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Abstract. When developing skills on a physical robot, it is appealing
to turn to modern machine learning methods in order to automate the
process. However, when no accurate simulator exists for the type of mo-
tion in question, all learning must occur on the physical robot itself. In
such a case, there is a high premium on quick, efficient learning (specifi-
cally, learning with low sample complexity). Recent results in learning lo-
comotion have demonstrated the feasibility of learning fast walks directly
on quadrupedal robots. This paper demonstrates that it is also possible
to learn a higher-level skill requiring more fine motor coordination, again
with all learning occurring directly on the robot. In particular, the paper
presents a learned ball-grasping skill on a commercially available Sony
Aibo robot, with no human intervention other than battery changes.
The learned skill significantly outperforms our best hand-tuned solution.
As the learned grasping skill relies on a learned walk, we characterize
our learning implementation within the layered learning formalism. To
our knowledge, the two learned layers represent the first use of layered
learning on a physical robot.

Keywords: learning and adaptive systems, sensor-motor control.

1 Introduction

In order for robots to be useful for many real-world applications, they must be
able to adapt to novel and changing environments. Ideally, a robot should be
able to respond to a change in its surroundings by adapting both its low-level
skills, such as its walking style, and the higher-level skills which depend on them.
Because hand-coding is time-consuming and often leads to brittle solutions, this
adaptation should occur as autonomously as possible. Machine learning promises
a way to generate solutions with little human interaction, so that when the
environment changes the solution can be revised with limited human effort.
Machine learning can also lead to better solutions than hand-tuning, because
humans are often biased toward exploring a small part of the space of possible
solutions, whereas machine learning explores the space in a systematic way.

Current learning methods typically need a large amount of training data to
be effective. Thus, an appealing approach to creating learning robots is to train
behaviors first in simulation before implementing them in the real world [5].
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However, especially when concerned with complex perception or manipulation
tasks, we cannot assume an adequate simulator will always exist for a given
robot. With no simulator, each trial requires interaction with the physical world
in real time. In such cases, it is not possible to offset the costs of an inefficient
learning algorithm with a faster processor. The learning algorithm must make
efficient use of the information gained from each trial (i.e., it must have low
sample complexity).

For this reason, until recently, most of the locomotion approaches for quad-
rupedal robots have centered around hand-tuning a parameterized gait. How-
ever, in recent years, there has been a spate of research on efficient learning
algorithms for quadrupedal locomotion [2,4,9,11,12,13,14]. A common feature of
these approaches is that the robots time themselves walking across a known,
fixed distance, thus eliminating the need for any human supervision.

This paper demonstrates that it is possible to similarly learn a higher-level
more fine-motor skill, again with all learning occurring directly on the robot.
In particular, the paper presents a learned ball-grasping skill on a commer-
cially available Sony Aibo robot, with no human intervention other than battery
changes. We show that a learning algorithm that has proven effective for learning
walks applies directly to this new task. However, due to the different task char-
acteristics, significant changes to the training scenario are required. This paper
contributes a full specification of a training scenario that enables autonomous
learning of a ball-grasping skill. The learned skill significantly outperforms an
extensively hand-tuned solution.

As the learned grasping skill relies on a learned walk itself, we characterize our
learning implementation within the layered learning formalism. Layered learn-
ing [17] is a hierarchical machine learning paradigm that leverages a given task
decomposition to learn complex tasks efficiently. A key feature is that the learn-
ing of each subtask directly facilitates the learning of the next-higher subtask
layer. Layered learning has been used previously to generate complex, multi-
layer behaviors in simulated environments [6,7,17,18]. To our knowledge, our
two learned layers represent the first use of layered learning on a physical robot.

The remainder of this paper is organized as follows. Section 2 describes the
background and motivation for this work. Section 3 specifies the tasks to be
learned and how the layered learning paradigm can be used to relate them, as
well as how the training scenario is set up for each task. Section 4 describes
the primary machine learning algorithm used in the work. Section 5 details the
results of the training, and Section 6 discusses the contributions of this work, as
well as possible directions for the future.

2 Background

This section describes the robot hardware used in all experiments and intro-
duces the target task towards which it is trained (Section 2.1). It also summa-
rizes the layered learning formalism (Section 2.2) within which we frame our
approach.
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2.1 Ball Acquisition by a Legged Robot

Acquiring an object is a prerequisite for many types of manipulations in the world
[1,8]. For example, in the case of a Sony Aibo robot playing soccer, one of our mo-
tivating testbed domains, it is much easier to design effective ways for the robot
to kick the ball if we may assume that the ball starts in a specific position relative
to the robot. Furthermore, if the robot can grasp the ball securely enough, it can
move the ball into a better position relative to the objects in the robot’s environ-
ment before executing a kick. (For example, the robot can turn with the ball until
it is pointed at the opponent’s goal.) Thus, as a representative high-level task for
learning, we consider the aim of having a robot walk up to a ball and gain control of
it. For the purposes of this paper,we define control to mean that the robot holds the
ball under its chin in a way that allows it to turn with the ball as shown in Figure 1.

As the robot platform for this research,

Fig. 1. An Aibo with control of a
ball. Achieving this position with-
out knocking the ball away in the
process is a challenge; our learn-
ing method allows the Aibo to do
this more reliably without sacrific-
ing walking speed.

we use the commercially available Sony Aibo
ERS-7, a quadruped robot [15]. The ERS-7
has four legs with three degrees of freedom in
each, a head with three degrees of freedom,
and a CMOS camera in the head. It has sev-
eral pressure sensors and two infrared range
sensors, as well as position sensors in each of
its joints. The robot is able to capture frames
from the camera at a rate of 30 Hz. From
these images, our software recognizes objects
such as the orange ball based on color segmen-
tation and aggregation. This variety of sen-
sors allows us to rely on local sensing alone.
In addition, the 576 MHz 64 bit RISC proces-
sor allows all necessary processing to be done
onboard. In this work, we use a system for vi-
sion processing, walking, and kicking that was
developed as part of our larger robot soccer
project [16].

2.2 Layered Learning

Layered learning is a general hierarchical machine learning paradigm that lever-
ages a given task decomposition to learn complex tasks efficiently. Though it has
been validated previously in simulation, this paper presents the first application
of layered learning on a physical robot. Specifically, the robot first learns a fast
walk, then uses that walk to approach the ball while learning to grasp it.

The main principles of layered learning are summarized in Table 1. A detailed
description of these principles is given by Stone and Veloso[17].

We cast our learned behaviors within the formal layered learning framework as
defined in the remainder of this section [17]. Consider the learning task of iden-
tifying a hypothesis h from among a class of hypotheses H which map a set of
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Table 1. The key principles of layered learning

1. Learning a mapping directly from inputs to outputs is not tractable.
2. A bottom-up, hierarchical task decomposition is given.
3. Machine learning exploits data to train and/or adapt. Learning occurs separately

at each level.
4. The output of learning in one layer feeds into the next layer.

state feature variables S to a set of outputs O such that, based on a set of training
examples, h is most likely (of the hypotheses in H) to represent unseen examples.

When using the layered learning paradigm, the complete learning task is decom-
posed into hierarchical subtask layers {L1, L2, . . . , Ln} with each layer defined as

Li = (Fi, Oi, Ti, Mi, hi)

where:
Fi is the input vector of state features relevant for learning subtask Li.

Fi = <F 1
i , F 2

i , . . .>. ∀j, F j
1 ∈ S.

Oi is the set of outputs from among which to choose for subtask Li. On = O.
Ti is the set of training examples used for learning subtask Li. Each element of

Ti consists of a correspondence between an input feature vector f ∈ Fi and
o ∈ Oi.

Mi is the ML algorithm used at layer Li to select a hypothesis mapping Fi �→ Oi

based on Ti.
hi is the result of running Mi on Ti. hi is a function from Fi to Oi.

Note that a layer describes more than a subtask; it also describes an approach
to solving that subtask and the resulting solution.

As stated in the Decomposition principle of layered learning, the definitions of
the layers Li are given a priori. The Interaction principle is addressed as follows.
∀i < n, hi directly affects Li+1 in at least one of three ways:

– hi is used to construct one or more features F k
i+1.

– hi is used to construct elements of Ti+1; and/or
– hi is used to prune the output set Oi+1.

It is noted above in the definition of Fi that ∀j, F j
1 ∈ S. Since Fi+1 can

consist of new features constructed using hi, the more general version of the
above special case is that ∀i, j, F j

i ∈ S ∪i−1
k=1 Ok.

When training a particular component, layered learning freezes the compo-
nents trained in previous layers, thereby adding additional constraints to the
learning process. It also adds guidance, by training each layer in a special envi-
ronment intended to prepare it well for the target domain.

The original implementation of the layered learning paradigm was on the full
robot soccer task in the RoboCup soccer simulator [17]. First, a neural network
was used to learn an interception behavior. This behavior was used to train a
decision tree for pass evaluation, which was in turn used to generate the input
representation for a reinforcement learning approach to pass selection.
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A subsequent application of layered learning uses two layers, each learned via
genetic programming, for a soccer keepaway task in a simplified abstraction of
the TeamBots environment [7]. In the full TeamBots environment, four learned
layers were used, also on a keepaway task [18]. To our knowledge, there has been
no previous implementation of layered learning on a physical robot.

3 Layered Learning on a Physical Robot

The process of approaching a ball and then gaining control of it relies on the
gait that allows the robot to move toward the ball. Thus, when both the gait
and the grasping are individually learned, we have a layered learning hierarchy
consisting of two layers. This section casts the recent research on gait learning
within the layered learning formalism (L1), and then builds upon it to learn ball
grasping, a second, higher-level skill (L2).

3.1 Learning a Gait

In recent years, several approaches to learning a gait on an Aibo have been stud-
ied. Among these approaches, most of the differences between gaits stem from the
shape of the loci through which the feet pass and the exact parameterizations of
those loci. For example, Kohl and Stone used elliptical loci to learn high-speed
walks using a policy gradient learning approach [11], while simultaneously but
independently, Quinlan et al. were able to generate high-velocity gaits using a ge-
netic algorithm and loci of arbitrary shape [12], and Roefer created a flexible gait
implementation that allows use of a variety of different shapes of loci [14]. They
then used an evolutionary learning algorithm to optimize a novel fitness function
based on proprioception to learn a fast gait [13]. Chernova and Veloso similarly
used an evolutionary approach with good success [2] and Lee et al. refined Kohl
and Stone’s approach to estimate gait speeds more effectively [4].

This paper builds upon the successful approach of Kohl and Stone [11], in
which the gait is defined by a set of 12 continuous parameters specifying, among
other things, the shape of the trajectory through which each leg moves as well
as the target heights of the front and rear of the body. Thus, gait learning is
framed as a parameter optimization problem, with forward speed as the objec-
tive function. The learning is accomplished via the policy gradient algorithm
summarized in Section 4.

The fitness of a policy, or set of values for the 12 parameters, is obtained by
having one or more Aibos time themselves as they walk a fixed, known distance
indicated by a pair of landmarks. To reduce the effect of noise, this evaluation
process is performed three times for each policy, and the resulting times are
averaged to get the fitness of the policy.

In the notation of layered learning, the gait layer (L1) is thus defined as:

F1: ∅;
O1: values for the 12 parameters defining a gait, plus the speed of the resulting

gait;
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T1: the set of training examples obtained by recording the time it takes to walk
back and forth across a fixed distance;

M1: the policy gradient algorithm described in Section 4;
h1: the parameters of the fastest discovered gait, and its speed.

The walks learned using this technique perform similarly to those reported by
Stone and Kohl [11], who report that with three robots continually walking across
the field more than 1000 total times for approximately 3 hours, they achieved
the fastest known walk on the Aibo at the time. Notably, the robots learned
without any human intervention other than battery changes approximately once
an hour, and the walk speed was nearly doubled during training.

Though our learned walk itself is a reproduction of previous results, the for-
mulation of the walking task within the framework of layered learning is novel to
this paper. Next, Section 3.2 introduces this novel learned skill in full detail and
similarly frames it within layered learning. As prescribed by layered learning,
the new skill uses the learned walk (h1) as a part of its training scenario.

3.2 Learning to Acquire the Ball

The task of learning to capture a ball under the robot’s chin is motivated by
the ongoing development of our four-legged robot soccer team [16]. The robot is
only able to kick in certain directions, so it is useful to be able to capture the
ball and turn with it before kicking. Our team adopted the following strategy
for getting the ball into this position: when the Aibo is walking to a ball with
the intent of kicking it and gets close enough, it first slows down to allow for
more precise positioning, and then it lowers its head to capture the ball under
its chin (the capturing motion).

Executing the capturing motion without

Fig. 2. Illustration of capture
angle. If the Aibo believes that the
center of the ball is to the right of
the thick white lines, then it will
continue to turn toward the ball
rather than beginning the captur-
ing motion, even if the ball dis-
tance is believed to be less than
capture dist.

knocking the ball away is a challenge: if the
head is lowered when the ball is too far away,
the head may knock the ball away; but if it
is not lowered in time, the body of the ro-
bot may bump the ball away. Furthermore,
certain aspects of the acquisition motion in-
teract, such as the perceived ball distance at
which the head should be lowered and the
amount that the robot slows down when close
to the ball. Parameters like these must there-
fore be tuned simultaneously. This entire pro-
cess is time-consuming to perform by hand.

The parameters that control the transition
from walking to capturing the ball, as indi-
cated in Figure 3, are as follows:
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– slowdown dist: the ball distance (in millimeters) at which slowing down
begins;

– slowdown factor: the (multiplicative) factor, in the range [0,1], by which
the gait slows down at this point;

– capture angle: the maximum ball angle (in degrees) at which the capturing
motion may begin (see Figure 2);

– capture dist: the ball distance (in millimeters) at which the capturing mo-
tion begins (if the ball is within the specified angle);

– turn cutoff: the minimum ball angle (in degrees) at which the robot will
not move directly toward the ball at all, but instead will turn in place to
face the ball more directly. This parameter controls how straight the final
part of the robot’s approach will be.

Given this parameterization,
1: totalscore← 0
2: for j ∈ [1, n] do
3: locate ball
4: while ball farther than slowdown dist do
5: if ball angle more than turn cutoff then
6: turn toward ball
7: else
8: walk to ball at maxspeed
9: end if

10: end while
11: while ball farther than capture dist and outside

of capture angle do
12: if ball angle more than turn cutoff then
13: turn toward ball
14: else
15: walk to ball at maxspeed*slowdown factor
16: end if
17: end while
18: lower head over ball
19: if head tilt position sensor senses ball then
20: totalscore← totalscore + 1
21: if center of field to robot’s left then
22: kick to left
23: else
24: kick to right
25: end if
26: end if
27: turn 180◦

28: end for
29: policy score← totalscore/n

Fig. 3. Method for evaluating policies while
learning to approach the ball. n is the number
of trials per policy; in our experiments, we used
n = 12.

we are faced with a parameter op-
timization problem in five dimen-
sions. Because our policies can be
expressed in this way, and be-
cause our domain has the same
efficiency constraints as that of
learning fast locomotion for the
Aibo, the policy gradient learning
algorithm used to learn the gait
(see Section 4) is again a natural
choice.

However, there are new
challenges in learning ball acqui-
sition; specifically, i) defining an
appropriate reward signal, and ii)
defining an appropriate training
scenario. The policy gradient al-
gorithm relies on the magnitude
of the fitness difference between
policies. This magnitude is read-
ily available in the learned walk-
ing scenario, because speed pro-
vides a natural and continuous
measure of fitness. But in the case
of ball acquisition, there is no
straightforward way to rate a par-
ticular policy with regard to “how

well” it captures the ball: it either does or it does not.
Therefore, we use a binary reinforcement signal: if the robot captures the ball,

it receives a reward of 1; if not, it receives a reward of 0. The Aibo can determine
autonomously whether it has captured the ball by trying to put its chin all the
way down to its chest and then taking note of the value of the position sensor in
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its head tilt joint; if the ball is indeed under its chin, the head tilt motor will stop
moving before getting to the requested position. During training, the score for
a given policy is determined by running a fixed number of trials (12) with that
policy and averaging the reinforcement signal over those trials (thus producing
a discrete reinforcement signal). In other words, a policy’s score is the number
of times it successfully captures the ball over the course of 12 trials: an integer
between 0 and 12 inclusive.

Each trial consists of the robot approaching the ball from a random location on
the standard field used in the 2004 RoboCup competition, which is surrounded
by a short wall designed to keep the ball from leaving the field. The training
procedure is summarized in pseudocode in Figure 3.

One goal of the training procedure is to generate as many trials as possible
in the open field, rather than with the ball starting against the wall. The latter
trials are somewhat less informative because capturing the ball along the wall
is considerably harder; even a good policy will fail much more frequently along
the wall, which can lead to a smaller spread of scores among policies. In order to
keep the ball in the open field, if the Aibo successfully captures it, it kicks it in
whichever direction it estimates is away from the wall (lines 21–25 in Figure 3).
Before starting the next trial, the Aibo turns around approximately 180◦ in
place in order to knock the ball away from it if it is still close (line 27), so as
to make the different trials as independent as possible. Once it has done this,
it begins the next trial by searching for the ball and then approaching it with
the parameters of the current policy (lines 3–17). Videos depicting the training
process in action are available online1.

In the notation of layered learning, we thus have the following definition of
the acquisition layer (L2):

F2: {BallAngle, BallDistance} ∈ {[−180, 180], [0, ∞)}. The five thresholds that
comprise an acquisition policy (slowdown dist, etc.) relate to these two
sensor readings alone;

O2: whether or not to lower the head at the current time;
T2: evaluations of mappings from Fi to Oi, obtained by repeatedly trying to

grasp the ball by the process described above and summarized in Figure 3.
In particular, the learned walk (h1) is used during training;

M2: the policy gradient algorithm described in Section 4;
h2: the final learned acquisition policy.

All learning is done on the Aibo itself, including all calculations necessary
to execute the learning algorithm. Interruptions caused by dead batteries are
of little consequence, since the learning algorithm we use has practically no
state: if we resume from its last base policy, we will never lose as much as
an entire iteration of the algorithm. With the algorithm parameters used in
our experiments, a battery typically lasts for the amount of time necessary to
complete two iterations, so on average a run requires about 4 battery changes.

1 http://www.cs.utexas.edu/~AustinVilla/legged/learned-acquisition/

http://www.cs.utexas.edu/~AustinVilla/legged/learned-acquisition/
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4 The Policy Gradient Algorithm

The learning algorithm common to both learned layers estimates the gradient of
the policy’s value function near the current policy via efficient experimentation.

Table 2. Parameters for the policy gradient
algorithm in the ball acquisition learning task

Parameter Value
Policies per iteration (t) 8

Increment for slowdown dist (ε1) 10mm
Increment for slowdown factor (ε2) 0.1
Increment for capture angle (ε3) 5◦

Increment for capture dist (ε4) 10mm
Increment for turn cutoff (ε5) 10◦

Scalar step size (η) 2

It then takes a step in the direc-
tion of the estimated gradient and
repeats the process. We use the
policy gradient algorithm presented
and evaluated against alternatives
for learned locomotion by Kohl and
Stone [10]. This section summarizes
the algorithm in task-independent
terms and points out some of its ad-
vantages for the purpose of ball ac-
quisition.

Starting from a base policy {θ1,
..., θN}, t−1 new policies are chosen

by selecting one of {θi − εi, θi, θi + εi} randomly for each dimension i, where εi is
a fixed increment particular to dimension i. These t policies (the base policy and
the t − 1 randomly selected policies) are then evaluated for their fitness. Their
scores are used to estimate the partial derivative of fitness with respect to each
of the N dimensions, which leads to a new base policy.

The estimation of partial derivatives works as follows. For each dimension i,
the policies are divided into three sets according to the value of parameter i: if
its value is θi − εi, the policy is in set S−ε,i; if it is θi, the policy is in set S0,i;
and if it is θi + εi, the policy is in set S+ε,i. Then the average score over all the
policies in each set is computed and used to build an adjustment vector A of size
N . For each i, if the average score over the set S0,i is greater than the average
score over each of the other two sets, then Ai = 0; otherwise, Ai is the difference
between the average scores over set S+ε,i and set S−ε,i. A is then normalized
and multiplied by a scalar step size η, so that the policy is adjusted by a fixed
amount each time. The above process comprises one iteration of the algorithm.
For the parameters used in learning ball acquisition, see Table 2.

5 Results

The success of layer L1 at producing a significantly faster forward gait has been
demonstrated previously [11]. In this paper, we demonstrate that, in the layered
learning paradigm we present here, L2 can build upon the gait improvement
conferred by L1. In particular, we hypothesize the ability to learn a significantly
improved ball-acquisition skill to go with the significantly improved gait.

To test this hypothesis quantitatively, we learn ball acquisition using three
gaits learned by separate runs of layer L1. All three of these learned gaits rep-
resent significant improvements in speed over the initial hand-tuned gait. The
initial (before learning) ball acquisition policy was hand-tuned for the initial
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hand-tuned gait from which gait learning began. The ball-acquisition learning
paradigm described by layer L2 was then applied to each of these gaits, and
significantly improved acquisition policies were discovered for all three.

Figure 4 shows the learning curve for one
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Fig. 4. Progress of acquisition
learning on gait A. This learning
curve was produced by running
100-trial evaluations on the base
policy of each iteration. Error bars
(showing the 95% confidence in-
terval) are depicted for the initial
and best learned policy; these were
obtained by running five 100-trial
evaluations on each policy.

of these gaits, which we will refer to as gait A.
For this gait, the initial ball acquisition pol-
icy acquires the ball roughly 26% of the time,
whereas the best learned policy acquires the
ball approximately 77% of the time. This im-
provement was reached in 8 iterations, which
requires 768 attempted acquisitions (approx-
imately 3 hours). The initial policy and the
best learned policy were each subjected to
five 100-trial evaluations, resulting in five ap-
proximations of the success rate of each. Sta-
tistical significance was then established by
applying a t-test to these success rates.

Gait A has a speed of about 315mm/sec,
whereas the initial hand-tuned gait from
which it was learned has a speed of about
245mm/sec. The gait training process also re-
quires roughly 3 hours. Therefore, with 6
hours of training, our robot’s walking speed
increased 29% and its reliability at acquir-

ing the ball more than doubled2 in comparison with the original hand-coded
solution.

Table 3 summarizes the ball acquisition policies learned for all three gaits. It
also shows the success rate of each when tested on the gait with which it was
learned. These success rates were obtained by running 100-trial evaluations of
the policy (except for gait A, where the data is the result of all 500 trials run to
establish statistical significance on the data in Figure 4). The success rate of the
initial hand-coded policy is 26% for gait A, 14% for gait B, and 14% for gait C.

Note that in all cases, the method learned not to slow down at all (slowdown
factor is 1). When slowdown factor is 1, the parameter slowdown dist has
no effect on the robot’s behavior, which is presumably why learning resulted in
such a wide range of values for this parameter.

The fact that in all cases our method learns not to slow down demonstrates
the advantage that machine learning can bestow because of its unbiased explo-
ration of the space. In hand-tuning, we believed that slowing down would make
the ball approach more reliable at the expense of speed, since the estimates
of ball distance should change less rapidly if the robot is walking more slowly.
Our system, however – which optimized only for reliability – found that slowing

2 The initial ball-acquisition skill had a success rate of 36% with the initial gait,
and was the result of extensive tuning involving the testing of dozens of parameter
settings over the course of several days.
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down is in fact a disadvantage: in all learning trials it actively increased the
slowdown factor parameter from its initial value of 0.8 to 1.0.

Table 3. Policy values learned for each gait, and the approximate success rate of each

Policy slowdown dist slowdown factor capture angle capture dist turn cutoff Success rate

Initial 200 0.8 15 110 90 26%/14%/14%

Best: gait A 193 1 32 155 80 77%

Best: gait B 187 1 19 155 69 84%

Best: gait C 228 1 31 129 84 52%

We originally hypothesized that different gaits would require different acqui-
sition policies. This hypothesis was supported by the fact that the initial ball
acquisition policy dropped in effectiveness from approximately 36% on the gait
for which it was hand-tuned to 14–26% on the learned gaits.

Table 4. Success rates of best natively
learned acquisition policy and best acqui-
sition policy learned on gait A

Gait Natively learned Best on gait A
B 84% 91%
C 52% 53%

However, it turned out not to be
the case with these learned gaits
and their trained acquisition policies.
Rather, upon testing the best acqui-
sition policy learned with gait A on
each of the other two learned gaits,
there was no significant difference in
performance — if anything, the acqui-
sition policy learned on gait A per-
forms better in each case, as shown in

Table 4.
Nonetheless, the layered learning paradigm enabled the separation of the

learning for the walk and ball acquisition into two distinct phases. Given that
they learn most efficiently in different training environments, such a hierarchical
approach is an essential component of our successful skill learning.

6 Conclusion

This paper makes two main contributions: i) a significantly improved grasping
skill achieved via fully autonomous machine learning with all training and com-
putation executed on-board the robot, and ii) the first instantiation of layered
learning on a physical robot.

The layered learning approach to locomotion and ball acquisition learning
that we describe here is very useful in practice. Compared to manually tuning
these skills, this method saves time and can generate better policies. Indeed,
we used the described automated training paradigms for both the gait and the
acquisition in our competitive team development for the RoboCup 2004 and 2005
robot soccer competitions, reaching the semifinals (out of 8) at the regional event
and the quarterfinals (out of 24) at the international event both years [16].
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In our ongoing research, we aim to identify additional skills and behaviors that
can be learned in a similarly autonomous and efficient fashion. Several candidates
for an L3 that builds on the grasping skill learned in L2 exist. Currently, for
example, all design and tuning of kicks for our RoboCup team are done by
hand. If this process could be automated, it would likely save time and might
also lead to improved solutions. However, since most kicks begin by grasping
the ball, autonomous learning of kicks would be intractable without a good
grasping behavior. Another possible candidate for an L3 that builds on the
learned grasping skill is the tuning of walks that manipulate the ball, such as
the one used in the turning-with-ball behavior which makes grasping so crucial in
the first place (see Section 2.1). Eventually, these learned skills may feed into still
higher-level learned decision-making behaviors (where to pass or when to shoot)
based on the current learned skills. Indeed, an immediately realizable L3 related
to kicking is the modeling of hand-tuned kicks as accomplished via regression
learning by Chernova and Veloso [3]. They use these models to demonstrably
improve the robot’s decision-making when choosing form among different kicks.
Ultimately, we hope to characterize the full range of characteristics of tasks on
a mobile robot that may be improved by these methods.
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