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Abstract. Our research focuses on automating the color-learning process
on-boarda leggedrobotwith limitedcomputational andmemory resources.
A key defining feature of our approach is that instead of using explicitly la-
beled trainingdata it trains autonomously and incrementally, therebymak-
ing it robust to re-colorings in the environment. Prior results demonstrated
the ability of the robot to learn a color map when given an executable mo-
tion sequence designed to present it with good color-learning opportunities
based on the known structure of its environment. This paper extends these
results by demonstrating that the robot can plan its own such motion se-
quence and perform just as well at color-learning. The knowledge acquired
at each stage of the learning process is used as a bootstrap mechanism to
aid the robot in planning its motion during subsequent stages.
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1 Introduction

The first step for most teams, upon arrival at RoboCup, in any of the real
robot leagues, is color calibration: mapping raw camera pixels to color labels
such as white or pink. Due to differences in lighting conditions and object colors
between the teams’ labs and the competition venue, pre-trained vision modules
are unlikely to work “out of the box.” Also, the time required for color calibration
(more than an hour in the legged league) leads to multiple days of setup time
before each competition, a costly proposition from the perspective of reserving
the venue. But both soccer-playing and rescue robots must eventually be able
to operate in natural, changing lighting conditions, as soon as possible after
arriving on site. One way to dramatically reduce this time is to enable the robot
to autonomously learn the desired colors from the environment.

The most common approach to color calibration is manual labeling of a small
subset of the color space, which is used to label the values of nearby pixels and
produce the color map. Instead, we specify the properties of objects in the robot’s
environment (locations, color labels, and sizes), but no information on the pixel
values corresponding to the colors is given. The known locations and structure
(color labels and sizes) of objects are used to seed the color-learning process and
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plan the corresponding motion sequence. When illumination conditions change,
assigning pixel-label biases could require human supervision each time, or fail
altogether. Our method does not suffer from this problem since no information
is needed regarding the pixel values that correspond to each color.

The problem of color segmentation takes as input the color-coded model of
the world with a representation of the size, shape, position and color labels
of objects of interest. A stream of input images are provided and the robot’s
initial position (and its joint angles over time) are known. The desired output
is a Color Map that assigns a color label to each point in the color space. But
the process is constrained to work within the limited memory and processing
resources of the robot and it should be able to cope with the rapid motion of the
limited-field-of-view camera, with the associated noise and image distortions.

Building on our previous work [9], where the robot learnt colors by moving
through a pre-defined motion sequence that was generated manually, here we
enable the robot to autonomously plan its motion sequence for any given config-
uration of objects, based on environmental knowledge and heuristic constraints
on its motion sequence. Further, it simultaneously learns colors and localizes,
and incrementally performs better at both these tasks.

2 Background Information

The SONY Aibo, ERS-7, is a four legged robot whose primary sensor is a CMOS
camera with a field-of-view of 56.9o (hor) and 45.2o (ver), providing the robot
with a limited view of its environment. The images have a resolution of 208×160
pixels and are captured in the YCbCr format at 30Hz. The robot has 20 degrees-
of-freedom (dof). It also has noisy touch sensors, IR sensors, and a wireless
LAN card for inter-robot communication. The camera jerks around a lot due to
the legged locomotion, and images possess common defects such as noise and
distortion. Figure 1 shows the robot and the 4.4m × 2.9m playing field.

On the robot, visual processing typically

Fig. 1. An Image of the Aibo and the
field

occurs in two stages: color segmentation
and object recognition (see [6]). Color seg-
mentation is a well-researched field in com-
puter vision with several good algorithms
[4,10]. But these involve computation that
is infeasible to perform on autonomous
robots with computational and memory
constraints. In the RoboCup domain, the
methods applied range from the baseline
approach of creating mappings from the
YCbCr values to the color labels [2], to the
use of decision trees [11] and axis-parallel
rectangles in the color space [3]. All of them
involve an elaborate training process where the color map is generated by hand-
labeling several (≈ 25) images over a period of at least an hour.
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The color map is used to segment the image and construct connected constant-
colored regions, which are used to detect useful objects (e.g. markers). The robot
uses the markers to localize itself on the field and coordinates with its teammates
to score goals on the opponent. All processing, for vision, localization, locomo-
tion, and action-selection, is performed on board the robots, using a 576MHz
processor. Though games are currently played under constant and reasonably
uniform lighting conditions, a change in illumination over several days often
forces teams to re-calibrate the vision system. Also, the overall goal of even-
tually playing against humans in natural lighting puts added emphasis on the
ability to learn the color map in a very short period of time.

Attempts to automatically learn the color map on the Aibos have rarely been
successful. In one approach, edges are detected and closed figures are constructed
to find image regions corresponding to known environmental features [1]; color
information from these regions is used to build the color classifiers. This is time
consuming even with the use of offline processing and requires human super-
vision. In [7], a color map is learnt using three layers of color maps, with in-
creasing precision levels. This is still not as accurate as the hand-labeled one
and additional constraints are required to disambiguate the colors. Schulz and
Fox [8] present another example where colors are estimated using a hierarchical
Bayesian model with Gaussian priors.

Our approach does not need color priors. It enables the robot to autonomously
plan its motion to learn the color map, using the knowledge of location and
structure of the objects, in less than five minutes. It involves very little storage
and the resultant color map is comparable in segmentation accuracy to the hand-
labeled one that take more than an hour of human effort. Note that we provide a
world model instead of a color map and/or the motion component. This removes
the manual-intensive component and enables the robot to function in different
environmental settings.

3 Problem Specification

As described in [9], to recognize objects and operate in a color-coded world,
a robot typically needs to recognize a certain discrete number (N) of colors
(ω ∈ [0, N − 1]). A complete mapping identifies a color label for each possible
point in the color space:

∀p, q, r ∈ [0, 255], {C1,p, C2,q, C3,r} �→ ω|ω∈[0,N−1] (1)

where C1, C2, C3 are the three color channels (e.g. YCbCr), with the correspond-
ing values ranging from 0 − 255.

We represent each color by a three-dimensional (3D) Gaussian model with
mutually independent color channels, i.e. no correlation among the values along
the three color channels. Though more expressive color representations, such as
histograms, have been used extensively in the literature, and the independence
assumption does not hold perfectly in practice, we determined, using empirical
data and the statistical technique of bootstrapping [5], that a 3D Gaussian model
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with independent channels closely approximates reality. In addition to simplify-
ing calculations the Gaussian has the advantage that the mean and variance are
the only statistics that need to be stored for each color. This makes the learning
process feasible to execute on mobile robots with constrained processing power.

Under the three-dimensional Gaussian model with independent channels, the
apriori probability density functions (color ω ∈ [0, N − 1]) are given by:

p(c1, c2, c3|ω) ∼ 1√
2π

∏3
i=1 σCi

· exp−1
2

3∑

i=1

(
ci − μCi

σCi

)2

(2)

where, ci ∈ [Cimin = 0, Cimax = 255] represents the value at a pixel along a color
channel Ci while μCi and σCi represent the corresponding means and variances.

Assuming equal priors, the aposteriori probabilities for each color are:

p(ω|c1, c2, c3) ∝ p(c1, c2, c3|ω) (3)

For each pixel, the color label corresponds to the color that has the maximum
aposteriori probability.

4 Autonomous Color Learning

Our learning algorithm is summarized in Algorithm 1 and specific details are
described below. The basic color learning component (lines 9−14) was described
in [9] while the rest of the algorithm deals with the motion sequence planning.

The robot starts off at a known position in its world model and the locations of
various color coded objects are known. The robot has no initial color information
(means and variances of all colors are zero) but it has the list of colors to be
learnt (Colors[]). It also has an array of structures (Regions[][]) — a list for
each color. Each structure corresponds to an object of a particular color and
stores a set of properties for that region, such as its size (length and width) and
its three-dimensional location (x,y,z) in the world model. Both the starting pose
of the robot and the object locations can both be varied between trials, which
causes the robot to also modify the list of candidate regions for each color.

Given the robot’s limited field of view, it is essential to adjust its pose to
focus on objects with the colors of interest. This can be extremely challenging
in the initial stages due to the inherent inaccuracy of the motion model (due
to slippage) and the initial lack of visual information. Geometric constraints
on the position of the objects are essential to resolve conflicts. These heuristic
constraints depend on the robot and the problem domain. In our case, they are:

• No two objects should occupy the same position in the world model — there
should be a minimum distance (600mm) between two objects.

• No two objects of the same dimensions can be within 90o of each other (with
respect to the corresponding robot position) if they each consist of only one
unknown color.
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Algorithm 1. Planned Autonomous Color Learning
Require: Known initial pose (but can be varied across trials).
Require: Color-coded model of the robot’s world - objects at known positions that

can change between trials.
Require: Empty Color Map; List of colors to be learnt - Colors[].
Require: Arrays of colored regions, rectangular shapes in 3D space; Regions[][]. A

list for each color, consisting of the properties (size, shape) of the regions of that
color.

Require: Ability to navigate (approximately) to a target pose (x, y, θ).
1: i = 0, N = MaxColors
2: T imest = CurrT ime, T ime[] — the maximum time allowed to learn each color.
3: while i < N do
4: Color = BestColorToLearn( i );
5: TargetPose = BestTargetPose( Color );
6: Motion = RequiredMotion( TargetPose )
7: Perform Motion {Monitored using visual input and localization}
8: if TargetRegionFound( Color ) then
9: LearnGaussParams( Color )

10: Learn Mean and Variance of color from candidate image pixels
11: UpdateColorMap()
12: if !Valid( Color ) then
13: RemoveFromMap( Color )
14: end if
15: else
16: Rotate at target position.
17: end if
18: if CurrT ime − T imest ≥ T ime[Color] or RotationAngle ≥ Angth then
19: i = i + 1
20: T imest = CurrT ime
21: end if
22: end while
23: Write out the color statistics and the Color Map.

The order in which the colors are to be learnt is computed dynamically and
greedily (BestColorToLearn() — line 4); it chooses the best color one at a time
without actually planning ahead for where it will be after learning that color.
This is based on:

1. The amount of motion (distance) that is required to place the robot in a
location suitable to learn the color.

2. The existence of a region that can be used to learn that color without
requiring the knowledge of any other (as of yet) unknown color.

The goal is to learn colors with minimal motion, so as to increase the chances of
being well-localized. Once a color order is chosen, for the first color in the list,
(Color), the robot determines the best candidate region to learn that color from.
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Once the candidate is determined, the robot calculates the pose that would be
best suited to recognize this candidate region – BestTargetPose() (line 5).

The robot then determines (RequiredMotion() — line 6) and executes the
motion sequence to place it in the target position. The motion to the target
position is monitored (visual feedback) using the current knowledge of colors
to recognize objects and localize to the correct location. Once it gets close to
the target location, the robot searches for candidate regions that satisfy the
heuristic constraints of size and shape for the region that it is looking for. The
actual world-model definitions in the structure Regions[Color][best-candidate-
region] are dynamically modified by the robot, based on its pose and standard
geometric principles, to arrive at suitable constraints.

The robot stops when either the candidate region is found or the target posi-
tion is reached. If the candidate region is not found (TargetRegionFound(), line
8, is false), it is attributed to slippage and the robot turns in place, searching
for the candidate region. The world model and heuristic constraints resolve any
conflicts that arise. Once such a region is found, the robot stops, with the re-
gion at the center of its visual field. Then the robot proceeds to learns the color
(LearnGaussParams() - line 9). Each pixel in candidate region is accepted as a
member of the color class being learnt if it is sufficiently distant from the means
of the other known color classes. The mean and variance of the accepted pixels
define the color’s 3D Gaussian. The learnt Gaussians are used to generate the
128 × 128 × 128 color map (UpdateColorMap() - line 11) around once every five
seconds. The updated color map, in addition to being used to segment subse-
quent images and validate the color parameters currently learnt (lines 12-14),
helps the robot localize itself and move to suitable locations to learn the other
colors. The learning algorithm bootstraps, with the knowledge available at any
given instant being exploited to plan and execute the subsequent tasks efficiently.

If the robot has rotated in place for more than a threshold angle (Angth)
and/or it has spent more than a threshold amount of time learning a particular
color (T ime[Color]), the robot transitions to the next color in the list. The
process continues until the robot has attempted to learn all the colors.

Note that instead of providing a color map and/or the motion sequence each
time the environment or the illumination conditions change, we just provide the
positions of various objects in the robot’s world and have it plan its motion
sequence autonomously. This significantly reduces the amount of manual input
required in our color learning approach [9]) while still learning colors much faster
than the baseline approach of hand-labeling several images.

5 Experimental Results

Our previous work [9] demonstrated the ability of the robot to learn the colors
when provided with an appropriate action sequence. Here, we show that the
robot can succeed at this task while planning its owb action sequence.

To localize, the robot has to learn five colors - white, green, yellow, blue, pink,
and we measure both its segmentation accuracy and localization accuracy (the
robot uses this color map to move to a few positions on the field).
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Table 1. Successful Planning and Localization Accu-
racy

Config Success (%) Localization Error
X (cm) Y (cm) θ (deg)

Worst 70 17 20 20
Best 100 3 5 0
avg 90.0 ± 10.7 8.6 ± 3.7 13.1 ± 5.3 9.0 ± 7.7

One challenge in exper-
imental methodology was
to measure the robot’s
planning capabilities in
qualitatively difficult setups
(configurations of the ob-
jects and robot initial
position). We asked seven
graduate students with ex-
perience working with the robots to pick a few test configurations which they
thought would challenge the algorithm. For each configuration, we let the ro-
bot execute its color learning algorithm and measured the number of successful
learning attempts: an attempt is deemed a success if all five colors are learnt.

In Table 1 we tabulate the performance of the robot in its planning task
over these configurations. It also shows the localization accuracy of the robot
using the learnt color map. The results in the table indicate the performance
of the robot over 15 configurations, with 10 trials for each configuration. The
robot is able to plan its color learning task and execute it successfully in most
of the configurations (that were designed to be adversarial) and the localization
accuracy is comparable to that obtained with the hand-labeled color map (≈
6cm, 8cm, 4deg in X , Y , and θ).

One configuration where the robot performs worst is shown in Figure 2.
Here, the robot is forced to move a large distance to obtain its first color-
learning opportunity (from position 1 to position 2). This motion sometimes
leads the robot into positions that are quite far away from its target location
(position 2) and it is then unable to find any candidate image region that satisfies
the constraints for the yellow goal. Currently, failure in this initial stage strands
the robot without any method for recovery: a suitable recovery mechanism using
additional geometric constraints is an important area for future work. Note that
the 30% failure rate in this case is entirely due to the unreliability of the robot’s
motion model: the color-learning plan generated by the robot is quite reasonable.
To test the segmentation accuracy of the
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Fig. 2. Sample Configuration where
robot performs worst

learnt color map, we generated a color map
by hand-labeling images [6]. We refer to this
color map as HLabel. We compared the la-
beling provided by the two color maps (HLa-
bel and Learnt) with the that provided by
a human observer, the Ground Truth
(GTruth). Only the colors of the objects on
the field and/or below the horizon matter
because other regions are automatically re-
jected in the object recognition phase. Also,
the correct classification result is unknown
for several background pixels in the image. So, the observer only labeled pixels
that appear on or around the field and they were compared with the classification
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provided by the two color maps. On average, ≈ 6000 of the 33280 pixels in
each image get labeled by the observer. The average classification accuracies
for HLabel and Learnt, when compared with GTruth, are 99% and 96.7% re-
spectively. We then tested the algorithm under different illumination condi-
tions in addition to testing the algorithm’s independence to color labels (la-
beling all pink objects as blue and vice versa does not pose any problems).
This confirms our hypothesis that a repainting of the environment in any way,
from just changing color shades, to scrambling colors entirely, does not dis-
rupt our approach. Sample results for these experiments are available on-line:
www.cs.utexas.edu/users/AustinVilla/?p=research/auto vis.

6 Conclusions and Future Work

We have presented an approach that automatically plans a motion sequence to
learn the desired colors on-board a legged robot with limited computational and
storage resources. The corresponding segmentation and localization accuracies
comparable to that obtained by the previous approach of having the robot learn
the color map by executing a prespecified motion sequence [9]. The robot is able
to plan its motion sequence dynamically in different world configurations based
on heuristic constraints. The planned color learning can be repeated under dif-
ferent illumination conditions and object configurations, exploiting the inherent
structure in the environment.

Our approach may apply to much more general environments, such as robots
in homes or industrial settings. All that’s needed is an environmental model, with
the locations of distinctive features labeled. A major premise of this research is
that generating such a model is significantly easier for a human than labeling
pixels or generating a good motion path for color learning. This is reasonable,
for example, whenever the configuration of objects in the world changes less
frequently than the lighting conditions.

Currently, the color map is learnt from a known starting position without any
prior knowledge of colors. We are working on learning colors from an unknown
starting position on the field. Ultimately, we aim to develop efficient algorithms
for a mobile robot to function autonomously under completely uncontrolled nat-
ural lighting conditions.
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