
Some Notes on the Security of the Timed
Efficient Stream Loss-Tolerant Authentication

Scheme

Goce Jakimoski�

Department of Electrical and Computer Engineering
Stevens Institute of Technology, Burchard 212, Hoboken, NJ 07030, USA

Abstract. RFC4082 specifies the Timed Efficient Stream Loss-tolerant
Authentication (TESLA) scheme as an Internet standard for stream au-
thentication over lossy channels. In this paper, we show that the sug-
gested assumptions about the security of the building blocks of TESLA
are not sufficient. This can lead to implementations whose security relies
on some obscure assumptions instead of the well-studied security prop-
erties of the underlying cryptographic primitives. Even worse, it can
potentially lead to insecure implementations. We also provide sufficient
security assumptions about the components of TESLA, and present a
candidate implementation whose security is based on block ciphers re-
sistant to related-key cryptanalysis.

Keywords: message authentication, multicast stream authentication,
TESLA, cryptanalysis, block ciphers, related-key attacks.

1 Introduction

While most network applications are based on the client-server paradigm and
make use of point-to-point packet delivery, many emerging applications are based
on the group communications model. In particular, a packet delivery from one
or more authorized sender(s) to a possibly large number of authorized receivers
is required. One such class of applications is the class of multicast stream appli-
cations.

Streams of data are bit sequences of a finite, but a priori unknown, length
that a sender sends to one or more recipients. They occur naturally when the
buffer/memory is shorter than the message, or when real-time processing is re-
quired. Digitalized audio and video are the most common multicast stream ap-
plications. However, streams are quite common in financial applications as well.
Whether it be stock quotes, customer related data or other market data feeds,
the volumes of this data are growing rapidly, and the data takes the form of
continuous data streams rather than finite stored data sets.

� This work was supported in part by the National Science Foundation under the grant
ANI-0087641.

E. Biham and A.M. Youssef (Eds.): SAC 2006, LNCS 4356, pp. 342–357, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Some Notes on the Security of the TESLA Scheme 343

The problems of stream authentication and stream signing have been ex-
tensively studied in the past years. Gennaro and Rohatgi [11] have proposed a
stream signing scheme based on a chain of one-time signatures. A similar scheme
has been presented by Zhang [28] for authentication in routing protocols. Vari-
ous schemes were proposed subsequently [8,1,27,2,23,6,24] culminating with the
recent adoption of TESLA as an Internet standard [19]. TESLA is also a basis
for other Internet drafts (e.g., [7]), and its security and efficiency analysis can
be found in [16,17,18,20].

The goal of this paper is to point out some flaws in the specification and secu-
rity analysis of TESLA. Although the basic design principles of TESLA are not
flawed, the suggested security assumptions about the underlying cryptographic
do not provide provable security. Namely, we were able to construct examples
of insecure TESLA implementations whose underlying building blocks satisfy
the suggested security assumptions. We also show that provable security can be
obtained by using stronger assumptions, and present an implementation whose
security is based on a related-key model of a block cipher.

The outline of the paper is following. Some preliminaries are given in Section 2.
In Section 3, we present examples of insecure TESLA constructions that are built
using secure components. Sufficient conditions and a security proof are provided
in Section 4. We propose an efficient implementation based on block ciphers in
Section 5. The paper ends with the concluding remarks.

2 Background

2.1 TESLA

The Timed Efficient Stream Loss-tolerant Authentication scheme is a multicast
stream authentication scheme proposed by Perrig et al [16]. Here, we briefly de-
scribe the mechanisms employed in TESLA to achieve loss-tolerance, fast trans-
fer rates and dynamic packet rates.

The security of TESLA is based on the paradigm depicted in Figure 1. To
authenticate the packet Pi of the stream, the sender first commits to the key
value Ki by sending H(Ki) in the packet Pi−1. The key Ki is only known to
the sender, and it is used to compute a MAC on the packet Pi. After all recip-
ients have received the packet Pi, the sender discloses the key value Ki in the
packet Pi+1. The recipient verifies whether the received key value corresponds
to the commitment and whether the MAC of the packet Pi computed using the
received key value corresponds to the received MAC value. If both verifications
are successful, the packet Pi is accepted as authentic. Note that Pi contains
the commitment to the next key value Ki+1. To bootstrap the scheme, the first
packet is signed using a digital signature scheme (e.g., RSA). If the packet Pi−1
is lost, then the authenticity of the packet Pi and all subsequent packets cannot
be verified since the commitment to the key Ki is lost. Similarly, if the packet
Pi+1 is lost, the authenticity of the packet Pi and all subsequent packets cannot
be verified since the key Ki is lost.

344 G. Jakimoski

Di−1
Ki−2

H(Ki)

Pi−1 Pi

Mi

H(Ki+1)
Ki−1

Di

MAC(Ki, Di)

Pi+1

Mi+1
H(Ki+2)
Ki

MAC(Ki+1, Di+1)

Di+1

MAC(Ki−1, Di−1)

Mi−1

Fig. 1. The basic stream authentication scheme

Pi−1 Pi

Di

Pi+1

Di+1
Mi−1

Ki−2

Mi

Ki−1

Mi+1

Ki

MAC(K ′
i, Di) MAC(K ′

i+1, Di+1)MAC(K ′
i−1, Di−1)

K ′
i−1

Ki−1

K ′
i

Ki

K ′
i+1

Ki+1

FF
F ′ F ′ F ′

Di−1

Fig. 2. TESLA Scheme II: Tolerating packet loss

Perrig et al. [16] proposed a solution to the above problem by generating
the sequence of keys Ki using iterative application of a pseudo-random function
to some initial value as illustrated in Figure 2. Let us denote v consecutive
applications of the pseudo-random function F as F v(x) = F v−1(F (x)), and let
F 0(x) = x. The sender has to pick randomly some initial key value Kn and to
pre-compute n key values K0, . . . , Kn−1, where Ki = Fn−i(Kn), i = 0, . . . , n.
The sequence of key values is called a key chain. The key K ′

i, which is used
to authenticate the packet Pi, is derived from the corresponding key value Ki

by applying the function F ′. Since F is easy to compute and hard to invert,
given Ki the attacker cannot compute any Kj for j > i. However, the recipient
can compute any key value Kj from the received key value Ki, where j < i.
Therefore, if the recipient has received a packet Pi, any subsequently received
packet Pj (j > i) will allow computation of K ′

i = F ′(Ki) and verification of the
authenticity of the packet Pi.

The authors suggest the function F to be implemented as F (Ki) = fKi(0),
where f is a target collision resistant pseudorandom function. There are no
requirements imposed on the function F ′ in the original description of TESLA
[16]. However, RFC4082 requires F ′(Ki) to be computed as F ′(Ki) = f ′

Ki
(1),

where f ′ is a pseudorandom function. We are going to consider two cases:

– F ′ is an identity map. There are two main reasons why we consider this case.
First, the authors make the same assumption when proving the security of
TESLA in [16]. The presented proof is the only security proof of TESLA

Some Notes on the Security of the TESLA Scheme 345

provided by the authors. Second, if F ′ is an identity map or some other
simple transformation, then the scheme is more efficient (i.e., we can avoid
an extra PRF evaluation per packet). As shown in Section 4, the scheme can
be secure even if F ′ is an identity map.

– F ′(Ki) = f ′
Ki

(1), where f ′ is a pseudorandom function. This is required in
RFC4082.

The security of the scheme is based on the assumption that the receiver can
decide whether a given packet arrived safely (i.e., before the corresponding key
disclosure packet was sent by the sender). The unsafe packets are dropped. This
condition severely limits the transmission rate since Pi+1 can only be sent after
every receiver has received Pi. Perrig et al [16] (TESLA Scheme III) solve this
problem by disclosing the key Ki of the data packet Pi in a later packet Pi+d,
instead of in the next packet. Another assumption made in the scheme depicted
in Figure 2 is that the packet schedule is fixed or predictable, with each recipient
knowing the exact sending time of each packet. This significantly restricts the
flexibility of the senders. The proposed solution to this problem of dynamic
packet rates is to pick the MAC key and the disclosed key in each packet only
on a time interval basis. Namely, all packets sent in an interval i are authenticated
using a key Ki and disclose the key Ki−d. This final version (TESLA Scheme IV)
is the one adopted as an Internet standard. See [16,17,18,19,20] for more details.

2.2 Claimed Security of TESLA

The following theorem was given in [16].

Theorem 1. Assume that the PRF, the MAC and the signing schemes in use
are secure, and that the PRF has Target Collision Resistance property. Then,
TESLA (Scheme IV) is a secure stream authentication scheme.

To avoid complexity, the authors provide proof only for a special case when the
MAC and the PRF are realized by the same function family. In their implemen-
tation, this family is the family defined by HMAC [10] when used in conjunction
with MD5 [22]. However, the theorem does not require the MAC and the PRF to
be realized by the same function family. We will show that the theorem does not
hold in the case when the PRF and the MAC can be realized by different function
families (i.e., we will disprove the theorem). Furthermore, in their proof, the au-
thors assume that the function F ′ is an identity mapping. This is not the case in the
RFC4082 version. Hence, their analysis does not apply to the Internet standard.

2.3 OMAC

OMAC [13] is a proven secure CBC MAC scheme that uses only one key. The
evaluation of the authentication tags in OMAC is illustrated in Figure 3. The
first block of the message is encrypted using a block cipher. The result is XORed
with the second block and encrypted, etc. If the length of the last chunk of the
message is equal to the block length n, then the last block is XORed with L · u

346 G. Jakimoski

K K K

M[1] M[2] M[3]

T

E E E

L u L u−1

K K K

M[1]

T

E E E

M[2]
M[3] 10...0

Fig. 3. One-key CBC MAC

before encryption. If the length of the last chunk of the message is less than the
block length n, then 10i padding (i = n − 1 − |M | mod n) is appended and the
last block is XORed with L · u−1 before encryption. The parameter u is some
known constant in GF(2n), and L = EK(0n) is an encryption of 0.

Let l be the key length. It was shown in [13] that if the function family
{EK}K∈{0,1}l block cipher is a pseudorandom permutation family, then
{OMACK}K∈{0,1}l (the function family defined by OMAC) is a pseudorandom
function family and the OMAC scheme is unforgeable.

3 Insecure TESLA Implementations Based on Secure
Components

In this section, we show that the suggested assumptions about the building
blocks of TESLA are not sufficient by providing examples of insecure TESLA
constructions from components that satisfy those assumptions.

3.1 Permuted-Input OMAC

In order to “break” TESLA Scheme II, we introduce Permuted-input OMAC
(POMAC) scheme. The scheme will be used to authenticate the packets of the
stream in our insecure TESLA Scheme II implementation. It is depicted in Fig. 4.
If the length of the message m is not greater than the block size n, then the
authentication tag is computed as OMACK(m). Otherwise, the message m is
rotated right by n bits to derive a new message m′, and the authentication tag
is computed as OMACK(m′).

The unforgeability of POMAC trivially follows from the unforgeability of
OMAC.

Lemma 1. Suppose that:

– h is a collision resistant function (i.e., it is hard to find m1 and m2 �= m1
s.t. h(m1) = h(m2)), and

– {fK}K∈{0,1}l is a function family corresponding to an unforgeable MAC
scheme.

Some Notes on the Security of the TESLA Scheme 347

OMAC K

n bits

n bits

Fig. 4. Permuted-input OMAC

Then, the MAC scheme defined by the function family {fK ◦ h}K∈{0,1}l is un-
forgeable too.

Proof. Assume that there is an adversary that can output a pair (m, a) where
a is a valid authentication tag for a message m that hasn’t been signed before.
Since h is collision resistant, the hash value h(m) must be different from the
hash values of the previously signed messages. Hence, (h(m), a) is a forgery for
the MAC scheme defined by the function family {fK}K∈{0,1}l . This contradicts
our assumption that f is unforgeable. �

Corollary 1. If the function family {EK}K∈{0,1}l defined by the underlying
block cipher is a pseudorandom permutation family, then POMAC is unforgeable.

Proof. Follows from Lemma 1 and the facts that the initial permutation in
POMAC is a bijection (i.e., collision resistant) and OMAC is unforgeable when
the underlying block cipher is a pseudorandom permutation. �

3.2 The Case When F ′ Is an Identity Mapping

In this section, we provide an example of an insecure TESLA construction from
secure components in the case when the function F ′ is an identity mapping.

Suppose that the function family {EK}K∈{0,1}n is a target collision resistant
pseudorandom permutation family whose members are defined on the set {0, 1}n.
Note that the length of the key is equal to the block size n. AES-128 [9] is a
possible candidate. Since {EK}K∈{0,1}n is a pseudorandom permutation family,
it is also a pseudorandom function family (see Proposition 3.7.3 in [12]). We
will use the pseudorandom permutation EK to generate the authentication keys
as illustrated in Figure 5. The key Ki−1 = EKi(0n) is generated by encrypting
0 using the key Ki as suggested in [16]. The MAC scheme that we use in our
construction is POMAC. To encrypt the message blocks in POMAC, we use the
pseudorandom permutation EK .

The PRF and the MAC as defined above satisfy the security requirements of
Theorem 1. However, the resulting stream authentication scheme is not secure.
Figure 5 depicts an attack on our TESLA Scheme II example by replacing the

348 G. Jakimoski

Di

Ki−1
Mi[1]
Mi[2]
Mi[3]

E E0 0

Ki−1 Ki Ki+1

Pi−1 Pi+1

Di+1
Mi−1 Mi+1

KiKi−2
Di−1

Ki−1
Mi[1]
Mi[2]
M ′

i [3]

D′
i

MAC(Ki−1, Di−1)

Pi

MAC(Ki, Di) MAC(Ki+1, Di+1)

P ′
i

M ′
i [3] = (Mi[3]||10i) ⊕ (Ki−1u−1)

⊕(Ki−1u)

MAC(Ki, Di)

Fig. 5. Insecure TESLA implementation. MACs are computed using POMAC.

packet Pi with a packet P ′
i . Without loss of generality, we assume that the

message Mi consists of three chunks Mi[1], Mi[2] and Mi[3]. The length of Mi[1]
and Mi[2] is equal to the block length n, and the length of Mi[3] is less than
the block length n. This implies that Mi[3] is 10i padded and XORed with
L · u−1 when computing the MAC for Pi. The forged packet P ′

i is constructed
by replacing Mi[3] with

M ′
i [3] = (Mi[3]||10i) ⊕ (Ki−1 · u−1) ⊕ (Ki−1 · u).

Using the equations

(Mi[3]||10i) ⊕ (Ki−1 · u−1) = M ′
i [3] ⊕ (Ki−1 · u)

and
L = EKi(0

n) = Ki−1,

one can easily verify that

POMAC(Ki, Di) = POMAC(Ki, D
′
i).

Note that all we need to compute P ′
i is the key Ki−1 and the message Mi.

Since both the key Ki−1 and the message Mi are disclosed in the packet Pi,
we can compute P ′

i before the key Ki is disclosed. Hence, we have succeeded in
constructing a forgery for TESLA Scheme II.

Some Notes on the Security of the TESLA Scheme 349

3.3 Cryptanalysis of TESLA Scheme IV

As we mentioned earlier, the goal of upgrading TESLA Scheme II to TESLA
Scheme IV was to achieve fast transfer rates and dynamic packet rates. The
security of the upgraded scheme relies on the same principles as Scheme II, and
the attack depicted in Figure 5 can be easily extended to the upgraded scheme.
Moreover, the attack works with OMAC instead of POMAC as explained below
in more detail.

There are two differences between Scheme II and Scheme IV that are relevant
to our discussion. First, in Scheme IV, the same key is used to authenticate more
than one packet sent to a given recipient. Second, the key Ki−1 is revealed after
the time interval i (assuming that the delay d is greater than one). However, note
that the adversary can discard all but one packet in some time interval i, and
then delay that packet so that the recipient gets the packet after the disclosure
of Ki−1, but before the disclosure of Ki (i.e., the packet will be safe). Since, the
adversary knows the value of Ki−1 before handing the packet to the recipient,
he can replace it with a forged one as in Figure 5.

The attack will work with OMAC instead of POMAC for the following rea-
sons. The introduction of the POMAC scheme was motivated by the order of
the message Mi and the key Ki−1 within the packet Pi (Fig. 2). The initial
permutation of POMAC swaps the message and the key so that the last block
of Di is a message block. In TESLA Scheme IV, the format of the packets
is Pj = 〈Mj, i, Ki−d, MAC(K ′

i, Mj)〉, where i is the interval during which the
packet Pj was sent. Note that the MACs are computed over the messages Mj

only, and the attack would work when OMAC instead of POMAC is used to
compute the MACs. Hence, our analysis shows not only that the assumptions
about the security properties of the building blocks of TESLA are not sufficient,
but also that it is not unrealistic to expect that TESLA Scheme IV might be
implemented insecurely.

3.4 The Case When F ′ Is Implemented Using a PRF

RFC4082 requires the function F to be implemented as F (K) = fK(0) (Sec-
tion 3.2 of [19]), and F ′ to be implemented as F ′(K) = f ′

K(1) (Section 3.4 of
[19]), where f and f ′ are pseudorandom functions.

Although it seems that the scheme is secure when f and f ′ are identical1, the
RFC does not require f and f ′ to be identical. On the contrary, the use of differ-
ent symbols to denote them suggests that they can be different. In this case, the
new TESLA Scheme II still suffers from the flaw discussed in Section 3.2. Namely,
we can view f ′ as a part of the key scheduling algorithm of the underlying block
cipher. The function F of the insecure TESLA construction is now implemented
as F (Ki) = Ef ′

Ki
(1)(0) (see Figure 6). It is clear that Ki−1 = F (Ki) leaks the

encryption of zero since Ki−1 = EK′
i
(0), and we can mount the same attack.

In addition to the old flaw, the modification of the scheme introduces a new one.
Consider the following “naive” implementation. The function F is implemented
1 The reader should be aware that there is no security proof provided for this case.

350 G. Jakimoski

f ′

K ′
i

F (Ki) = EK′
i
(0)

F

0
1

Ki

E

Fig. 6. The function F leaks the encryption of zero EK′
i
(0)

as F (Ki) = fKi(0), where f is a target collision resistant pseudorandom func-
tion family. The function F ′ is implemented as F ′(Ki) = f ′

Ki
(1), where f ′

Ki
(x) =

fKi(x − 1). One can easily show that f ′ is a pseudorandom function. It is not
hard to verify that the commitment F (Ki) discloses the authentication key K ′

i:
F (Ki) = fKi(0) = fKi(1 − 1) = f ′

Ki
(1) = K ′

i. Although this implementation is
very unlikely, it demonstrates the threat of exploiting the knowledge of the com-
mitment F (Ki) to compute the authentication key K ′

i.

3.5 Cryptanalysis of the RFC4082 TESLA Version

The analysis presented in Section 3.4 can be extended to the TESLA version
described in RFC4082. We use the same arguments as in Section 3.3. The safe
packet test only checks whether a packet authenticated using a key Ki was
received before the disclosure of the key Ki. Hence, the adversary can delay the
packet until the key Ki−1 is disclosed, and then replace it with a forged one. The
aforementioned security flaws cannot be patched by simply modifying the safe
packet test so that the receiver checks whether the packet was received before
the disclosure of the key value Ki−1. In this case, the adversary might be able
to use Ki−2 = F (F (Ki)) or some previous key value to mount an attack.

4 Sufficient Assumptions About the Components of
TESLA

The attacks on the insecure implementations that were presented in Section 3
are based on the following observation. The security of the MAC scheme that
is used to authenticate the packets is proven in a setting where the adversary
has access to a signing oracle and a verifying oracle. In the case of TESLA, we
have a different setting. Now, the adversary has access to an additional oracle
that computes the commitment F (K) to the secret key K which is used by the
MAC scheme. The adversary can exploit the knowledge of F (K) to construct a
forgery.

Some Notes on the Security of the TESLA Scheme 351

It is clear from the discussion above that we need to make an additional
assumption about the function F and the MAC scheme. Namely, the MAC
scheme must remain secure even when the commitment of the secret key used
by the MAC scheme is revealed.

Definition 1. A MAC scheme is known F -commitment unforgeable if there is
no efficient adversary that given a commitment F (K) of the secret key that is
in use can break the MAC scheme with non-negligible probability.

An example, which demonstrates that one can achieve known F -commitment
unforgeability, is provided in Section 5.2.

We also make the following minor modification of TESLA Scheme II. Each
time a stream is authenticated, the sender selects a unique number Ns (e.g.,
using a counter) which is securely communicated to the recipients. The number
Ns is included as part of the authenticated data in each packet of the stream
including the bootstrap packet. So, we assume that the format of the messages
is Mi = 〈Ns, i, Ci〉, where Ci is the actual chunk of the stream 2 3.

The following theorem holds for the security of the slightly modified TESLA
Scheme II.

Theorem 2. Suppose that:

1. the digital signature scheme, which is used to bootstrap TESLA, is unforge-
able,

2. the function F (K) = fK(0), where f is a pseudorandom function, is collision
resistant,

3. the MAC scheme, which is used to authenticate the chunks of the stream, is
known F -commitment unforgeable, and

4. F ′ is an identity mapping.

Then, TESLA Scheme II is a secure multicast stream authentication scheme.

The proof is given in Appendix A.
Note that F ′ is an identity mapping, while in RFC4082, F ′ is realized using

a pseudorandom function. Hence, the scheme that is analyzed here is somewhat
more efficient than the Internet standard.

The requirement for collision resistance of the function F can be slightly
weakened. Assuming that there is a bound on the number of packets within a
stream, it is not hard to show that TESLA Scheme II is secure when the function
F is collision resistant in the following sense: Given a randomly selected value K
and a bound L ≥ 1, it is hard to find K ′ and a positive integer l ≤ L such that
F l(K) = F (K ′) and F l−1(K) �= K ′. A function that satisfies the aforementioned
property is said to be bounded iteration collision resistant.

2 TESLA does not provide ordering of the packets that are authenticated using the
same key. We use sequence numbers to prevent malicious reordering of the packets.

3 To reduce the communication overhead one can communicate Ns only once, and
then just use it to compute the signature and the MACs.

352 G. Jakimoski

5 A Candidate Implementation of TESLA

In this section, we propose an implementation that uses block ciphers to realize
the different components of TESLA.

5.1 CKDA-PRPs

When cryptanalyzed, block ciphers are not considered secure unless they are
resistant to related-key attacks [4]. A theoretical treatment of block ciphers re-
sistant to related-key attacks was given in [3], where it was shown that under
some restrictions one can achieve resistance to related-key attacks. We are going
to use a model of a more specific case: the adversary can query oracles that use
keys whose difference was chosen by the adversary (e.g., related-key differential
cryptanalysis [15,14]).

We define a CKDA secure (i.e., secure against Chosen Key Difference Attacks)
pseudorandom permutation family as a pseudorandom permutation family such
that one cannot tell apart a pair of permutations randomly selected from the
family and a pair of permutations from the family whose index (key) difference
is c �= 0, where c is selected by the adversary. A CKD test is a Turing machine A
with access to four oracles E1, D1, E2 and D2. A selects a non-zero l-bit string c.
The oracle E1 is selected to be a random permutation EK from the permutation
family {EK}K∈{0,1}l , and the oracle D1 is selected to be its inverse. According
to a secret random bit b, the oracle E2 is selected to be either the permutation
EK⊕c or a random permutation EK⊕r, where c is the public non-zero constant
and r is a random bit string of length l (i.e., K ⊕ r is random and not related
to K). The oracle D2 computes the inverse of E2. The algorithm A outputs 0 or
1. The advantage of the CKD test is defined as

AdvA((EK , EK⊕c), (EK , EK⊕r)) =
1
2
(E[AC] − E[AR])

where E[AC] (resp., E[AR]) is the probability that A will output 1 when the
difference between the secret keys is a known non-zero constant (resp., random
l-bit string).

Definition 2. The pseudorandom permutation family {EK}K∈{0,1}l is a [t, q, ε]-
secure CKDA pseudorandom permutation family (or [t, q, ε]-secure CKDA-PRP)
if there is no CKD test that runs in at most t time, sends at most q queries to
the oracles and has at least ε advantage.

5.2 TESLA Implementation Via CKDA-PRPs

The following theorem provides a function F and a MAC scheme such that the
MAC scheme is known F -commitment unforgeable.

Theorem 3. Let the function family {EK}K∈{0,1}n corresponding to the block
cipher used by OMAC be CKDA secure. Let F : {0, 1}n → {0, 1}n be defined as
F (K) = EK⊕c(0), where c = 0n−11. Then, OMAC is a known F -commitment
unforgeable MAC scheme.

Some Notes on the Security of the TESLA Scheme 353

E E0 0

Pi−1 Pi+1

Di+1

Ki−1 Ki Ki+1

Mi−1 Mi+1

KiKi−2
Di−1

MAC(Ki−1, Di−1)

Pi

MAC(Ki, Di) MAC(Ki+1, Di+1)

Di

Mi

Ki−1

0...01 0...01

Fig. 7. TESLA implementation using a block cipher resistant to related-key
cryptanalysis

Proof. An adversary A1 that given a commitment F (K ′) to some randomly
selected key K ′ can break OMAC with probability ε can be easily converted into
an adversary A2 that can break OMAC with the same probability. In particular,
A2 can randomly select the key value K ′ and submit the commitment F (K ′) to
A1. A1’s output will be A2’s output. Since OMAC is unforgeable, there is no ad-
versary that can break OMAC with significant probability given a commitment
to a randomly select key.

Now, assume that there is an adversary A3 that can break OMAC given the
commitment F (K) to the secret key K that is in use. We can construct a CKD
test as follows. We run the adversary A3 and answer its queries by querying
the oracles E1 and E2. If A3 manages to produce a forgery we output 1, other-
wise we output 0. Obviously, the advantage of the CKD test will be significant
since the probability E[AC] is significant (OMAC is not known F -commitment
unforgeable) and the probability E[AR] is small (OMAC is unforgeable). �

The implementation that we propose here is depicted in Figure 7. It is similar to
the insecure implementation shown in Figure 5. The only difference is that the
key value Ki−1 is derived by encrypting zero using the key Ki ⊕ 0n−11 instead
of the key Ki. A similar secure variant of the insecure implementation can be
obtained by using a function F ′ that derives the key K ′

i by flipping the last bit
of Ki instead of using an identity map. We must note that the security of the
proposed scheme is also based on the assumption that h(x) = Ex(0) is collision
resistant (one of the assumptions made in Theorem 2). While there are some
constructions and possibility results regarding hash functions based on block
ciphers [21,5], we are not aware of any results regarding the collision resistance
of h(x) = Ex(0) where E is some widely used cipher with relatively large block
size (e.g., AES).

354 G. Jakimoski

6 Conclusion

We have shown that the assumptions about the components of TESLA are not
sufficient and can potentially lead to insecure implementations. We also provided
sufficient conditions for the security of the scheme and proposed an implemen-
tation based on block ciphers.

References

1. Anderson, R., Bergadano, F., Crispo, B., Lee, J., Manifavas, C., Needham, R.: A
New Family of Authentication Protocols. ACM Operating Systems Review 32(4),
9–20 (1998)

2. Bergadano, F., Cavagnino, D., Crispo, B.: Chained Stream Authentication. In:
Proceedings of Selected Areas in Cryptography 2000, pp. 142–155 (2000)

3. Bellare, M., Kohno, T.: A Theoretical Treatment of Related-Key Attacks: RKA-
PRPs, RKA-PRFs, and Applications. In: Biham, E. (ed.) Advances in Cryptology
– EUROCRPYT 2003. LNCS, vol. 2656, pp. 491–506. Springer, Heidelberg (2003)

4. Biham, E.: New Types of Cryptanalytic Attacks Using Related Keys. Journal of
Cryptology 7(4), 229–246 (1994)

5. Black, J., Rogaway, P., Shrimpton, T.: Black-Box Analysis of the Block-Cipher-
Based Hash-Function Constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 225–320. Springer, Heidelberg (2002)

6. Canneti, R., Garay, J., Itkis, G., Micciancio, D., Naor, M., Pinkas, B.: Multicast
security: A taxonomy and some efficient constructions. In: Infocom ’99 (1999)

7. Carrara, E., Baugher, M.: The Use of TESLA in SRTP. Internet draft,
http://ietfreport.isoc.org/ids-wg-msec.html

8. Cheung, S.: An Efficient Message Authentication Scheme for Link State Routing.
In: Proceedings of the 13th Annual Computer Security Application Conference
(1997)

9. FIPS PUB 197, The Advanced Encryption Standard
10. FIPS PUB 198, The Keyed-Hash Message Authentication Code (HMAC)
11. Gennaro, R., Rohatgi, P.: How to Sign Digital Streams. In: Kaliski Jr., B.S. (ed.)

CRYPTO 1997. LNCS, vol. 1294, pp. 180–197. Springer, Heidelberg (1997)
12. Goldreich, O.: Foundations of Cryptography. Cambridge University Press, Cam-

bridge (2001)
13. Iwata, T., Kurosawa, K.: OMAC: One-Key CBC MAC. In: Johansson, T. (ed.)

FSE 2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003)
14. Jakimoski, G., Desmedt, Y.: Related-key Differential Cryptanalysis of 192-bit Key

AES Variants. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006,
pp. 208–221. Springer, Heidelberg (2004)

15. Kelsey, J., Schneier, B., Wagner, D.: Related-key Cryptanalysis of 3-WAY, Biham-
DES, CAST, DES-X, NewDES, RC2 and TEA. In: Proceedings of ICICS’97, pp.
233–246. Springer, Heidelberg (1997)

16. Perrig, A., Canneti, R., Tygar, J.D., Song, D.: Efficient Authentication and Signing
of Multicast Streams Over Lossy Channels. In: Proceedings of the IEEE Security
and Privacy Symposium (2000)

17. Perrig, A., Canneti, R., Song, D., Tygar, J.D.: Efficient and Secure Source Au-
thentication for Multicast. In: Proceedings of the Network and Distributed System
Security Symposium (2001)

http://ietfreport.isoc.org/ids-wg-msec.html

Some Notes on the Security of the TESLA Scheme 355

18. Perrig, A., Canneti, R., Tygar, J.D., Song, D.: The TESLA Broadcast Authenti-
cation Protocol. RSA CryptoBytes 5(2) (2002)

19. Perrig, A., Song, D., Canneti, R., Tygar, J.D., Briscoe, B.: Timed Efficient Stream
Loss-Tolerant Authentication (TESLA): Multicast Source Authentication Trans-
form Introduction. Internet Request for Comments, RFC 4082 (June, 2005)

20. Perrig, A., Tygar, J.D.: Secure Broadcast Communication in Wired and Wireless
Networks. Kluwer Academic Publishers, Dordrecht (2002)

21. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers:
A synthetic approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773,
Springer, Heidelberg (1994)

22. Rivest, R.L.: The MD5 message digest algorithm. Internet Request for Comments,
RFC 1321 (April 1992)

23. Rohatgi, P.: A compact and fast hybrid signature scheme for multicast packet au-
thentication. In: 6th ACM Conference on Computer and Communications Security,
November 1999 (1999)

24. Syverson, P.F., Stubblebine, S.G., Goldschlag, D.M.: Unlinkable serial transactions.
In: FC 1997. LNCS, vol. 1318, Springer, Heidelberg (1997)

25. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis for Hash Functions
MD4 and RIPEMD. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 1–18. Springer, Heidelberg (2005)

26. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg
(2005)

27. Wong, C.K., Lam, S.S.: Digital Signatures for Flows and Multicasts. In: Proceed-
ings of IEEE ICNP ’98 (1998)

28. Zhang, K.: Efficient Protocols for Signing Routing Messages. In: Proceedings of
the Symposium on Network and Distributed System Security (1998)

A Proof of Theorem 2

Assume that the adversary can break the stream authentication scheme. In other
words, the adversary in cooperation with some of the recipients can trick another
recipient u to accept a forged packet of the stream as valid.

Let i be the smallest integer such that the contents D′
i is accepted as valid

by the recipient u when the original contents Di is different from D′
i. There are

three possible events:

Event 1. If i is zero, then the adversary has managed to forge the bootstrap
packet which was signed using a digital signature scheme.

Event 2. If i is greater than zero and the key that u used to verify the validity of
D′

i is equal to the original key Ki, then the adversary has managed to produce
a forgery for the message authentication scheme due to the uniqueness of
〈Ns, i〉.

Event 3. If i is greater than zero and the key Kf
i that u used to verify the

validity of D′
i is different than the original key Ki, then the adversary has

managed to find a collision for the function F . Let Kf
i , Kf

i−1 = F (Kf
i), . . .

be a key chain derived from Kf
i , and let Ki, Ki−1 = F (Ki), . . . be a key

356 G. Jakimoski

chain derived from Ki. The user u verified the validity of the key value Kf
i

by checking whether F l(Kf
i) is equal to some previously authenticated key

value Kf
i−l. Since i is the smallest index of a packet whose contents D′

i is
different from the original contents Di, the received key value Kf

i−l must
be equal to the original key value Ki−l = F l(Ki). Hence, there is an index
i − l ≤ j < i s.t. Kj+1 �= K ′

j+1 and F (Kj+1) = Kj = K ′
j = F (K ′

j+1).

Given an efficient adversary ASA that breaks the stream authentication scheme
with significant probability, we will construct an adversary AS for the signature
scheme, an adversary AMAC for the MAC scheme and an adversary AF for the
function F , and show that at least one of these adversaries has significant success
probability. All three adversaries simulate the network using sets of read and write
tapes for the users and for the adversary. They differ in the following aspects:

1. The adversary for the signature scheme answers the stream signing queries by
randomly selecting initial key values, computing the key chains and using the
signing oracle for the bootstrap packets. Whenever ASA manages to forge a
bootstrap packet, AS outputs the forged message/signature pair. Otherwise,
it outputs a randomly selected message/signature pair.

2. The adversary for the MAC scheme guesses which stream will be forged and
what will be the smallest index i of a forged packet within the stream. If the
guess is that the stream will not be forged, then AMAC answers the stream
signing query by randomly selecting the initial key value. Otherwise, the
adversary uses the given value Ki−1 = F (Ki) to derive the keys that will
be used to authenticate the packets P1, . . . Pi−1, and computes the MAC
for the packet Pi by submitting a query to the (MAC) signing oracle. If
the adversary for the stream scheme manages to forge the i-th packet, then
the adversary for the MAC scheme outputs the forged message/MAC pair.
Otherwise, it outputs a randomly selected message/MAC pair.

3. The adversary for the function F answers the stream signing queries by
randomly selecting initial key values, computing the key chains and using a
private key when signing the bootstrap packets. In the case when Event 3
occurs, AF finds and outputs a pair of key values that collide. Otherwise, it
outputs two randomly selected key values.

It is easy to show that if the probabilities of Event 1 and Event 3 are signifi-
cant, then the success probabilities of the corresponding adversaries AS and AF
are significant too. To derive a relation between the probability of Event 2 and
AMAC, we need the following Lemma.

Lemma 2. If f is a pseudorandom function, then there is no efficient algorithm
that can distinguish between a random key value and the key value F l(K) derived
from a secret random key K by l ≥ 1 iterations of the function F .

Proof. We can prove the Lemma by induction. If there is an algorithm that can
tell apart between F (K) = fK(0) and a random key value, then we can construct
an algorithm that can distinguish between the function family {fK} defined by

Some Notes on the Security of the TESLA Scheme 357

f and the random function family. Now, assume that there is no algorithm that
can tell apart between the key Kl−1 = F l−1(K) and a random key value. Since
the function f and the key Kl−1 are pseudorandom, the key Kl = fKl−1(0) will
be indistinguishable from a random key too. �

Assume that ns and L are the maximum number of streams and the maxi-
mum number of packets within a single stream respectively. The probability
that AMAC will guess the forged stream and the index i of the first forged packet
within the stream is 1

nsL . According to Lemma 2, there is no efficient algorithm
that can distinguish with significant probability between the secret key Ki used
by the MAC scheme and a key that is derived from some initial key value by l− i
iterations of the function F . Hence, if the probability ε of Event 2 is significant,
then the success probability of AMAC will be approximately ε

nsL .

	Some Notes on the Security of the Timed Efficient Stream Loss-Tolerant Authentication Scheme
	Introduction
	Background
	TESLA
	Claimed Security of TESLA
	OMAC

	Insecure TESLA Implementations Based on Secure Components
	Permuted-Input OMAC
	The Case When F' Is an Identity Mapping
	Cryptanalysis of TESLA Scheme IV
	The Case When F' Is Implemented Using a PRF
	Cryptanalysis of the RFC4082 TESLA Version

	Sufficient Assumptions About the Components of TESLA
	A Candidate Implementation of TESLA
	CKDA-PRPs
	TESLA Implementation Via CKDA-PRPs

	Conclusion
	Proof of Theorem 2

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

