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Abstract. Period detection and cycle partitioning are always the very beginning 
for most gait recognition algorithms. Badly segmented silhouettes and random 
fluctuations in walking speed are two of the main problems for this basic but 
important issue. In this paper, we propose a method of cycle partitioning that is 
adaptive to silhouette quality and speed fluctuations. To do that, autocorrelation 
on sliding window is proposed to quantify the silhouette quality into “trusted 
zones” and “uncertain zones”. Prior period estimation and observation of fluc-
tuations are incorporated to obtain more precise cycle detection. One criterion 
based on the difference of Common Phase Frames (CPF) is proposed to evalu-
ate the precision of detection. In experiment, our method was compared with 
the traditional autocorrelation method using sequences from the USF gait data-
base. The results showed the improved cycle partitioning performance of the 
proposed method. 

1   Introduction 

As a young branch of biometrics, human gait has raised much attention in recent 
years. It has great potential in individual identification and video surveillance areas. 
Research in this field includes gait modeling [11], gait feature analysis [13], gait rec-
ognition based on model [4,8,12,13] or appearance [2,7,9,10], silhouette extraction 
and refinement [8,10], and semantic gait analysis etc. 

Periodicity is one of the important characteristics of gait out of other biometrics. 
Precise period estimation is always the very beginning of any gait recognition algo-
rithm. The autocorrelation-based methods [1,5] are a simple but common way to 
compute period from the foreground sum of silhouettes. Sinusoidal signal was used 
in [3] to fit such foreground sum curve so that the period was ready to be read. In 
[4], minima of the sum signal were detected and used as the separating points of 
cycles. [2] investigated and quantified the impacts of 4 different walking speeds 
(0.7, 1.0, 1.3, 1.6 m/s) upon gait recognition performance, and proposed method to 
normalize gait features across varying period lengths. [6] estimated the stride length 
and cadence by assuming a linear characteristic of them under multiple walking 
speeds. 
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The major problems of gait cycle detection lie in two aspects: badly segmented sil-
houettes and varying walking speeds. The first problem is mainly caused by complex 
background. Pre-filtering [4,5] is usually applied to de-noise the foreground sum 
signal prior to analysis. However, local signals with severe noise are hard to remedy 
through this global filtering. The second problem is varying speed, which has been 
paid less attention in literature up to now. Some works [2,6] analyzed gait at several 
discrete speeds. Instead, we aim to study fluctuating walking speed, which means the 
speed varies randomly around an approximate constant. This reflects the real status of 
walking behavior. 

In this article, systematical study on periodicity and cycle detection of silhouette-
based gait sequences is performed: we proposed the concept as well as a prototype 
approach of Silhouette Quality Quantification (SQQ) using autocorrelation on sliding 
window. Based on the binary estimation of sequence quality along frame number, 
“trusted zones” and “uncertain zones” were separated. Cycle detection adaptive to 
fluctuating speed and silhouette quality were implemented by incorporating the prior 
estimation and observations in each zone. In addition, a criterion based on the mean 
difference of Common Phase Frames (CPF) was proposed to quantitatively evaluate 
the cycle partitioning precision. 

Our method contributes on robust period detection even with very bad silhouette 
parts, and can detect the time-variation cycles of gait sequence with subtle fluctuation 
in walking speed. Comparing with the fixed period detection in traditional ap-
proaches, our method results in more precise cycle partitioning that is beneficial for 
any further gait analysis task. 

2   Fixed Period Detection 

Most of the approaches towards gait recognition detect gait cycles using foreground 
sum signal ( ) ( )

,

, ,
x y

S n I x y n=∑ , 0 1n N= −L , from all N silhouette images 

( ), ,I x y n . This signal is usually very noisy due to complex background so that pre-

processing is required. In [4], an adaptive filter was applied prior to the calculation of 
gait cycles. In general, Gaussian filter [7] is a usual way to smooth the raw sum  
signal. 

Given filtered foreground sum signal, the fixed period detection method works 
based on the autocorrelation function of ( )S n , denoted as ( )SA n . Its peaks n+  can be 

located by judgements of ( ) ( )1 0S SA n A n+ +− − > and ( ) ( )1 0S SA n A n+ ++ − ≤ . The 

x-coordinate of the second peak will tell the half gait period (e.g. from one double 
support stance to the next), denoted as prd . For simplicity, we use prd as the period 

value in the following. 
However, the fixed period value can’t precisely partition a gait sequence with fluc-

tuating walking speed which is ordinary for normal walking. Besides, this method is 
also vulnerable from silhouettes with low quality. 
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3   Adaptive Period Detection 

3.1   Silhouette Quality Quantification  

In outdoor environment, complex backgrounds make the background subtraction 
task difficult and produce “polluted” silhouettes, which obviously will affect the 
performance of appearance-based gait recognition algorithms. Therefore, methods for 
refining the silhouettes were proposed [8]. However, in most of the literature consid-
ering silhouette quality, the means for evaluating it still remains unsettled. We intro-
duce a quantitative method in this paper addressing this issue. 

It is easy to notice that a “clean” silhouette sequence will produce a smooth ( )S n  

curve with clear periodicity, while a “polluted” one will show a chaos ( )S n  with 

vague periodicity. So ( )S n  is a direct embodiment of silhouette quality. Because bad 

silhouettes often occur consecutively in real case, we study the quality of sub-
sequence of ( )S n  rather than single frame. Let ( )Si n  denote the i-th fragment of 

( )S n . It starts from the i-th frame of the sequence and has a length of W. We can use 

sliding window to define such a fragment: ( ) ( ) ( )WSi n S n i R n= + . Here ( )WR n  

denotes the rectangle window function which has unit values for 0 1n W= −L  and 
zero elsewhere. 

Using the same approach described in section 2, ( )Si n  can also produce its own 

autocorrelation function ( )SiA n and period value iprd . For walking sequence with 

approximately constant speed, a widely different local period iprd  apart from holistic 

period prd  can tell a bad fragment. We use the normalized difference between these 

two period values as part of our fragment quality metric: 

( ) 1 i
x

prd prd
Q i

prd

−
= −  (1) 

Another characteristic of bad fragments is their vague periodicity as mentioned 
above. We use the normalized difference between the heights of the first and the sec-
ond peaks of ( )SiA n  to measure the periodicity here: 

( ) ( ) ( )
( )

( )
( )

0
1

0 0
Si Si i Si i

y
Si Si

A A prd A prd
Q i

A A

−
= − =  (2) 

In fact, xQ  and yQ  are respectively derived from the horizontal and the vertical 

observations of the autocorrelation curve ( )SiA n . The final estimation of silhouette 

quality on fragment i is defined as the product of them: 

( ) ( ) ( )x yi Q i Q i= ⋅Q  (3) 
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3.2   Adaptive Cycle Partitioning 

For robust and precise cycle partitioning, we start with the fixed period value prd 
obtained in section 2. It serves as the prior knowledge of our period estimation and 
needs to be refined. 

For simplicity, binary silhouette quality is used below. We binarize the ( )iQ  ac-

cording to a predefined threshold th, thus dividing the whole ( )S i  into “trusted 

zones” (with ( )i th≥Q ) and “uncertain zones” (with ( )i th<Q ). ( )S i within the 

latter one is erased to decrease the impact coming from bad silhouettes: 

( ) ( )( ) ( )
( )

,   

0,             

G S i i th
S i

i th

⎧ ≥⎪′ = ⎨
<⎪⎩

Q

Q
,    0 1i N= −L  (4) 

Here, Gaussian filter ( )G ⋅ is applied upon ( )S i to smooth it. 

In [3], a sinusoidal wave signal was used to fit the periodical foreground sum sig-
nal so that cycles of the sequence were available. Here we use a similar way and a 
saw wave signal ( )saw n , 0 1n N= −L  is used. Its initial period is set to prd. We 

perturb its period and phase to find its optimal fitness with ( )S i′ by searching the max 

normalized cross-correlation of them. In the obtained ( )saw n′ , each peak is ready to 

tell a partitioning position. 
Since the fragments of ( )S i within ( )i th<Q  is “uncertain” and thus erased, parti-

tioning within such zones can only rely on the prior knowledge coming from the 
peaks on ( )saw n′ . In the “trusted zones” however, the observation from ( )S i′  is also 

available. So for each prior peak position i on ( )saw n′ , we search ( )S i′  within 

its δ neighbor region to find the posterior peak n* as depicted in (5). All these n* act 
as the partitioning points in the “trusted zones”. 

[ ]
( )

,
arg max
n i i

n S n
δ δ

∗

∈ − +
′=  (5) 

The adaptive period detection described above can partition the cycles according to 
the prior rough estimation for silhouettes with bad quality, and can adjust them ac-
cording to the observation from fluctuating cycle lengths for good silhouettes. So 
compared to the fixed period method, our method can partition the gait cycles more 
precisely. 

3.3   Evaluation Method 

For perfectly partitioned cycles with perfect silhouettes, all frames with the same 
relative offset from the start of each cycle should appear with salient similarity. Based 
on this idea, we built up our evaluation criterion for cycle partitioning. 
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Let jn  denote the start frame number of any cycle j which occupies a phase incre-
ment of 2π . Then the frame number on phase ϕ ( 0 2ϕ π≤ < ) in cycle j can be com-

puted by ( )( )1 2j j jn round n n ϕ π++ − ⋅ . The operator ( )round ⋅  is applied here to 

acquire integer value. We name all such frames on the same phase of every cycle 
Common Phase Frames (CPF), and their frame numbers constitute set Nϕ . The inten-
tion of defining CPF is to evaluate the precision of cycle partitioning according to 
their similarity. To do that, we firstly compute the average image of all CPFs on any 
phase ϕ : 

( ) ( )1
, , ,

n N

I x y I x y n
N ϕ

ϕ
ϕ

∈

= ∑  (6) 

Here, Nϕ  means the number of elements in set Nϕ . Similar definition as I ϕ  has 

also been used by Gait Energy Image (GEI) [9]. In our evaluation criterion, the simi-
larity of CPFs is measured through their mean error from I ϕ : 

( ) ( )
,

1
, , ,

x yn N

err I x y n I x y
N ϕ

ϕ ϕ
ϕ

∈

= −∑ ∑  (7) 

In general, more precise partitioning of cycles should result in greater similarity of 
CPFs, that is, smaller errϕ . 

4   Experiments 

The gait sequences used in our experiments comes from the USF gait database [10]. 
The videos in it were captured in outdoor environment with complex background and 
varying illumination, so many silhouettes with low quality were produced. We ran-
domly selected 5 sequences from the gallery set to test our method. 

4.1   Silhouette Quality 

In Fig. 1, the foreground sum signals ( )S n  derived from two different silhouette 

sequences are plotted in (a) and (d). The “polluted” silhouette fragments present 
weak periodicity comparing to the “clean” fragments. This is the basis of our Sil-
houette Quality Quantification (SQQ) criterion. The quality curves ( )iQ  of (a) and 

(d) are showed in (b) and (e) respectively. These SQQ results present similar judg-
ments with our subjective observations. After binarization, their respective binary 
silhouette quality estimations are plotted in (c) and (f). The threshold th is empiri-
cally set to 0.7 based on the characteristic of the data used in this paper. The “uncer-
tain zones” labeled with 0 are clearly distinguishable from the “trusted zones”  
labeled with 1. 
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 (a) 

 

(b) 

 

(c) 
 

(d) 

 

(e) 

 

(f) 
 

Fig. 1. Two examples of Silhouette Quality Quantification (SQQ). (a) and (d) are foreground 
sum signals ( )S n  from two of our test sequences. (b) and (e) are their SQQ curves ( )iQ . (c) 

and (f) are their corresponding binarized results. 

 
(a) 

 
(b) 

Fig. 2. Comparison of fixed cycle detection and adaptive cycle detection. (a) and (b) are from 
the same sequences as (a) and (d) in Fig. 1. Adaptive cycle detection is denoted by saw wave 
signals with solid line, while the fixed period results use the dashed line. 

4.2   Cycle Partitioning 

In Fig. 2, two examples of cycle detection results are denoted through saw waves. We 
use the same sequences as in section 4.1. The fixed period detections are plotted with  
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dashed line, while the same sequences with adaptive cycle detection are plotted with 
solid line for comparison. Note that in the “uncertain zones”, they overlap with each 
other, because only prior period value can be exploited here. However, in the “trusted 
zones”, using neighbor region width of 2δ = , the prior positions of peaks have been 
updated by more precise observations according to (5). Same approach has also been 
applied to search valleys of the saw waves. The results show the characteristic of 
speed fluctuations in normal walking. 

Table 1. The errϕ of CPFs are used to evaluate the precision of partitioning 

 Phase Seq.1 Seq.2 Seq.3 Seq.4 Seq.5 
Total 
mean 

0 6.70 5.42 7.47 3.19 5.61 
/ 2π  8.51 8.72 11.60 5.57 7.86 

π  9.12 8.98 9.84 4.83 7.59 
3 / 2π  7.49 7.79 8.75 3.45 4.25 

 

A
da

pt
iv

e 
cy

cl
es

 

mean 7.96 7.73 9.42 4.26 6.33 7.14 
0 7.64 6.48 8.02 3.16 5.97 
/ 2π  10.56 8.28 12.37 6.06 5.83 

π  10.10 9.13 11.59 4.50 8.31 
3 / 2π  8.52 7.70 8.28 5.12 4.09 

 

F
ix

ed
 c

yc
le

s 

mean 9.21 7.90 10.07 4.71 6.05 7.59 

Table 1 has compared the two methods introduced in this paper. CPFs on 4 differ-
ent phases ( 0, / 2, ,3 / 2ϕ π π π= ) from one of our test sequences are extracted and 
computed for evaluation of partitioning precision using the mean error criterion as (7). 
The proposed adaptive partitioning method outperforms the fixed period partitioning 
as a whole. Fig. 3 shows the CPFs produced by both methods. The results from our 
method (enclosed by rounded rectangles) show more consistency comparing to those 
from the fixed period detection. 

(a) 0  (b) / 2

(c) (d) 3 / 2  
Fig. 3. Eamples of CPFs on 4 phases from one of our test sequences. For each phase, the first 
row shows CPFs coming from the fixed period detection, while the second row enclosed by 
rounded rectangle corresponds to CPFs coming from the adaptive cycle detection. 
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5   Conclusion and Future Works 

In this paper, gait cycle partitioning was systematically studied, considering bad sil-
houette quality and fluctuating walking speed. The fixed period detection result was 
used as the prior estimation, which was further refined by the observation of fluctua-
tions in the “trusted zones” to obtain more precise cycle partitioning. To do that, crite-
ria for quantifying silhouette quality and evaluating cycle precision were proposed. 
The experiment results showed improved performance on partitioning precision of 
our method comparing with the fixed period approach. 

Precision period detection is with no doubt essential to gait recognition task. Fur-
ther more, the detection result of subtle fluctuations in walking speed can also provide 
beneficial cues for semantic and affective gait analysis. For instance, hesitating wan-
dering will present totally different fluctuating features on walking speed compared to 
consistently striding. This will be our research interest next. 
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