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Abstract. Minutiae point pattern matching is probably the most common ap-
proach to fingerprint verification. Although many minutiae point pattern match-
ing algorithms have been proposed, reliable automatic fingerprint verification 
remains a challenging problem, both with respect to recovering the optimal 
alignment as well as to the construction of adequate matching function. In this 
paper, we develop an evolutionary approach for fingerprint matching by com-
bining the use of the global search functionality of a genetic algorithm with a 
local improvement operator to search for the optimal global alignment between 
two minutiae sets. Further, we define a reliable matching function for fitness 
computation. The proposed approach was evaluated on two public domain col-
lections of fingerprint images and compared with previous work. Experimental 
results show that our approach is reliable and practical for fingerprint verifica-
tion, and outperforms the traditional genetic algorithm based method. 

Keywords: Fingerprints, matching/verification, alignment, minutiae, genetic 
algorithms. 

1   Introduction 

Fingerprints are graphical ridge and valley patterns on the tips of human fingers. Ow-
ing to their uniqueness and permanence, the use of fingerprints is considered to be one 
of the most reliable methods of personal verification. Fingerprints are today among 
the most popularly used biometric modality in automatic verification systems. Due to 
the continuing needs of law enforcement and interest from the developers of civilian 
applications, automated fingerprint verification systems are becoming increasingly 
widespread and are being extensively researched by the pattern recognition and image 
processing communities. Although fingerprints possess much discriminatory informa-
tion, and although significant progress in automating the verification process has been 
made, reliable automatic fingerprint verification is still a challenging problem [4]. 

The uniqueness of fingerprints has been well established [22], and can be determined 
by the overall pattern of ridges and valleys as well as the local ridge discontinuities 
termed “minutiae”. It is widely believed that the minutiae are the most discriminating and 
reliable features [17, 29] present in the fingerprints. For this reason, they are the most im-
portant and common features used in automatic fingerprint verification systems. The two 
prominent types of minutiae commonly used in automatic fingerprint verification are 
ridge ending and ridge bifurcation. The representation of a fingerprint pattern thus com-
prises all detected ridge endings and ridge bifurcations in a so called minutiae set. 
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By representing the minutiae set as a point pattern, the fingerprint verification 
problem can be viewed as a minutiae point pattern matching problem. Suppose a mi-
nutiae template set P is composed of m points, P = {pl, p2, …, pm}, and a query minu-
tiae set Q is composed of N points, Q = {ql, q2, … , qn}. Each minutia is usually de-
scribed by parameters (x, y, α), where (x, y) are the pixel coordinates of the minutia 
with respect to the image frame and α is the orientation of the minutia, which is de-
fined as the angle that the ridge associated with the minutia makes with the horizontal 
axis [17]. Typically, ridge orientations are restricted to the range [0, π), so that direc-
tions θ and θ+π have the same orientation. It should be noted that most minutiae rep-
resentation schemes do not distinguish endings from bifurcations since the type of a 
minutia can be easily interchanged by acquisition noise or pressure differences during 
acquisition. However, the orientation remains the same when this occurs. The align-
ment between a template and a query minutiae set can be simplified as an affine trans-
formation G(tx, ty, θ, s) composed of four parameters: tx, ty, θ, and s, where tx and ty are 
the translations along the x and y directions, respectively, θ is the rotation angle and s 
is a scaling factor. Thus, the transformation F(qi) = (xi', yi', αi') of a minutia qi = (xi, yi, 
αi) can be written as follows:  
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The fingerprint verification process can then be defined as the problem of finding the 
transformation between the template and query minutiae sets which can optimize a 
given matching function.  

Due to the large number of possible translations, rotations and scalings, finding the 
best alignment between two point patterns is an extremely difficult problem. A num-
ber of algorithms [5, 9, 10, 12, 13, 14, 15, 23, 25, 26] have been proposed in the lit-
erature. A common technique for these algorithms is to use local features associated 
with minutiae and/or their spatial properties to reduce the exponential number of 
search paths. These methods typically recover the transformation by choosing a refer-
ence minutia or minutia group (in which minutiae are close to each other) from the 
template and the query fingerprint, respectively. The two sets of minutiae are then 
aligned according to local structures of the two references. We refer to these methods 
as single reference based approaches. This approach can guarantee satisfactory align-
ments of regions adjacent to the reference minutia or minutia group. However, align-
ments of regions far away from the reference minutia or minutia group are usually not 
so satisfactory. This is largely because the alignment which tends to be found is lo-
cally strong, yet poor in areas distant to the local structure it has matched. Naturally, 
researchers have explored the use of a size-changeable bounding box [10, 12, 13]. 

Another alternative approach is to find a transformation in order to globally align 
two sets of minutiae. This approach tends to evenly align two sets of minutiae and 
thus one can use a size-fixed bounding box to identify corresponding minutiae. Zhu et 
al. [28] have proposed a method which aligns two sets of minutiae based on multiple 
pairs of reference minutiae. This method depends highly on the initialization of the 
minutiae pairs. Since the global alignment is a computationally intractable problem, 
naturally inspired evolutionary optimization algorithms have recently been a source of 
interest for minutiae point pattern matching [16, 24]. Tan and Bhanu [24] proposed 
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the use of a traditional genetic algorithm [11] for fingerprint matching. Le et al. [16] 
employed the technique of fuzzy evolutionary programming to match two sets of mi-
nutiae. These methods try to identify the optimal or near optimal global alignment be-
tween two minutiae sets and their experimental results are promising. However, they 
may take a large amount of time to converge, mainly because these methods employ 
either the simple evolutionary algorithm or its variants, which may not be well suited 
to fine-tuning search in complex search spaces. 

In this paper, we develop a novel evolution based algorithm for fingerprint match-
ing that follows the scheme of global minutiae alignment. In contrast to previous 
methods, our proposed algorithm hybridizes a genetic algorithm (GA) with a local 
improvement operator. Further, we define a reliable and discriminating matching 
function for fitness computation by combining the globally matched minutiae pairs 
with the result of the minutiae’s local feature similarity based on the product rule. 

2   Evolution Based Algorithm for Fingerprint Matching 

In this section, we present the details of our proposed algorithm, which combines the 
use of a global search via a genetic algorithm (GA) with a local improvement operator 
to search for the optimal global matching between two minutiae sets. Abstractly, the 
proposed algorithm (called EAFM) consists of selecting parents for reproduction, per-
forming a modified arithmetic crossover with the parents, applying mutation to the 
offspring, running a local improvement operator on each offspring, and carrying out a 
competition replacement. The evolution is terminated when one of the following two 
stopping criteria is met: 1) the fitness value of the best individual has not changed for 
N generations or 2) the fitness value of the best individual exceeds a certain threshold 
value, which means the two fingerprints are verified as from the same finger. The 
output of the algorithm is the best solution encountered during the evolution. The  
algorithm may be expressed concisely as follows with the subsequent sections elabo-
rating on the individual component phases:  
 

Step 1. Randomly initialize P sets of chromosomes, which encode alignment con-
figurations, based on a real-parameter representation (see Section 2.1). 

Step 2. Calculate the fitness value according to the method described in Section 
2.4 for each individual chromosome in the initial population. 

Step 3. Repeat the following sub-steps (a) to (e) until a stopping criterion is met. 
a) Select the pairing individuals based on the k-fold tournament selec-

tion method [8]. This procedure is repeated until P/2 parent pairs are 
selected. 

b) Generate intermediate offspring by applying a modified arithmetic 
crossover and then perform Gaussian mutation on the offspring (see 
Section 2.2). 

c) Run the local improvement operator on the offspring and update the 
offspring (see Section 2.3). 

d) Calculate the fitness value for each of the offspring according to the 
method described in Section 2.4. 

e) Create a new generation of size P from the best individual of the pre-
vious generation and the best offspring that resulted from crossover, 
mutation and local improvement operations. 

Step 4. Provide the alignment configuration for the terminal population individual 
with the best fitness. 

Algorithm 1. An evolution based algorithm for fingerprint matching 
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2.1   Representation and Initialization 

Our representation for the individual chromosome consists of a vector of four real 
numbers, where the first two positions represent translations along the x and y direc-
tions respectively, the next position represents the rotation angle, and the last position 
represents the scaling factor. Each individual in the population is constructed by ran-
dom assignment of a real number to each of the attributes of the solution. The initial 
values are constrained to be in the range of the attribute to which they are assigned 
(determined empirically from the experimental data sets) but are otherwise random. 

2.2   Crossover and Mutation 

Crossover is a probabilistic process that exchanges information between a pair of par-
ents to generate two offspring. The arithmetic crossover technique [8] has been used 
as the reproduction operator in the EAFM. Traditional arithmetic crossover linearly 
combines two parent chromosomes to produce two new offspring according to the 
following equations: 

2*)1(1*1 ParentaParentaOffspring −+= , (1) 

2*1*)1(2 ParentaParentaOffspring +−= , (2) 

where a∈[0,1) is a random weighting factor. In our approach, we apply either equa-
tion (1) or (2) randomly to produce only one single offspring. This helps to save time 
in processing the other similar offspring. The crossover is performed on each paired 
parent. 

After crossover, a low probability of Gaussian mutation is applied to the offspring. 
Gaussian mutation adds a unit Gaussian-distributed random value to the chosen at-
tribute value. The new attribute value is clipped if it falls outside of the lower or upper 
bounds of that attribute. 

2.3   Local Improvement Operation 

GAs are able to escape from local optima by means of crossover and mutation opera-
tors. However, they are not well suited for fine-tuning structures which are close to 
optimal solutions [8], and this results in their exhibiting a large execution time. To 
improve the time efficiency, incorporation of local improvement operators into the 
regeneration step of GAs, which called hybrid GAs, is essential. Hybrid GAs have 
been shown to be very effective for many combinatorial optimization problems [1, 4, 
18, 21, 27]. In this subsection we present the local improvement operator to effec-
tively design a hybrid GA for minutiae point pattern matching. 

The local improvement operator is inspired by the iterated closest point (ICP) algo-
rithm [3]. The ICP is a widely used heuristic for the alignment of 3D geometric mod-
els. It utilizes the nearest-neighbour relationship to assign a binary correspondence at 
each step. This estimate of the correspondence is then used to refine the transforma-
tion, and vice versa. This iterative scheme is known to converge fast [6]. However, it 
is sensitive to its initial rotations and translations, and susceptible to local optima. Its 
performance degenerates quickly with outliers (point features exist in one point-set 
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that have no corresponding points in the other), which is common in fingerprint minu-
tiae point pattern matching problem.  

In order to improve the computational efficiency, we design a local improvement 
operator based on one iteration of the ICP to fine-tune new offspring during each gen-
eration, after the regeneration step. This operator is summarized below: 
 

Step 1. Extract the transformation information encoded in the individual solution. Ap-
ply the transformation to the query minutiae set. 

Step 2. Compute the closest point pairs between the two minutiae sets by estimating 
the Euclidean distance between the minutiae coordinates. Collect corre-
sponding pairs if they satisfy the following geometric constraints: 1) the 
Euclidean distance does not exceed a certain value Δd and 2) the angular 
difference between their directions is less than a certain tolerance Δθ (see 
Section 4.2 for setting of the parameters Δd and Δθ). To avoid a minutia be-
ing doubly used for pairing, we mark the minutiae that have already been 
paired.  

Step 3. Compute the new transformation, in the sense of minimizing the sum of 
squared Euclidean distance error among the collected corresponding pairs. 

Step 4. Update the individual solution with the new transformation. 

Algorithm 2. A local improvement operator 

2.4   Fitness Computation 

The fitness of an individual indicates the degree of suitability of the solution it repre-
sents. Here, we introduce a local feature similarity to define a reliable and discrimi-
nating matching function to compute the fitness of individual solutions. The minutiae 
local feature proposed by Tico and Kuosmanen [25] has been used for designing such 
a matching function. In [25], each minutia defines a local structure, which is called a 
minutia descriptor. The minutia descriptor comprises information about the orienta-
tion field sampled in a circular pattern in a broad region around the minutia point. The 
circular pattern consists of L concentric circles of radii rl, (1≤l≤L), each one compris-
ing Kl sampling points pk,l, (1≤k≤Kl), equally distributed along its circumference. Let 
a = {αk,l} and b = {βk,l} be two minutia descriptors. The similarity function between a 
and b is defined as: 

∑∑
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, αk,l and βk,l are the local ridge orientations estimated at pk,l for 

descriptors a and b, respectively, and ),( ,, lklk βαΛ  is the orientation distance be-

tween angles, which takes values between 0 and 1. 
The minutia descriptors contain useful discriminatory information. Additionally, 

they can tolerate some deformation since they are formed from only a small area of 
the fingerprint. Thus, the similarity of minutia descriptors can be used to increase the 
reliability of the matching between two minutiae sets. Further, to make the matching 
function more discriminatory, we combine the globally matched minutiae pairs with 
the result of the minutiae’s local feature similarity based on the product rule. Now the 
matching function can be defined as: 



 Fingerprint Matching with an Evolutionary Approach 489 

)(

2
),(

1

1 tq

n
baS

n
fitness

n

i
ii +

×= ∑
=

, 
(4) 

where t and q are the number of minutiae located inside the intersection of the two 
fingerprint images for template and query respectively. The number of matched pairs, 
n, is identified using the same geometric constraints as those described in Section 2.4. 

For each individual, the transformation encoded within it is first extracted, then 
subsequently we apply the transformation onto the query minutiae set Q to obtain the 
set Q' comprising the transformed minutiae set. Given the minutiae sets P and Q', the 
number of matched minutiae, n, is first computed. If n is less than a threshold Fn, then 
let the fitness of the individual be f=-1/n (1≤n≤Fn) or f=-1 (n=0). In this case, it makes 
no sense to evaluate the matching function. Otherwise, the fitness of the individual is 
defined according to equation (4), so that maximization of the fitness is equivalent to 
finding the maximum number of matched minutiae points with the maximum average 
local feature similarity.  

3   Data Sets and Parameter Settings 

In this section, we describe the data sets used in the experiments. This is followed by 
a description of the implementation parameter settings for the proposed algorithm. 
Two public domain collections of fingerprint images, labeled DB1 and DB3, proposed 
in [32] as part of the FVC2002 Fingerprint Verification Competition were used in the 
experiments. The fingerprint images were captured using fingerprint scanners and 
contain a wide variety of fingerprint image qualities. Each of the two data collections 
comprises 800 fingerprint images captured at a resolution of 500dpi, from 100 fingers 
(eight impressions per finger). The minutiae information of the data sets is derived us-
ing the method described in [7]. 

The EAFM has a few parameters which need to be set. These include the GA pa-
rameters, the ranges used for population initialization and several thresholds. The val-
ues of GA parameters and ranges are determined experimentally on the above data 
sets. To establish these values, all other variables were held constant with only the 
one to be established changing, and five runs were completed for a wide range of val-
ues in each case. The results from each of the five runs were averaged and the best 
average was selected. Both the matching accuracy and efficiency of results were used 
in determining the values of variables. The crossover and mutation probabilities are 
set to be 0.9 and 0.02 respectively. Generally, we have found that a crossover rate of 
0.8-0.95 with a mutation rate of 0.01-0.05 offer best results. The order of tournament 
selection controls how quickly a population is “taken over” by dominant individuals 
in the population [2]. We used a tournament order of three. The number of genera-
tions, N, used to terminate the evolution and the population size, p, are set to be 5 and 
20, respectively. A larger value of either p or N may lead to a longer running time, 
however, with no significant improvement of the matching performance. The ranges 
of the rotation angle, scaling factor, translations along the x and y directions are set to 
be [-0.6, 0.6], [0.9, 1.1], [-150, 150] and [-150, 150], respectively. The threshold of Fn 
for fitness computation is set to be four. The minutiae matching threshold values of 
Δd and Δθ are set as 15 and 0.195, respectively, which were established in [22] for 
fingerprint images scanned at 500dpi resolution. 
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4   Experimental Results 

In this section, we evaluate the EAFM and compare its performance with a traditional 
GA based fingerprint matching method described in [24]. All the results reported in 
this section were obtained with simulations on a PC with an IntelTM PentiumTM 4 run-
ning under WindowsXP Professional. 

Before discussing the comparative results, we first briefly describe the method to 
be compared. The GA based fingerprint matching method was recently proposed by 
Tan and Bhanu [24]. In this method, a GA with the traditional roulette wheel selec-
tion, uniform crossover, and binary flip mutation was used with a binary code repre-
sentation, which represents alignment parameters, for fingerprint matching. The fit-
ness function is based on the local properties of each minutia-triplet. 

We mainly concern the performance with respect to matching accuracy and  
efficiency. Therefore, we report the Equal Error Rate (EER) and average matching 
time estimated using the experimental protocol proposed in [19]. The EER, which is 
commonly used to summarize the accuracy of a matching system [20], is defined as 
the error rate where the system’s false match rate equals its false non-match rate. Ta-
ble 1 lists the results of the EER values and average matching time of the two meth-
ods over the two data sets introduced above. 

Table 1. EERs and average matching times estimated on DB1 and DB3 for the two methods 
(EAFM and Tan et al.’s method) 

DB1 DB3 
Methods EER 

(%) 
Average 

matching time (s) 
EER 

(%) 
Average 

matching time (s) 
EAFM 1.1 2.91 3.6 3.07 

Tan et al.’s 
method [24] 

1.5 6.74 4.2 7.26 

The results in Table 1 show that the EAFM is a reliable and practical matching al-
gorithm. Compared with Tan et al.’s method, the EAFM is able to achieve lower error 
rate in both data sets. The EER of Tan et al.’s method turns out to be 1.5% and 4.2%, 
while our algorithm returns about 1.1% and 3.6% on DB1 and DB3, respectively. Fur-
ther, matching operations of our algorithm are faster than the Tan et al.’s method. For 
example, Tan et al.’s method needs 6.74 second on DB1 while our method takes about 
2.91 second on average. The improvement of matching efficiency of our proposed al-
gorithm is mainly due to the use of local improvement operation. 

5   Conclusion 

In this paper, we have reported on the design and implementation of a novel evolution 
based algorithm for fingerprint matching which seeks to identify the optimal global 
matching between two minutiae sets. A GA based evolution with local improvement 
hybridization is at the heart of the proposed algorithm. This has been developed with 
the particular goal of improving the efficiency of identifying optimal, or near optimal, 
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global matching between two fingerprint minutiae sets. Another key aspect of the 
proposed algorithm is the use of a reliable matching function for fitness computation. 
The experimental results confirm that the EAFM is a reliable and practical matching 
algorithm. The algorithm can achieve accurate matching results faster than the tradi-
tional GA based global fingerprint matching method. 
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