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Abstract. Watermarking is an attractive technique which can be used to ensure 
the security and the integrity of fingerprint images. This paper addresses the 
problem of optimum detection of multibit, multiplicative watermarks embedded 
within Generalized Gaussian distribution features in Discrete Wavelet 
Transform of fingerprint images. The structure of the proposed detector has 
been derived using the maximum-likelihood approach and the Neyman-Pearson 
criterion. The parameters of the Generalized Gaussian distribution are directly 
estimated from the watermarked image, which makes the detector more suitable 
for real applications. The performance of the detector is tested by taking into 
account the different quality of fingerprint images and different attacks. The 
results obtained are very attractive and the watermark can be detected with low 
detection error. Also, the results reveal that the proposed detector is more 
suitable for fingerprint images with good visual quality. 

Keywords: Fingerprint images, multibit watermarking, multiplicative rule, 
maximum-likelihood. 

1   Introduction 

Fingerprint-based authentication systems are the most advanced and accepted 
techniques of the biometric technologies. They have been used in law enforcement 
agencies and have been progressively automated over the last years. With the recent 
developments in fingerprint sensing, an increasing number of non-criminal 
applications are either using or actively considering using fingerprint-based 
identification. However, biometric-based systems, in general, and fingerprint-based 
systems, in particular, may risk several threats. Ratha et al. [1] describe eight basic 
sources of possible attacks on biometric systems. In addition Schneir [2] identifies 
many other types of abuses. Watermarking, which is one of the possible techniques 
that may be used, has been introduced to increase the security and the integrity of 
fingerprint data [3]-[7]. 

One of the most important stages in watermarking is the detection stage, which 
aims to decide whether a given watermark has been inserted within an image or not. 
This can be seen as a hypothesis testing in that the system has to decide the alternative 
hypothesis (the image is watermarked) and the null hypothesis (the image is not 
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watermarked). In binary hypothesis testing two kinds of errors can occur: accepting 
the alternative hypothesis, when the null hypothesis is correct and accepting the null 
hypothesis when the alternative hypothesis is true. The first error is often called false 
alarm error and the second error is usually called missed detection error. 

The problem of watermarking detection has been investigated by many 
researchers; however, the most of these works consider the case of one-bit 
watermarking. The problem of assessing the presence of a multibit watermark is more 
difficult than the one-bit watermark because the information bits embedded are 
unknown for the detector. Hernandez et al. [8] derived an optimum detection strategy 
for additive watermarking rule, which cannot be used when another embedding rule is 
used. Barni et al. [9] proposed a structure of an optimum multibit detector for 
multiplicative watermarks embedded in Weibull distribution features.  

In this paper, we propose an optimum detector of a multibit, multiplicative 
watermark embedded in the DWT coefficients of fingerprint images. The structure of 
the proposed detector is derived using a maximum-likelihood (ML) method based on 
Bayes’ decision theory, whereby the decision threshold is obtained using the 
Neyman-Pearson criterion. A Generalized Gaussian Probability Density Function 
(PDF) is used to model the statistical behavior of the coefficients. The performance of 
the proposed decoder is examined through a number of experiments using real 
fingerprint images with different quality. 

The rest of the paper is organized as follows: Section 2 shows how the watermark 
sequence is hidden into the DWT coefficients. Section 3 explains the derivation of the 
decision rule based on ML method while the derivation of the decision threshold is 
presented is Section 4. The experimental results are provided in Section 5. The 
conclusion is presented in Section 6. 

2   Embedding Stage 

The watermark is embedded into the DWT subbands coefficients. Let b= {b1…bNb} 
be the information bit sequence to be hidden (assuming value +1 for bit 1 and -1 for 
bit 0) and m= {m1m2…mNb} a pseudo-random set uniformly distributed in [-1, 1], 
which is generated using a secret key K. The information bits b are hidden as follows:  
(i) the DWT subband coefficients used to carry the watermark are partitioned into Nb 
non-overlapping blocks {Bi: 1 ≤ i ≤ Nb}. (ii) the watermark sequence m is split into Nb 
non-overlap chunks {Mi: 1≤ i ≤ Nb} so that, each block Bk   and each chunk Mk will be 
used to carry one in information bit. (iii) each chunk Mk is multiplied by +1 or -1 
according to the information bit bk to get an amplitude-modulated watermark. Finally, 
the watermark is embedded using the multiplicative rule, given by: 

 

                                             ( )
kBkkkB xbMy γ+= 1                                                   (1) 

 

where { }
kNBkBkBkB xxxx L21=  and { }

kNBkBkBkB yyyy L21= are the DWT coefficients of 

an original image and the associated watermarked image belonging to the block Bk, 
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respectively. γ is a positive scalar value used to control the strength of the watermark. 
The larger the strength, the more robust is the watermark but the visual quality of the 
image may be affected. So, it is important to set γ to a value which maximizes the 
robustness while keeping the visual quality unaltered. 

3   Maximum-Likelihood Detection 

Since the exact information bit sequence is unknown for the detector for blind 
watermarking, multibit detection is more difficult than the one-bit case. However, an 
optimum detector for multibit watermark can be derived following the same approach 
for the one-bit watermark described in [10], [11]. The watermark is detected using 
ML based on Bayes’ decision theory, whereby the decision threshold is derived using 
the Neyman-Pearson criterion which aim to minimize the missed detection probability 
for a fixed false alarm rate. According to this approach, the problem is formulated as a 
statistical hypothesis testing. Two hypotheses can be established as follows: 
 

H0: Coefficients are marked by a spreading sequence m, modulated by one of the 
2Nb possible bit sequence b. 
H1: Coefficients are marked with another possible sequence m’, including the null 
sequence, where m’≠m. 
 

The likelihood ratio, denoted by l(y), is defined as: 
 

                                          ( ) ( ) ( ).'myfmyfyl YY=                                              (2) 
 

where fY(y⎪m) and fY(y⎪m’) represent the PDF of y conditioned to the presence of the 
sequence m and m’, respectively. In fact, it has been proved in [10] that for reasonably 
small value of the strength γ, the PDF of the coefficients y conditioned to the event m’ 
can be approximated by the PDF of y conditioned to the presence of the null 
sequence, fY(y⎪0). The likelihood ration l(y) becomes: 

 
                                               ( ) ( ) ( ).0yfmyfyl YY=                                            (3) 

 
Assuming that the information bits b and the coefficients in m are independent of 

each other, as well as the DWT coefficients used to carry the watermark. The PDF 
fY(y⎪m) is obtained by integrating out the 2Nb possible bit sequences. 

 

                        ( ) ( )∏
=

=
bN

k
kkYY myfmyf

1

 

                                     ( ) ( ) ( ) ( ).11,11,
1

+=++−=−= ∏
=

k

bN

k
kkYkkkY bpmyfbpmyf (4) 

 
By assuming that p(bk= -1) = p(bk= +1) = 1/2, equation (4) can be written as 

follows: 
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Further simplification can be made by taking the natural logarithm of the 
likelihood ratio, thus the decision rule can be expressed by 
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For an optimum behavior of the ML detector, it is necessary to describe the PDF 
of the DWT coefficients of the original image. An initial investigation using various 
distributions such as Laplacian, Gaussian and Generalized Gaussian has found that 
the Generalized Gaussian PDF is the most suitable distribution that can reliably model 
the DWT coefficients of the fingerprint images. It has been found that the Generalized 
Gaussian can also be used to model the coefficients for each block Bk. The central 
Generalized Gaussian PDF is defined as: 

 

                          ( ) ( )( )βαβαββα iiX xxf −⎟
⎠
⎞

⎜
⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛Γ= exp12,;                             (7) 

 
where Γ() is the Gamma function, i.e., Γ(z) =∫e-t tz-1dt, z>0. The parameter α is referred 
to as scale parameter and models the width of the PDF peak (standard deviation) and 
β is called the shape parameter and it is inversely proportional to the decreasing rate 
of the peak. Note that β =1 yields the Laplacian distribution and β =2 yields the 
Gaussian one. The parameter α and β are estimated as described in [12]. 

Inserting (7) in (6), the decision rule for the Generalized Gaussian model is 
expressed by:  
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The decision rule reveals that an image is watermarked by the sequence m (H0 is 
accepted) only if z(y) exceeds a threshold λ. 
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4   Decision Threshold 

The Neyman-Pearson criterion is used in this work to obtain the threshold λ in such a 
way that the missed detection probability is minimised, subject to a fixed false alarm 
probability FAP* . Fixing the value of FAP* , the threshold λ can be obtained using the 
relation: 

 

                                   ( )( ) ( )( ) dzyzfHyzPP zFA ∫
+∞=>=

λ
λ 1

*                                (9) 
 

where fz(z(y)) is the PDF of z conditioned to the event H1. The problem now is to 
derive a good estimate of fz(z(y)). One idea is to use Monte Carlo simulations to 
estimate the false alarm probability for different values of λ and then choose the 
threshold λ which leads to the desired false alarm. However, this approach is very 
computationally intensive, especially when Generalized Gaussian PDF is used to 
model the coefficients because the parameters β and α are calculated numerically. 
Another simpler solution may be used to derive the threshold λ, by relying on the 
central limit theorem and assuming that the PDF of z(y) can be assumed Gaussian 
with mean µz=E[z(y)] and ( )[ ]yzVz =2δ [9]. Equation (9) can be written as: 
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where erfc()is the complementary error function, so: 
 

                                        ( ) zzFAPerfc μδλ += − 2*1 22 .                                          (11) 
 

The mean µz and the variance 2
zδ are estimated numerically by evaluating z(y) for n 

unreal sequences [ ]{ }nimm ii ≤≤−∈ 1;1,1: , so that 
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where zi represents the log likelihood ratio corresponding to the sequence mi and n is 
the number of the fake sequences used to evaluate z. the selection of n involves a 
trade-off between computational complexity and accuracy of results. The higher the n, 
the better the estimates of µz and 2

zδ  but the higher computational complexity is and 
the less used in real applications, and inversely.  

5   Experimental Results 

The experiments were carried out using real fingerprint images of size 448×478 with  
different quality chosen from ‘Fingerprint Verification Competition’ (Db3_a,FVC 
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2000)[13] . Each image is transformed by DWT using Daubechies wavelet at the 3rd 
level to obtain low resolution subband (LL3), and high resolution horizontal (HL3), 
vertical (LH3) and diagonal (HH3) subbands. For reasons of imperceptibility and 
robustness, the watermark is embedded in the HL3, LH3, HH3 subbands. Each subband 
is partitioned into blocks of size 16×16 (256 coefficients/block). A blind detection is 
used so that the parameters α and β of each block used are directly estimated from the 
DWT coefficients of the watermarked image because it was assumed that the 
watermarked image is close to the original one (strength γ<<1). For all experiments, 
we choose 0.20 for γ and 10-7 for PFA.  

 

               
                          Image 20_2                                                     Image 22_7 

 

           
                      Image 42_1                                                   Image 44_6 

Fig. 1. Test images 
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Fig. 2. Response of the watermark detector with different thresholds calculated with n=1, 10, 50, 
100. (a) Image 20_2, (b) Image 22_7, (c) Image 42_1, (d) Image 44_6. γ=0.20 and PFA=10-7. 

The first experiment is to determine the optimal value of n, necessary to derive the 
threshold λ with low complexity. To do so, the threshold λ is computed with different 
values of n (n=1, 10, 50, 100) and using fingerprint images of Fig. 1. We have also 
computed the responses of the detector to 1000 random watermarks where only one 
watermark among them is actually embedded. The results are plotted in Fig. 2. 

The results obtained show that the different thresholds get closer when n increases 
and, in general, there is a slight difference between the threshold obtained with n=50 
and n=100. Thus, n=50 yields a good threshold with a reasonable computational 
complexity. Further, the Fig. 2 shows that the correct response is much higher than 
those responses of the fake watermarks. 
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Fig. 3. Robustness against image filtering (mean filtering). Results refer to: (a) Image 20_2, (b) 
Image 22_7, (c) Image 42_1, (d) Image 44_6. with: γ=0.20, n=50 and PFA=10-7. 

 

 

 

 

 

 

 

 

Fig. 4. Robustness against Gaussian noise addition. Results refer to: (a) Image 20_2, (b) Image 
22_7, (c) Image 42_1, (d) Image 44_6. with: γ=0.20, n=50 and PFA=10-7. 
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Fig. 5. Robustness against JPEG compression. Results refer to: (a) Image 20_2, (b) Image 
22_7, (c) Image 42_1, (d) Image 44_6. with: γ=0.20, n=50 and PFA=10-7. 

With n=50, we have also evaluated the performance of the detector against attacks 
such as mean filtering, image compression (JPEG) and White Gaussian Noise 
addition. Each attack has been applied several times with different strength i.e. 
increasing the size of the mean filter, decreasing the value of SNR for the Gaussian 
noise and decreasing the quality for JPEG compression. The results obtained are 
reported in Figs. 2, 3, 4. For each attack the response of the detector for 1000 
randomly generated watermarks, including the one actually embedded within the 
image, has been measured. The response relative to the true watermark and the 
highest response among those corresponding to the other watermarks are plotted 
along with the threshold. In this way, both false alarm error and missed detection 
error are taken into account. The results obtained after applying mean filtering to the 
watermarked images are presented in Fig. 3. While, Fig. 4 shows the effect of the 
additive white Gaussian noise on both the detection response and the threshold.  
Fig. 5. provides the results for JPEG Compression. The results obtained clearly reveal 
that the proposed detector provides attractive results. For all attacks, the false alarm 
error does not occur while the missed detection error is obtained in few cases, 
especially for the mean filtering when the size of the filter is superior to 5.  

6   Conclusion 

In this paper, an optimum detector, based on the ML approach, for fingerprint image 
watermarking in the DWT domain has been proposed. The Generalized Gaussian 
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PDF has been used to model the statistical behavior of the DWT coefficients. The 
experiments reveals that the proposed detector provides very attractive results and the 
detecting error probability is very low, even in the presence of attacks. Also, the 
results confirm that the Generalized Gaussian is the most suitable distribution that can 
reliably model the DWT coefficients of fingerprint images. Further more, the quality 
of fingerprint images have an influence on the performance of the detector; we notice 
that the detector provides the best results for the images of good quality, where the 
ridges are very clear and represents the major part of the image.  
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