
A Decentralized Solution for Locating Mobile
Agents

Paola Flocchini and Ming Xie

SITE, University of Ottawa, 800 King Edward, Ottawa, Canada, K1N 6N5
{flocchin,mxie}@site.uottawa.ca

Abstract. In this paper we propose a new strategy for tracking mobile
agents in a network. Our proposal is based on a semi-cooperative ap-
proach: while performing its own prescribed task, a mobile agent moves
keeping in mind that a searching agent might be looking for it. In doing
so we want a fully distributed solution that does not rely on a central
server, and we also want to avoid the use of long forwarding pointers.
Our proposal is based on appropriate delays that the mobile agents must
perform while moving on the network so to facilitate its tracking, should
it be needed. The searching agent computes a particular searching path
that will guarantee the tracking within one traversal of the network. The
delays to be computed depend on structural properties of the network.
We perform several experiments following different strategies for com-
puting the searching path and we compare our results.

Keywords: Algorithms for mobile agents, agents location, tracking.

1 Introduction

In this paper we consider a classic problem for mobile agents: the tracking (or
locating) problem. An agent, or a group of agents, is sent on a network to locate
a particular agent that is instead moving to perform some tasks. Sometimes the
tracking is necessary to communicate with the agent or to terminate its task
(e.g., see [4,9]).

Other problems involving two mobile agents are somehow related to this one:
pursuit evasion, and rendezvous. In pursuit evasion there is a competitive setting,
where one agent tries to escape, while the other is chasing it. The problem has
been extensively studied in deterministic and especially in randomized environ-
ments (e.g., see [1,5,11]). In rendezvous the two agents cooperate to find each
other; in fact, their goal is to meet somewhere in the network and their actions go
towards this common goal. Also rendezvous has been widely investigated, under
different scenarios and different assumption (e.g., see [3] and, for a recent survey
[10]). In our problem there is no competition, since the moving agent does not
try to escape. On the contrary, there is cooperation, since the moving agent is
willing to facilitate the task of the locating agent. However, the degree of cooper-
ation is much weaker than in the rendezvous problem. In fact, the moving agent
has other tasks to perform, and it does not even know if some agent has been

A.-M. Kermarrec, L. Bougé, and T. Priol (Eds.): Euro-Par 2007, LNCS 4641, pp. 618–628, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Decentralized Solution for Locating Mobile Agents 619

sent to locate it. While performing its primary tasks it can also perform some
actions in order to help the tracking, in case it has to be performed. The agent is
willing to do so at the expenses of its own performances, up to a certain degree.

For this purpose, typical solutions involve: 1) the existence of a central host
where the moving agent constantly reports its position 2) having the moving
agent leave a trace of its movements on its way (e.g., see [2,7]). Both solutions
present obvious disadvantages. In the centralized solution the biggest problems
are related to fault tolerance and security (problems that are present every time
a centralized solution is employed). In fact, the central database could crash
resulting in a complete loss of the information; moreover a third party accessing
the central database could immediately determine the positions of all the agents
at a given time. The second solution consists of leaving at each node the indica-
tion of the node where the agent has moved (forwarding pointer). This solution
could result in a high space complexity to store all the information (especially
considering that several moving agents are usually present in a network).

We propose a totally different approach. The idea is to pre-compute a par-
ticular searching walk that will be followed by the searching agent whenever the
tracking is required. The moving agent moves autonomously and independently
to perform its task, without reporting its location and without leaving long
traces. The “speed” of its movement, however, is appropriately controlled in such
a way that, should the searching agent look for the moving agent, it would locate
it within one searching walk. By “controlling the speed” we mean that when the
moving agent needs to move over a link, it cumulates a delay (proportional to
some network parameter appropriately chosen) before performing the movement.
In the paper the network is assumed to be synchronous; preliminary studies
suggest that this assumption could be relaxed for a more realistic environment.

We describe how to compute this appropriate delay, we show that the amount
is related to a network parameter called MinMax chord. The choice of the optimal
search walk is conjectured to be an NP-complete problem. We describe several
heuristics to compute various searching walks. We then run some experiments to
see what are the performances of the heuristic algorithms in random graphs of
various size and degree. The performances measure we consider are the maximum
and average delay incurred by the moving, as well as the location time. The
results are interesting and motivate further study.

2 Model and Terminology

Although the problem might involve several moving agents and several searching
agents, without loss of generality we focus on the behavior of a single pair, so we
have a searching agent SA and a moving agent MA. The algorithm we describe
would apply to the case of more moving agents.

We assume the system is synchronous, that is, it takes one unit of time for
an agent to traverse a link. The searching agent move at the maximum possible
speed (1 time unit per link), while the moving agent “slows down” its movement
by waiting an appropriate amount of time at the nodes it encounters on its way.

620 P. Flocchini and M. Xie

We assume that the moving agent is followed by a single forwarding pointer;
in other words, a trace of the moving agent arrived at node y from link (x, y) is
present at node x as long as the moving agent is in y. This fact guarantees that
either the moving agent or its trace are always present on a node (even when the
moving agent is in transit on a link). The locating problem is considered solved
when SA resides on the same node as MA, or when it finds its forwarding pointer.

3 The Searching Walk

The general idea is to determine a traversal of the graph (called searching walk)
for the searching agent. While the moving agent moves arbitrarily, the search-
ing agent follows this predefined walk. Initially the searching agent is at the
“beginning” of the searching walk and the moving agent is obviously “ahead”.

The searching walk is a traversal of the graph. Let T = [y1, y2, . . . , yk] be a
traversal of G = (V, E). An extended weighted graph G′ = (V ′, E′), based on the
traversal T can be constructed by aligning the traversal nodes (each yi connected
to yi+1), and adding the other edges of E as chords, as shown in Figure 1. If
a node is visited more than once, there is a chord in G′ only between any two
consecutive occurrences of the same node in T . Given an edge (yi, yj) ∈ E′, let
weight(yi, yj) denote its weight .

v1

v2

v5

v6

v7

v8

Traversal Walk

v7v6v5v4v3v2

6

v3

v1

5 2

v4 v8

a

b

d

g

f

c

e a b d gfc eb

Fig. 1. Traversal Walk with Chords

More precisely, let G = (V, E) be a graph with n nodes, and let T =
[y1, y2, . . . , yk] be a traversal walk of G (with k ≥ n). Let f : V ′ ⇒ V be a
(non injective) function that, for each element yi of the traversal, returns the
corresponding node f(yi) of V . Let E(x) denote the edges incident to node x
in G. We now define a weighted graph G′ = (V ′, E′) as follows:

– Vertices: V ′ = {y1, . . . , yk} contains one vertex per element of T ;
– Edges : (yi, yj) ∈ E′ if:

1) ((f(yi), f(yj)) ∈ E) AND (there exists no k (i < k < j) such that
f(yi) = f(yk) or f(yk) = f(yj)).

2) f(yi) = f(yj) with i �= j AND there exists no k (i < k < j) such that
f(yi) = f(yk).

Weight: weight(yi, yj) = i − j

A Decentralized Solution for Locating Mobile Agents 621

Let us call physical chord a chord in G′ that corresponds to a link in G,
and virtual chord a chord in G′ that connect two occurrences of the same node
of G (thus it does not correspond to any link of G). A virtual chord, in fact,
corresponds to a cycle in the traversal walk. For each node x ∈ V , F−1(x) =
{f−1(x)} contains the corresponding occurrences of x in T .

We now define a node and an edge labeling for graph G. Let β : V → Z be
a node labeling function that associate an integer to each node of the network,
and λx : E(x) → Z be an edge labeling function that associate an integer to
each edge incident to node We label the nodes and the edges of G as follows:

– Vertices:
Let x ∈ V . If |F−1(x)| = 1, then β(x) = 0. If F−1(x) = {vi,1, vi,2, . . . , vi,m}
m > 1, then β(x) = Maxj{weight(vi,j+1, vi,j)} for j = 1 . . .m − 1.

– Edges:
Let (x, y) ∈ E. We define λx(x, y) = Maxa,b,i,j{weight(vi,a, vj,b)} for vi,a ∈
F−1(x), vj,d ∈ F−1(y)), and (vi,a, vj,b) ∈ E′.

We compute the delays that the moving agent has to introduce in such a way
that the searching agent (SA) is always “behind” the moving agent (MA) along
the searching walk, except when it locates it or its forward pointer (FP). With
the delays we define below, in fact, it could happen that SA overpasses MA; in
this case, however MA is behind the forwarding pointer and it is guaranteed to
reach it before it expires.

Suppose the moving agent arrives at node x from link (w, x) and has to
move to node y through link (x, y). If λx(x, y) < 0 the agent can move directly
without adding any delay because it is moving “away” from the searching agent;
if λx(x, y) > 0, it waits the following amount of time.

Delay

Agent reaching x from (w, x), moving to y through (x, y) in G.

If λx(x, y) < 0
move-to-y

If λx(x, y) > 0
wait Max{β(x), λx(x, y) − 1, λw(w, x) − 1}
move-to-y

Let T = [y1, y2, . . . , yk] be the searching walk with SA initially in y1 when
the process starts at time t = 1.

Lemma 1. Let MA arrives at node x at time t from node w. Let del be the
time MA has to wait before moving to some node y. If by the time t + del MA
has not been located, then after the movement of MA towards y, SA is “before”
the first occurrence of {f−1(y)} in T (i.e., t + del + 1 < i ∀vi ∈ F−1(y)).

Proof. (Sketch) By induction on the movements of MA. It is true at time 1,
when MA moves for the first time. Let the lemma be true when MA arrives to
node w and let us prove it is true when MA reaches the next node x. The lemma

622 P. Flocchini and M. Xie

is trivially true if link (x, y) corresponds to a “forward link” in the traversal path,
i.e., if λx(x, y) < 0. Let us then consider only “backward” links.

Consider time t when MA arrives in x. At this time, SA is in yt and, by
induction hypothesis, it is either ahead of MA of it will catch it before MA can
move. Now MA waits for Max{β(v), λw(w, x) − 1, λx(x, y) − 1} time units. Let
m and M be smallest and the largest indices such that ym, yM ∈ F−1(x). We
now consider three cases:

- Case t < m. If m − t < λx(x, y), by definition of delay, SA will locate MA
before it moves to y (because del > λx(x, y)). Otherwise, SA will be “before”
or on y at time t + del + 1.

- Case m < t < M . Let ya, yb ∈ F−1(x) be the closest occurrences of node x
to yt. SA will reach node x before MA moves to y because, by definition of
delay, del > β(x) and β is the largest cycle containing x (which is greater
than or equal to b − a).

- Case t > M . SA will reach FA in the next del time units because, by
definition of delay, MA stays in x for at least λw(w, x) − 1 time units and
thus, FA is in w when SA reaches it at time t + λw(w, x) − 1.

It follows from the previous Lemma that:

Theorem 1. The searching agent locates the moving agents by the end of its
traversal.

Clearly, one would like to minimize both the location time (which depends on
the length of the searching walk) and the delay incurred by the moving agent. In
the following we are interested in searching walks of length O(n) and we would
like to minimize the maximum delay as well as the average delay incurred by
the moving agent. The maximum delay corresponds to the longest (virtual or
physical) chord; thus, we would need to find the traversal that minimizes such a
chord. More precisely, we define the MinMax Traversal TG of G as the traversal
that minimizes the maximum weight in G′: TG = MinT {Maxi,j{w(yi, yj)}}
with (yi, yj) ∈ E′.

4 Building Good Searching Walks

We conjecture that finding the MinMax traversal of a graph is an NP-complete
problem. In the following we propose several heuristic algorithms to construct
“good” traversal and we compare them.

General Traversal Algorithm. Consider the following general traversal al-
gorithm that visits the nodes in depth. If the node where the searching agent
resides has unvisited neighbours, the agent moves to one of them; if it has no
unvisited neighbours, but some nodes have not been visited, it moves through
already visited nodes to reach one that has not been visited yet.

In the general traversal algorithm described above, there are two points where
we can introduce some variations for obtaining a searching walk that is good for

A Decentralized Solution for Locating Mobile Agents 623

our purposes: 1) How to choose the next node when the current node has several
unvisited neighbours. 2) Where to move after visiting a node without unvisited
neighbours. In the common depth-first traversal (DFT), for example, a random
choice is performed for 1) and a backtrack for 2). Obviously an arbitrary DFT
does not necessarily result in an efficient searching strategy.

Choosing an Unvisited Neighbouring Node. The following are different
strategies to choose one among the unvisited neighboring nodes.

- Random. The agent randomly chooses an unvisited neighboring node.
- Priority Queue. When the agent moves to a new node, the unvisited neigh-

bouring nodes of that node are stored in a priority queue. When the agent
finds more than one unvisited neighboring nodes, it chooses the unvisited
neighboring node with highest priority. If none of the unvisited nodes is in
the queue:

• Basic: The agent randomly chooses an unvisited neighboring node.
• Improved: The agent checks the unvisited neighboring nodes’ unvisited

neighbors. If it finds at least one of the unvisited neighboring nodes at
distance two in the priority queue, it chooses the one with highest priority
and it moves there.

• Closest to the queue: The agent chooses the one that is closest to a
node in the priority queue (in case of ties it selects the one closest to a
highest priority element in the queue).

- Closest to start node. When the agent has more than one unvisited neigh-
boring nodes, it moves to the unvisited neighboring node that is closest to
the start node.

- Neighbour of least visited node. When the agent has more than one
unvisited neighboring nodes, it moves to the unvisited neighboring node
whose neighbour has been visited least recently.

Moving to a Non neighbouring Unvisited Node. The following are dif-
ferent strategies to move to an unvisited node when there is no unvisited neigh-
boring node from the current agent’s location.

- DFT. The agent backtracks to the most recently visited node that has un-
visited neighboring node, and then continues the traversal.

- Greedy. The agent moves to the nearest unvisited node.
- BFT. The agent moves to one of the unvisited node that is closest to the

start node.
- Hybrid. The agent moves to the nearest unvisited node if there is only one

such node; if there are more such nodes, the agent moves to the node among
the nearest unvisited nodes that is closest to the starting node of the walk.
This strategy combines the greedy and BFT strategies.

When considering a non-neighbouring unvisited node, we include in the walk
the shortest path between the current node and the next. Notice that, in doing
so we might visit new nodes.

624 P. Flocchini and M. Xie

The strategies described above (except for Random and DFT) are motivated
by the empirical observation that it might be useful to fully visit an area around
a visited node before moving to another area of the graph. In fact, visiting
a neighbour of a node already visited creates a chord: since we would like to
minimize the length of the chords, we would like to visit these nodes as soon as
possible. On the other hand, we also want to maintain a walk of size O(n) and
to achieve this we cannot revisit nodes already visited too many times.

5 Experimental Results

5.1 Experimental Setup

We now combine the different strategies for choosing the next neighbouring
unvisited node and choosing a non-neighbouring unvisited node. For each algo-
rithm, we record the length of the traversal walk, the maximum and average
delay for the moving agent. Notice that the maximum delay corresponds to the
length of the longest chord.

We run the algorithms on different random topologies of various size and den-
sity. For each type of graph, we generated 20 graphs with the same parameters,
and we averaged the obtained results. We utilize Java Universal Network/Graph
Framework [8] library to generate the graphs.

- A1: random + DFT .
- A2: improved priority queue + DFT .
- A3: improved priority queue + Greedy.
- A4: random + Greedy.
- A5: improved priority queue+ BFT.
- A6: random + BFT.
- A7: improved priority queue + Hybrid.

We have observed all the results for all the combinations, we however show
here only the ones from which we have obtained the most interesting results.

In this set of experiments we are interested in the maximum and average
delay incurred by the moving agent, and in the location time, depending on the
traversal strategy followed by the searching agent. In all cases, the length of the
traversal is only slightly higher than the number of nodes.

In the experiments, we generated 10 random graphs for each type of graph, and
obtained the average values for the results. We have run experiments for various
graph sizes n (n = 100, 200, 500, 800, 1000) and levels of density m (number of
edges) (m = 4n, 5n, 6n, 7n, 8n, 9n, 10n). For each choice of n and m we generated
10 random graphs to count the average values. In each case we randomly select
the starting node.

The graphic in Figure 2 a) shows that, among our heuristics, the ones with
the best performance in terms of the length of the maximum chord are A3 and
A7; that is: the improved priority queue heuristic as the choice of an unvisited
neighbouring node, and either the Greedy or the Hybrid heuristic for the choice of

A Decentralized Solution for Locating Mobile Agents 625

a non-neighbouring unvisited node. This graph correspond to the case n = 1000;
the results are quite consistent with different sizes of the graph.

Interestingly, for all heuristics, increasing the density of the network (i.e., its
average degree), results in a decrease of the length of the traversal and, most of
the times, also of the length of the maximum chord and average delay.

The graphic in Figure 2 b) shows the changes in average delay incurred by
the moving agent as the number of edges increases, for the different strategies.
Also in this case, the best performances are obtained by A3 and A7.

4000 5000 6000 7000 8000 9000 10000
900

1000

1100

1200

1300

1400

1500

1600

1700

1800

M
ax

im
um

 D
el

ay
 (

tim
e

un
its

)

n=1000

 A1

A2

A6

m

A5

A4

A7

A3

4000 5000 6000 7000 8000 9000 10000
100

150

200

250

300

350

400

A
ve

ra
ge

 D
el

ay
 (

tim
e

un
its

)

n=1000

 m

A1

A2

A6

A5
A4

A7
A3

Fig. 2. a) Max delay b) Average delay

The various results for the plain DFT and some combinations of heuristics
are reported in the tables below (again for n = 1000).

m A1: Random + DFT
Max. D. Av. D. Loc. T. Length

4000 1791 418 791 1855
5000 1654 325 712 1705
6000 1551 279 669 1617
7000 1400 207 608 1464
8000 1342 187 587 1393
9000 1284 170 554 1319
10000 1273 166 536 1321

m A7: Improved Priority+ Hybrid
Max. D. Av. D. Loc. T. Length

4000 1081 148 509 1163
5000 1031 152 501 1124
6000 1016 155 510 1098
7000 964 154 498 1075
8000 960 157 479 1067
9000 958 159 502 1060
10000 944 159 491 1049

m A4: Random + Greedy
Max. D. Av. D. Loc. T. Length

4000 1120 172 506 1149
5000 1086 171 502 1110
6000 1070 172 502 1089
7000 1051 171 499 1076
8000 1052 171 486 1065
9000 1041 170 497 1057
10000 1037 170 492 1051

m A5: Improved+BFT
Max. D. Av. D. Loc. T. Length

4000 1248 183 621 1329
5000 1132 175 609 1240
6000 1063 168 562 1178
7000 1024 166 556 1144
8000 1005 164 545 1116
9000 996 164 514 1098
10000 976 163 504 1082

Maximum delay, average delay, location time, length of the walk for n = 1000.

626 P. Flocchini and M. Xie

5.2 Observations

The experiments lead to the following observations.

1. With our best combinations of heuristics (priority queue and hybrid and
priority queue and greedy), the maximum delay is reduced by approximately
half compared to a Depth-first traversal; the average delay is reduced of 75
%. The reductions are more evident when the graph is sparse, they become
less relevant when the graph is very dense (see Figure 2 and tables in the
previous Section). Notice that there are graphs (for example the ring) where
it is impossible to find a walk of size O(n) with a maximum chord of length
smaller than O(n).

2. In general, with any heuristic, the maximum delay is slightly shorter than
the length of the traversal walk.

3. The choice of the heuristic to move to a non-neighbouring unvisited node
deeply affects the performances. The traversals with Greedy or Hybrid
heuristics give generally the best results, followed by the BFT, while DFT
has the worst performance. This confirms the intuition that it is more effi-
cient to fully visit the neighbours of a visited node before moving to nodes
that are further apart.

4. While the maximum delay always decreases with the increase of the number
of edges, the average delay is more stable and does not display this strong
behavior.

5. Combinations A4 (Random+ Greedy) and A5 (Improved+ BFT) behaves in
a similar way and they both improve the plain depth-first walk. Interestingly,
A4 outperforms A5 for sparse graphs, while it becomes less efficient then
A5 for more dense graphs. In our experiments this happens roughly when
m = 6n Our intuition for this behavior is that the BFT heuristic heavily
depends on the density; in fact, when the graph is too sparse BFT gives
little chance to find a “good” (close to the start) unvisited node; increasing
the number of edges, however, it is more likely that such a “good” node
is found thus discovering shorter chords. On the other hand, the Greedy
heuristic does not depend on the density since it can always move to the
nearest visited node.

6. An interesting observation is that the performances are proportional to the
walk’s length, in the sense that strategies with longer walks give generally
worse performances than strategies with shorter walks. The only exception
is A7 when compared with A4. The performances of A7, in fact, are better
than those of A4 although the length of the traversal walk of A7 is slightly
higher (at least for densities m < 10n).

7. Fixing the average degree and changing the graph size, the average and
maximum delay increases linearly with the graph size. Furthermore, the
lower is the lower degree, the more the choice of the heuristic affects the
performance (the graphics corresponding to this type of analysis are not
shown for lack of space).

A Decentralized Solution for Locating Mobile Agents 627

6 Conclusion

The contribution of this paper is the proposal of a new approach for locating
mobile agents that involves neither forwarding pointers (only a single trace of
size one) nor a central server. The approach is based on having the moving
agent move at a variable speed, depending on the structural properties of the
links it is traversing. At this stage the algorithm could not seem applicable in
practice because it is based on very strong assumptions about the environment,
which is assumed to be synchronous. Notice however that synchronicity could be
relaxed by slightly increasing the length of the trace left by the agents; in fact,
preliminary studies suggest that this approach would work also in environments
that are not synchronized provided the moving agent leaves a short trace of
length 2. Further notice that while computing the delay we have not taken into
consideration the time the agent has to actually spend at each node. Depending
on its tasks, the agents might have to spend a certain amount of time thus
decreasing the forced delay.

We are currently working on several possible improvements that we believe
will highly decrease the average delay. The employ of more than a single search-
ing agent would considerably decrease the locating time. For example, static
searching agents could be placed at crucial nodes (the ones which have long
chords along the searching walk) while a single searching agent could traverse
the walk; alternatively, several searching walk could be traversed concurrently
thus reducing the locating time. This paper is just a first step towards exploiting
the structure of the network for locating purposes, we are now working on im-
provements like the ones mentioned above to make the technique more applicable
and efficient in a practical setting.

References

1. Adler, M., Racke, H., Sivadasan, N., Sohler, C., Vocking, B.: Randomized pursuit-
evasion in graphs. In: Int. Colloquium on Automata, Languages and Programming,
pp. 901–912 (2002)

2. Alouf, S., Huet, F., Nain, P.: Forwarders vs. centralized server: An evaluation of two
approaches for locating mobile agents. Performance Evaluation 49(1-4), 299–319
(2002)

3. Alpern, S., Gal, S.: The theory of search games and rendezvous. Kluwer Academic
Publishers, Dordrecht (2003)

4. Baumann, J.: Mobile Agents: Control Algorithms. LNCS, vol. 1658. Springer, Hei-
delberg (2000)

5. Demirbas, M., Arora, A., Gouda, M.G.: A pursuer-evader game for sensor networks.
In: Pro. 6th Symposium on Self-Stabilizing Systems, pp. 1–16 (2003)

6. Diaz, J., Petit, B.J., Serna, M.: A survey of graph layout problems. ACM Com-
puting Surveys 34(3), 313–356 (2002)

7. Fowler, R.J.: The complexity of using forwarding addresses for decentralized object
finding. In: 5th ACM Symp. on Principles of Distributed Computing, pp. 108–120.
ACM Press, New York (1986)

628 P. Flocchini and M. Xie

8. Jung: Java Universal Network/Graph Framework, http://jung.sourceforge.
net/

9. Lien, Y., Leng, C.W.R.: On the search of mobile agents. In: 7th IEEE Int. Sympo-
sium on Personal, Indoor, and Mobile Radio Communications, pp. 703–707. IEEE
Computer Society Press, Los Alamitos (1996)

10. Kranakis, E., Krizanc, D., Rajsbaum, S.: Mobile agent rendezvous. In: 13th Int.
Coll. on Structural Information and Communication Complexity, pp. 1–9 (2006)

11. Parsons, T.D.: Pursuit-evasion in a graph. In: Jantke, K.P. (ed.) AII 1992. LNCS,
vol. 642, pp. 426–441. Springer, Heidelberg (1992)

http://jung.sourceforge.net/
http://jung.sourceforge.net/

	A Decentralized Solution for Locating Mobile Agents
	Introduction
	Model and Terminology
	The Searching Walk
	Building Good Searching Walks
	Experimental Results
	Experimental Setup
	Observations

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

