences more distributed. We define a 
similarity score through a weighted sum between H and a Gaussian function G, as in 
(3) where σ and k change recognition sensitivity . 
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Fig. 1. Face capture, Normal Map generation and resulting Difference Map for two subjects 
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2.2   Face Registration  

A precise registration of captured face is required by normal map based comparison to 
achieve the best recognition performance. So, the obvious choice could be to use the 
most established 3D shape alignment method, the Iterative Closest Point (ICP), to this 
aim. Unfortunately ICP is a time expensive algorithm. The original method proposed 
by Chen and Medioni [13] and Besl and McKay [14] features a O(N2) time complex-
ity, which has been lowered to O(Nlog(n)) by other authors [15] and further reduced 
by means of heuristic functions or by shape voxelization and distance pre-computing 
in its most recent versions [16]. Nevertheless the best performance in face recognition 
applications are in the range of many seconds to minutes, depending on source and 
target shape resolution. As the whole normal-map based approach is aimed to maxi-
mize the overall recognition speed reducing the comparison time, we considered ICP 
not suited to fit well into this approach.  

So we introduce pyramidal-normal-map based face alignment. A pyramidal-
normal-map is simply a set of normal maps relative to the same 3D surface ordered by 
progressively increasing size (in our experiments each map differs from the following 
one by a factor of 2). Our purpose is to exploits this set of local curvature descriptors 
to perform a fast and precise alignment between two 3D shapes, measuring the angu-
lar distance (on each axis) between an unregistered face and a reference template and 
reducing it to a point in which it does not significantly affect recognition precision. 
The template is a generic neutral face mesh whose centroid corresponds to the origin 
of the reference system. To achieve a complete registration the captured face has to 
match position and rotation of reference template. 

Scale matching, indeed, is not needed as the spherical projection applied to gener-
ate the normal map is invariant to object size. The first step in the alignment proce-
dure is therefore to compute face’s centroid which allows to match reference template 
position offsetting all vertices by the distance from centroid to the axis origin. Simi-
larly, rotational alignment can be obtained through a rigid transformation of all verti-
ces once the angular distance between the two surface has been measured. As we 
intend to measure this distance iteratively and with progressively greater precision, 
we decide to rotate the reference template instead of captured face. The reason is 
simple: because the template used for any alignment is always the same, we can pre-
compute for every discrete step of rotation the relative normal map once and offline, 
drastically reducing the time required for alignment. Before the procedure begins, a 
set-up is required to compute a pyramidal normal map for the captured face (a set of 
four normal maps with size ranging from 16x16 to 128x128 has proved to be ade-
quate in our tests). At this time the variables controlling the iteration are initialised, 
like the initial size m of normal maps, the angular range reduction factor k, and R, the 
maximum angular range for the algorithm to operate, i.e. the maximum misalignment 
allowed between the two surfaces. We found that for biometric applications a good 
compromise between robustness and speed is reached setting this value to 180°, with 
k=4, but even R=360° can be used if required.  

With the first iteration, the smallest normal map in the pyramid is compared to 
each of k^3 pre-computed normal maps of the same size relative to the coarsest rota-
tion steps of template. The resulting difference maps are evaluated to find the one 
with the highest similarity score, which represent the better approximation to  
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alignment (on each axis) for that level of pyramid. Then the template is rotated ac-
cording to this first estimate. The next iteration starts from this approximation com-
paring the next normal map in the pyramid (with size m=m*2) to every template nor-
mal map of corresponding size found within a range which has now its centre on the 
previous approximation and whose width has been reduced by a factor k. This scheme 
is repeated for i iterations until the range’s width fall below a threshold value T. At 
this point the sum of all i approximations found for each axis is used to rotate the 
captured face, thus resulting in its alignment to the reference template (see Fig. 2).  

Using the above mentioned values for initialisation, four iterations (i=4) with angular 
steps of 45°, 11,25°, 2.8° and 0.7° are enough to achieve an alignment adequate for 
recognition purpose. As the number of angular steps is constant for each level of itera-
tion, the total number of template normal maps generated offline for i iterations is ik^3, 
and the same applies to the total number of comparisons. It has to be noted that the time 
needed for a single comparison (difference map computing), is independent by mesh 
resolution but it depends on normal map size instead, whereas the time needed to pre-
compute each template’s normal map depends on its polygonal resolution.  

 

Fig. 2.  Face captured (shaded) and reference template (wireframe) before (left) and after (cen-
ter) alignment. Right: normal maps before (up) and after (bottom) alignment 

The template does not need to have the same resolution and topology of captured 
face, it is sufficient it has a number of polygons at least greater than the number of 
pixels in the largest normal map in the pyramid and a roughly regular distribution of 
vertices. Finally, another advantage of proposed algorithm is that no preliminary 
rough alignment is needed by the method to converge if the initial face misalignment 
(for each axis) is within R. 

2.3   Storing Facial Expressions in Alpha Channel  

To improve robustness to facial expressions we introduce the expression weighting 
mask, a subject specific pre-calculated mask aimed to assign different relevance to 
different face regions. This mask, which shares the same size of normal map and 
difference map, contains for each pixel an 8 bit weight encoding the local face surface 
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rigidity based on the analysis of a set facial expressions of the same subject (see  
Fig. 3). In fact, for each subject enrolled, eight expressions (a neutral plus seven 
variations) are acquired and compared to the neutral face resulting in seven difference 
maps. More precisely, given a generic face with its normal map N0 (neutral face) and 
the set of normal maps N1, N2, …, Nn (the expression variations ), we first calculate 
the set of difference map D1, D2, …, Dn resulting from {`N0 - N1', `N0 - N2', …, `N0 – 
Nn'}.The average of set {D1, D2, …, Dn} is the expression weighting mask which is 
multiplied by the difference map in each comparison between two faces. We can 
augment each 24 bit normal map with the Expression Weighting Mask normalized to 
8 bit. The resulting 32 bit per pixel bitmap can be conveniently managed via various 
image formats like the Portable Network Graphics format (PNG) which is typically 
used to store for each pixel 24 bit of colour and 8 bit of alpha channel (transparency) 
in RGBA format. When comparing any two faces, the difference map is computed on 
the first 24 bit of colour info (normals) and multiplied to the alpha channel (mask). 

 

Fig. 3. Facial expressions exploited in Expression Weighting Mask  

2.4   Implementing the Proposed Method Via GP-GPU  

As briefly explained in the introduction to this paper, GPUs can vastly outperform 
CPUs for some computational topics, but two key requirements have to be satisfied: 
(1) the  algorithm and the data types on which it operates should conform as much as 
possible to the computational architecture of GPU and to its specialized memory, the 
VRAM; (2) the data exchange with main memory and CPU should be carefully 
planned and minimized where possible. Because the descriptor used in our approach 
to face recognition is a RGBA coded bitmap the second part of first requirement is 
fully satisfied, but the first part is not so trivial. Indeed if the comparison stage of two 
normal maps requires pixel to pixel computation of a dot product, a task easily per-
formed on multiple pixels in parallel via pixel shaders, the computation of histogram 
and similarity score for their algorithmic nature is not so suited to be efficiently im-
plemented on GPU. This is mainly due to the lack of methods to access and to write 
in VRAM as we could easily do in RAM via CPU.  

For this reason we decided to split the face comparison step from the rank assign-
ment step, by means of a two-staged strategy which relies on GPU to perform a huge 
number of comparisons in the fastest possible time, and on CPU to work on the re-
sults produced from GPU to provide rank statistics, thanks to its general purpose 
architecture. We addressed the second requirement by an optimised arrangement of 
descriptors which minimize the number of data transfers from and to the main mem-
ory (RAM) and, at the same time, allows vector units on GPU to work efficiently (see 
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Fig. 4). Indeed we arranged every 1024 normal maps (RGBA, 24+8 bit) in a 32x32 
cluster, resulting in a single 32 bit 4096x4096 sized bitmap (assuming each descriptor 
is sized 128x128 pixels). This kind of bitmap reaches the maximum size a GPU can 
manage at the moment, allowing to reduce by a factor 1,000 the number of exchanges 
with VRAM . The overhead due to descriptor arrangement is negligible as this task is 
performed during enrolment when normal map and expression weighting mask are 
computed and stored in the gallery. Up to 15,000 templates could be stored within 
1GB of VRAM. On a query, the system load the maximum allowed amount of clus-
ters from main memory to available free VRAM, then the GPU code is executed in 
parallel on any available pixel shader unit (so computing time reduction is linear in 
the number of shader units) and the result is write in a specifically allocated Frame-
Buffer-Object (FBO) as a 32x32 cluster of difference maps. In the next step the FBO 
is flushed to RAM and the CPU start to compute the similarity score of each differ-
ence map storing each score and its index. This scheme repeats until all template 
clusters have been sent to and processed by GPU and all returning difference map 
clusters have been processed by CPU. Finally the sorted score vector is outputted. We 
implemented this algorithm through the Open GL 2.0 library and GLSL programming 
language. 

 

Fig. 4. Schematic representation of GPU accelerated normal map matching 

3   Experiments 

To test the proposed method four experiments using two different 3D face datasets 
have been conducted. We built the first dataset acquiring 235 different individuals 
(138 males and 97 females, age ranging from 19 to 40) in an indoor environment by 
means of a structured light scanner, the Mega Capturor II from Inspeck Corp.. For 
each subject eight expressions has been captured (including the neutral one) and each 
resulting 3D surface has an average of  60-80.000 polygons, with a minimum detail of 
about 1.5 millimetres. For the second dataset we used 1024 face shapes from release 
2/experiment 3s of FRGC database, disregarding texture data. This dataset has under-
gone a pre-processing stage including mesh subsampling to one fourth or original 
resolution, mesh cropping to eliminate unwanted details (hair, neck, ears, etc.) and 
mesh filtering to reduce capture noise and artifacts. For all experiments we setσ =4.5 
and k=50 for the Gaussian function and the normal map size is 128×128 pixels.  



 GPU Accelerated 3D Face Registration / Recognition 945 

The first experiment, whose results are shown in Fig. 5-a., measures the overall 
recognition accuracy of proposed method through the Receiver Operating Character-
istic (ROC) curve. The histogram compares the baseline algorithm (blue column, 
implemented exploiting the FRGC framework and applied on the preprocessed data-
set described above) respectively to: proposed method on FRGC dataset using em-
bedded alignment info (violet column), proposed method on FRGC dataset with py-
ramidal-normal-map based alignment (green column) and proposed method and 
alignment on our gallery allowing the use of expression weighting mask (orange). The 
result shown in the third column (green) is slightly better than the one measured on 
the second column (violet) as the alignment performed by proposed algorithm has 
proved to be more reliable than the landmarks embedded in FRGC. The best score is 
achieved in the fourth column (orange) as in this case we exploit both proposed 
alignment method and the weighting mask to better address expression variations.  

The second experiment is meant to measure alignment accuracy, using the first 
dataset with 235 neutral faces for gallery and 705 (235*3) opened mouth, closed eyes 
and smile variations as probes. Moreover, the probes have been rotated of known 
angles on the three axis to stress the algorithm. The results are shown on Fig. 5-b. 
where after four iterations, 95.1% of probes have been re-aligned with a tolerance of 
less than two degree and for 73.1% of them the alignment error is below one degree.  

The purpose of the third group of experiments is to measure the effect of posing 
variations and probe misalignment on recognition performance without the alignment 
step. Also in this case we used the neutral faces for gallery and opened mouth, closed 
eyes and smile variations, additionally rotated of known angles, as probes. The results 
in Fig. 5-c. show that for a misalignment within one degree the recognition rate is 
98.1%, which drops to 94.6% if misalignment reaches two degrees. As the average 
computational cost of a single comparison (128x128 sized normal maps) is about 3 
milliseconds for an Amd Opteron 2,6 GHz based PC, the total time needed to align-
ment is slightly more than 0.3 seconds, allowing an almost real time response. The 
overall memory requirement to completely store the template’s precomputed normal 
maps is just 4 Mbytes. Finally, the fourth experiment shows in Fig. 6. how many 
templates can be theoretically compared to the query within 1 second if they could fit 
entirely in VRAM, proving how time wise the GPU based version of proposed 
method easily outperform any CPU based solution, whatever the processor chosen. To 
this aim we replicated the 1024 templates from FRGC subset to fill in all available 
VRAM. The system was able to compare about 85,000 templates per second (match-
ing one-to-15,360 in 0,18 sec. on GeForce 7950 GTX/1024 with 32 pixel shaders) 
versus about 330 of CPU based version (AMD). In the same figure we compare the 
performance of different CPUs and GPUs including recently released GPU cores 
based on specs reported from the two main manufacturers (NVidia 8800 GTS and 
8800 GTX featuring 96 and 128 programmable unified shaders respectively). Com-
paring these results to ICP based registration and recognition methods (typically re-
quiring from a few seconds to tens of seconds for a single one-to-one match) clearly 
shows that the proposed approach is worth using it, at least timewise, regardless to the 
dataset dimension, as in a real biometric application the pre-processing phase (mesh  
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Fig. 5. ROC curve (a), alignment accuracy (b) and its relevance to recognition (c) 
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Fig. 6. Number of comparisons/sec for various computational hardware. In the graph CPU 
means only CPU is exploited, while GPU means that CPU (AMD Opteron 2,4 GHz) + GPU 
work together according to proposed scheme. (?) is just an estimate based on specs. 

subsampling, filtering, cropping performed within 1 second in the tested framework) 
has to be performed only once at enrolment time. 

4   Conclusions and Future Works 

We presented a 3D face registration and recognition method optimized for large scale 
identification applications. The proposed approach showed good accuracy and ro-
bustness and proved to be highly suited to take advantage of GPU architecture, allow-
ing to register a face and to compare it to many thousands of templates in less than a 
second. 

As the recent release of Nvidia “Cuda” GPU based programming environments 
promises further advances in term of general purpose capability, we are currently 
working to fully implement the method on GPU, including those stages (as normal 
map and histogram computing) which are still CPU based in this proposal. 
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